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Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel
chains. II. Nonlinear polymer viscoelasticity

Y.-H. Lina� and A. K. Das
Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30050, Taiwan
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The nonlinear viscoelastic behavior of the Fraenkel-chain model is studied with respect to the
constitutive equation of the Rouse model. Distinctly different from the results of the Rouse model,
the Fraenkel-chain model gives the following characteristic nonlinear behavior: �a� The two distinct
dynamic modes in the relaxation modulus GS�t ,��—as observed in the linear region reported in
Paper I �Y.-H. Lin and A. K. Das, J. Chem. Phys. 126, 074902 �2007�, preceding paper�—or in the
first normal-stress difference function G�1�t ,�� are shown to have different strain dependences:
strain hardening for the fast mode and strain softening for the slow mode. �b� The Lodge–Meissner
relation GS�t ,��=G�1�t ,�� holds over the whole time range, which has been shown both
analytically and by simulation. �c� The second normal-stress difference is nonzero, being positive in
the fast-mode region and negative in the slow-mode region. The comparisons between orientation
and stress for all tensor components consistently confirm the strong correlation of the slow mode as
well as its entropic nature with the segmental-orientation anisotropy as shown in the linear region
studied in Paper I. A consequence of this correlation is the applicability of the stress-optical rule in
the slow-mode region. This also leads to the expectation that the damping function h���
=GS�t ,�� /GS�t ,�→0� and the ratio between the first and second normal-stress differences,
N2�t ,�� /N1�t ,��, are described by the orientation tensor which has the same form as that given by
Doi and Edwards �J. Chem. Soc. Faraday Trans. 2 74, 1789 �1978�; 74, 1802 �1978�� with
independent-alignment approximation for an entangled system. The similarity between the slow
mode of an entanglement-free Fraenkel-chain system and the terminal mode of an entangled
polymer system as observed in the comparison of theory, simulation, and experiment suggests that
the close correlation of the entropic nature of the mode with the orientation anisotropy—as of the
Fraenkel segment or the primitive step in the Doi–Edwards theory—is a generally valid physical
concept in polymer viscoelasticity. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2431649�

I. INTRODUCTION

In Paper I,1 the linear viscoelastic behavior for Fraenkel
chains2 has been studied by Monte Carlo simulations, reveal-
ing two distinct dynamic modes in the relaxation modulus
GS�t�: The fast mode arises from the segment-tension fluc-
tuations or reflects the relaxation of the segment tension cre-
ated by segments being stretched by the applied step shear
deformation—an energetic-interactions-driven dynamic pro-
cess. The slow mode arises from the fluctuating segmental-
orientation anisotropy or represents the randomization of the
induced segmental-orientation anisotropy—an entropy-
driven dynamic process. Very significantly the slow mode is
well described by the Rouse theory3–5 in all aspects: the mag-
nitude of the modulus, the line shape, and the N �number of
beads� dependence of the relaxation time. This result means
that as far as the slow mode is concerned, one Rouse seg-
ment may be replaced by one Fraenkel segment, even though
the latter is much stiffer than the former. Furthermore, the
comparison of the simulated relaxation modulus GS�t� with
experimental G�t� indicates that the Fraenekel-chain model

has captured the key element of energetic interactions in an
entanglement-free polymer melt, allowing the relative posi-
tions in time of the glassy-relaxation process �the fast mode�
and the entropy-driven Rouse relaxation �the slow mode�
properly described. This overall agreement between simula-
tion and experiment is consistent with the success of the
Rouse theory in explaining the linear viscoelastic spectra of
entanglement-free polymer melt systems in the low-
frequency �long-time� or entropic region.5–7 Since the natural
emergence of the fast �structural-relaxation� mode on top of
the slow �Rouse� mode represents a dramatic improvement
in linear viscoelasticity on the Rouse model, the stress relax-
ations of the Fraenkel-chain model obtained from the Monte
Carlo simulations in the nonlinear region may be profitably
analyzed in comparison with the constitutive equation of the
Rouse model.

II. CONSTITUTIVE EQUATION OF THE ROUSE
MODEL

The constitutive equation of the Rouse model with each
chain having N beads �corresponding to molecular weight
M� is given by4,5a�Electronic mail: yhlin@mail.nctu.edu.tw
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��t� = ckT�
−�

t � 1

�p
��

p=1

N−1

exp	−
�t − t��

�p

��0��t,t��dt�, �1�

where ��0��t , t��=�−E�t , t�� ·E�t , t��T, with E�t , t�� being the
deformation gradient tensor between the present time t and a
past time t�; c is the number of polymer chains per unit
volume; and �p, the relaxation time of the pth mode, is given
by Eq. �11� of Paper I.1 For comparison with the Monte
Carlo simulation of a single chain in the mean field, both c
and kT may be set to be 1, and �p is expressed in terms of the
time steps as given by Eq. �12� of Paper I.

Following a step shear deformation E at time t=0 �Eq.
�4� of paper I�, the relaxation modulus GS�t� and the first
normal-stress difference function G�1�t� of the Rouse model,
both normalized to that corresponding to a single segment,
are given, respectively, as �setting kT=1�

GS�t� = −
Sxy

�
= −

�xy

�c�N − 1�
=

1

�N − 1� �p=1

N−1

exp	−
t

�p



�2�

and

G�1�t� = −
Sxx�t,�� − Syy�t,��

�2

= −
�xx�t,�� − �yy�t,��

�2c�N − 1�
=

1

�N − 1� �p=1

N−1

exp	−
t

�p

 .

�3�

The key results expected from the constitutive equation of
the Rouse model may be summarized as in the following:

�1� No nonlinear effect in the shear stress relaxation; in
other words, GS�t� as given by Eq. �2� is independent of
strain �.

�2� The holding of the Lodge–Meissner relation;8 namely,
as indicated by Eqs. �2� and �3�, GS�t�=G�1�t�.

�3� The second normal-stress difference as defined by
N2�t ,��=−�Syy�t ,��−Szz�t ,��� is zero.

These results of the Rouse model are exactly confirmed by
our simulations; in Fig. 1, the strain independence of GS�t�
and G�1�t� for a five-bead Rouse chain and the agreements
of the simulation results with the theoretical Rouse curve are
shown.

III. EFFECTS OF THE NONLINEAR TENSILE FORCE
ON THE FRAENKEL SEGMENT

For the Fraenkel chain, the simulations of stress compo-
nents as a function of time step following a step shear defor-
mation are done in the same way as for obtaining the relax-
ation modulus GS�t�=−Sxy�t� /� in Paper I. As shown in Fig.
2, the GS�t ,�� curves obtained for a five-bead chain at dif-
ferent strains from �=0.5 to 4 indicate that the relaxation
modulus of the Fraenkel-chain model is strain dependent as
opposed to GS�t� in the Rouse model being independent of
the strain. However, as also shown in Fig. 2, the Lodge–
Meissner relation is followed even though a nonlinear effect

occurs in both GS�t ,�� and G�1�t ,��. As shown in Fig. 3,
unlike in the Rouse model, the second normal-stress differ-
ence N2�t ,�� in the Fraenkel-chain model is not zero. Thus,
the Fraenkel-chain model exhibits significant deviations in
the nonlinear viscoelastic behavior from the Rouse model,
even though its linear relaxation modulus in the long-time
region is well described by the Rouse theory. Below, we
analyze these deviations due to the particular form of the
Fraenkel potential.

A large tensile force on the Fraenