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Abstract 

Two computationally simple methods are proposed to evaluate the distribution function and 
the density of the square of the sample multiple correlation coefficient. No auxiliary routine 
is required. The accuracy of recursive computations can be effectively controlled. The distribu- 
tion function and the density can be evaluated concurrently because their computing formulas 
are closely related. This property can enhance efficiency of Newton's method for computing 
the quantiles of the distribution. The corresponding algorithms are provided in a step-by-step 
form. 
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1. Introduction 

Let X t ,  X2,  . . . ,  Xm have a multivariate normal distribution with mean vector 
# and covariance matrix 2~, and R be the sample multiple correlation coefficient 
between X1 and X2, ... ,Xm based on a sample of size N > m. The density of 
Y = R 2 can be expressed as an infinite weighted sum of central beta densities as 
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follows (see, e.g., Anderson, 1984, p. 145): 

f ( y ;  m, N, p2) 

F 2 [(N - 1)/2 + i] ( p 2 ) i  (1 - -  p Z ) ( N -  1)/2 y (m-  1)/2 + i -  1(1 __ y ) (N-  ra- 2)/2 

2., 
i = 0  F[(N - 1)/2]i! F[(m - 1)/2 + i] F[(N - m)/2] 

= ~ qif(Y; a + i, b), (1) 
i=O 

where 0 _ y < 1, p is the population multiple correlation coefficient, F(0¢) is the 
gamma function, a = (m - 1)/2, b = (N - m)/2, qi = (F(a + b + i)/F(a + b)i!) 
(p2)/(1 --pZ)a+t,, and f ( y ;  a, b) is the central beta density with shape parameters 
a and b. The distribution function of Y can, similarly, be expressed as an infinite 
weighted sum of central beta distribution functions. That is, 

P(Y <_ y) = F(y; m, N, p2) = ~ q~F(y; a + i, b), 
i = 0  

(2) 

where F(y; a, b) is the central beta distribution function with shape parameters 
a and b. A recursive algorithm for evaluating F(y; m, N, p2) based on the series 
representation in (2) was given by Ding and Bargmann (1991a). The algorithm sums 
up the terms in (2) until the derived upper bound for the error of truncation is less 
than some predetermined accuracy. Auxiliary routines for evaluating F(y; a, b) and 
the natural logarithm of the gamma function are required. Ding and Bargmann 
(1991b) also computed the quantile yp such that f(yp; m, N, p2) = p for given values 
of m(> 1), N ( >  m), p2(0 ~< p2 < 1), and p(0 < p < 1) by using the Illinois method. 
In this paper, computationally simple methods are proposed to evaluate F(y; 
m, N, p2) (based on an alternative series representation) and F(y; m, N, p2) (based 
on the series representation in (1)). No auxiliary routine is required. The computa- 
tional accuracy can be effectively controlled by using the error bounds obtained. 
Moreover, the recurrence formulas for computing F(y; m, N, p2) andf(y ;  m, N, p2) 
are closely related, and therefore F(y; m, N, p2) and f (y ;  m, N, p2) can be evalu- 
ated concurrently. This property can enhance efficiency of Newton's method 
for computing the quantile yp. The corresponding algorithms are provided 
in a step-by-step form. Numerical methods and the resultant algorithms basi- 
cally follow those given in Ding (1994) for computing the noncentral beta distribu- 
tion, which is an infinite weighted sum of central beta distributions with Poisson 
weights. 

2. Numerical  methods 

The numerical methods discussed in this section for evaluating F(y; m, N, p2) 
andf (y ;  m, N, p2) is for 0 < y < 1. No computation is needed for y = 0 or y = 1 
since f(0; m, N, p2) = f (1 ;  rn, N, p2) = F(0; m, N, p2) = 0, and F(1; m, N, p2) = 1. 
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A recursive formula  for evaluating F(y; a + i, b) in (2) was given by Ding (1994) 
as follows: 

F ( y ; a + i , b ) =  ~ ( 1 - - Y ) k ) f ( y ; a + k + l , b ) =  ~ tk, i = 0 , 1 , . . . ,  (3) 
 :i(a +-b + 

where 

F(a + b) . y,(1 
to = r (a  + 1 ) F ( b )  _ y)b, 

t~=t~_ ly (a+b+i - -1 ) / (a+i ) ,  i_> l .  (4) 

It follows that  F(y; m, N, p2) can be expressed by a new series in term of central 
beta densities: 

F(y; m, N, 0 2) = ~ q~ 
i 

= i = O \ k = O  qk ti 

: ~ l)iti, (5) 
i=O 

where the terms are evaluated recursively by 

Vo = qo = (1 - -  p2)a+b, 

v~=vi_l +q~, q~=q~-~(a+b+i-1) (p2) / i ,  i>_l, 

ti, i >_ O, as in (4). (6) 

Since m and N are both  integers, the gamma  function in (4) is easy to evaluate in 

a sense that  F(~) = (ct - 1)! if ct is an integer, and F ( ~ )  = (~ - 1 ) . . .  ½ x / ~  if ~ is 
n--1 a half-integer. F(y;  m, N, p2) can be approximated  by the finite sum ~/=o vitl. Let 

EF. denote  the error of truncation.  Using the facts that  Y,~oqi = 1 (see, e.g., 
Abramowitz  and Stegun, 1965, p. 556), and ~i~,t~ < t,_~ y(a + b + n - 1)/ 
[(a + n) - (a + b + n)y] if a + n > (a + b + n)y (see Ding, 1994), we have, under  
the same condit ion,  

EF.= ~, viti<_ ~ t i < t , - , y ( a + b + n - l l / [ ( a + n ) - ( a + b + n ) y ] .  (7) 
i=n i=n 

The error bound  given above is a decreasing function of n when 
a + n > (a + b + n)y. To evaluate F(y;  m, N, p2), accumulate  the terms in (5), 
compu ted  recursively th rough (6), until the error bound  is not  greater than a speci- 
fied accuracy e. In fact, the evaluation of F(y;  m, N, p2) requires no auxiliary 
routine. 

The density f ( y ;  m, N, p2) of Y expressed in (1) is another  series in terms of 
central beta densities. Its terms can be evaluated recursively, and are related to 
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those of (5) as follows: 

f(y;m,N, p2) = ~ qif(y;a+i,b)= ~ qis,, 
i = 0  i = 0  

(8) 

where 

r(a + b) 
y a -  1 (1 - y ) b -  1 

So - r ( a )  r(b) = ato/y/(1 - y), 

si = s t - l y (a  + b + i - 1 ) / ( a  + i - 1 )  

= t , - l (a  + b + i - 1)/(1 - y), i _> 1, (9) 

qi and h, i >_ O, are those in (6). 

Let Ef, be the t runcat ion error at i = n for the series in (8). Since the sequence 
{sl} (i > n) is decreasing when a + n > (a + b + n)y, we have, under  the same 
condit ion,  

E f n  = q i s i  < qisn -= Sn 1 - -  qi = Sn(1 - -  V n - 1 ) .  
i=n i=n i = 0  

(10) 

Likewise, the above error bound  is a decreasing function of n, and is used to control  
the accuracy of the evaluation o f f ( y ;  m, N, p2). Again, the evaluation o f f ( y ;  
m, N, p2) requires no auxiliary routine. 

Let G(y) = F(y; m, N, p2) _ p. The quanti le yp is to be obtained by solving the 
equat ion G(y) = 0. Since G(0) = - p, G(1) = 1 - p, and G is strictly increasing in 
[0, 1], the solution yp of G(y) = 0 is unique. An efficient root-finding me thod  is 
Newton 's  method,  which requires the evaluations of both  of F(y; rn, N, p2) and 
G'(y) = f l y ;  m, N, p2). The process is to repeat comput ing  (see, e.g., Kennedy and 
Gentle, 1980, pp. 72-73) 

[F(yj; m, N, p2) _ p] 
Y j + I - = Y j -  f ( y j ;  m , N ,  p2 ) , j = 0 , 1  . . . .  , (11) 

until lYj+ 1 - Yjl ~ 6yj+ 1, where 6 is a specified accuracy. It is obvious that  yp = 0 
for p = 0 and yp = 1 for p = 1. No  computa t ion  is needed for these cases. For  
0 < p < 1, perform iterations (11) with the starting value Y0 = 0.5. For  each iter- 
ation, F(yj; m, N, p 2) andf(y~;  m, N, p2) can be evaluated concurrent ly rather than 
independent ly  because their comput ing  formulas (5) and (8) are closely related. This 
proper ty  can greatly enhance the computa t iona l  efficiency of Newton 's  method.  To 
ensure the legality of the iterate yj + 1, use the same adjustments  as in Ding (1994): if 
Yj+I ~ O, replace it by yJ2;  if Yj+I ~ 1, replace it by (yj + 1)/2. Note  that  the 
evaluations of F(yj ;  m, N, pZ) a n d f ( y j ;  m, N, pZ) should be precise enough so that  
the accuracy of Newton 's  solution yp can be ensured. Also, the number  of i terations 
should  be controlled. 
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3. Algorithms 

According to the formulas discussed in Section 2, we provide three effective 
algorithms in a step-by-step form for evaluating F(y ;  m, N,  p 2 ) , f ( y ;  m, N,  p2), and 
the quantile yp. The algorithm for computing yp is particularly efficient. 

Algorithm A. This algorithm computes the distribution function F(y;  m, N, /9  2) of 
Y = R 2 for given values of y(0 < y < 1), m(> 1), N ( >  m), and p 2 ( 0  ~ / 9  2 ~ 1). 

A1 (Specify the accuracy). Set E P S  ~ e (some desired accuracy, e.g., 10-6). 
A2 (Set the constants). Set a ~- (m - 1)/2, b ~- (N  - m)/2. 
A3 (Initialize). Set n ~ 1, t ~ (r(a + b)/r(a + 1)F(b)) ya(1 - y)b, q ~_ (1 -- p2)a+b, 

V ~-- q, C D F  ~ vt. 
A4 (Compare a + n, (a + b + n)y). If a + n > (a + b + n)y, go to step A6. 
A5 (Update the term and then accumulate. Then increase n by 1). Set 

q ~ - q ( a + b + n - 1 ) ( p E ) / n ,  v ~ - v + q ,  t ~ - t y ( a + b + n - 1 ) / ( a + n ) ,  C D F  

C D F  + vt, n ~ n + 1, and return to step A4. 
A6 (Find the error bound and check for convergence). Set bound~-  

ty(a + b + n - 1)/((a + n) - (a + b + n)y). If bound < EPS,  terminate the algo- 
rithm. (CDF is the answer.) 

A7 (Update the term and then accumulate. Then increase n by 1). Set 
q * - - q ( a + b + n - 1 ) ( p E ) / n ,  v ~ v + q ,  t ~ t y ( a + b + n - 1 ) / ( a + n ) ,  C D F  

C D F  + vt, n ,--- n + 1, and return to step A6. 

Algorithm B. This algorithm computes the density f (y ;  m, N, p 2 )  of Y = R 2 for 
given values of y(0 < y < 1), m(> 1), N ( >  m), and p2(0 < p2 < 1). 

B1 (Specify the accuracy). Set E P S  . - e  (some desired accuracy, e.g., 10-6). 
B2 (Set the constants). Set a ~ (m - 1)/2, b *- (N - m)/2. 
B3 (Initialize). Set n ~- 1, s ~- (F(a + b)/F(a) F(b)) ya- 1 (1 - y)b- 1, q ~ (1 - p2)a+b, 

v ~- q, P D F  ~- qs. 
114 (Compare a + n, (a + b + n)y). If a + n > (a + b + n)y, go to step B6. 
115 (Update the term and then accumulate. Then increase n by 1). Set 

q ~- q(a + b + n - 1 ) ( p E ) / n ,  v ~- v + q, s ~ sy(a + b + n - 1 ) / ( a  + n - 1 ) ,  P D F  

P D F  + qs, n ~ n + 1, and return to step B4. 
B6 (Find the error bound and check for convergence). Set b o u n d ~  

sy(a + b + n - 1)(1 - v)/(a + n - 1). If bound < EPS,  terminate the algorithm. 
(PDF is the answer.) 

B7 (Update the term and then accumulate. Then increase n by 1). Set 
q ~ q(a + b + n - 1 ) ( p 2 ) / n ,  v *-- v + q, s , -  sy(a + b + n - 1 ) / ( a  + n - 1 ) ,  P D F  

P D F  + qs, n ~ n + 1, and return to step B6. 

Algorithm C. This algorithm computes the quantile yp of the distribution of Y = R 2 

such that F(yp; m, N, /9  2) ----- p for given values of m(> 1), N ( >  m), p2(0 < / 9  2 ~ 1), 

and p(0 < p < 1). 
C1 (Specify the accuracy and the maximum number of Newton's iterations al- 

lowed). Set E P S  ~- ~ (some desired accuracy, e.g., 10 - 6 ,  for computing F(y;  m, N,  t9 2) 
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a n d f ( y ;  m, N, p2)), D E L T A  ~ 6 (some desired accuracy, e.g., 10 -4, for comput ing 
yp), I T R M A X  ~ Nmax (an integer, e.g., 10, for controlling the number  of Newton's  
iterations). 

C2 (Set the constants). Set a *-- (m - 1)/2, b ~ (N - m)/2, c o e f f ~  
r(a + b)/r(a + 1)r(b), qo ~ ( 1  -- p2)a+b. 

C3 (Loop on k, Newton's iteration). First initialize y by setting y , -  0.5. Then perform 
steps C4-C10 for k = 1, 2, . . . ,  I T R M A X .  (Steps C4-C10 consti tute one iteration.) 

C4 (Initialize within each iteration). Set n ~ 1, t ~ coeff y"(1 - y)b, S ~ at~y~(1 -- y), 

q ~ qo, v ~ q, C D F  ~ vt, P D F  ~ qs. 
C5 (Compare  a + n, (a + b + n)y). If a + n > ( a  + b + n)y, go to step C7. 
C6 (Update  the term and then accumulate  for both  of F ( y ;  m, N,  p2) a n d f ( y ;  

m,N,  p2). Then increase n by 1). Set q ~ q ( a + b + n - 1 ) ( p 2 ) / n ,  v ~ v + q ,  

s ~ t ( a + b + n - 1 ) / ( 1 - y ) ,  t ~ t y ( a + b + n - 1 ) / ( a + n ) ,  C D F * - - C D F + v t ,  
P D F  ~ P D F  + qs, n ~ n + 1, and return to step C5. 

C7 (Find the corresponding error bounds). Set b n d c d f ~  ty(a + b + n -  1)/ 
((a + n) - (a + b + n)y), bndpdf  ~ t(a + b + n - 1)(1 - v)/(1 - y). 

C8 (Check for convergence). If bndcdf  < E P S  and bndpdf  <_ EPS ,  go to step C 10. 
C9 (Update  the terms and then accumulate  for F(y ;  m, N,  p2) and/or  f ( y ;  

re, N, p2). Then increase n by 1). Set q ~ q ( a  + b + n -  1)(p2)/n,  v ~ v + q. If 
bndcdf  <_ EPS ,  set s ~ sy(a + b + n - 1)/(a + n - 1), P D F  *-- P D F  + qs, 
n ~ n + 1, b n d p d f ~  sy(a + b + n - 1)(1 - v)/(a + n - 1), and return to step C8; 
otherwise if bndpdf  < EPS,  set t ~ ty(a + b + n - 1)/(a + n), CD F ~ C D F  + vt, 

n ~ n + 1, b n d c d f ~  ty(a + b + n - 1)/((a + n) - (a + b + n)y), and return to step 
C8; otherwise set s * - - t ( a + b + n - 1 ) / ( 1 - y ) ,  t ~ t y ( a + b + n - 1 ) / ( a + n ) ,  

C DF *-- C D F  + vt, P D F  ~ P D F  + qs, n *-- n + 1, and return to step C7. 
C10 (Find new y and check for convergence of Newton 's  process). Set 

d i f f ~  (CDF - p ) / P D F .  If y - d / i f<  0, set y ,-- y/2; otherwise if y - d / i f>  1, set 
y ~ (y + 1)/2; otherwise set y ~ y - d/ft. If Id i f f l /y  < D E L T A ,  terminate the algo- 
rithm. (y is the answer.) 

C l l  (Output  error message). Terminate  the a lgori thm with the message "No 
convergence after Nmax iterations". 

F O R T R A N  codes based on the above algori thms are available upon  request. 
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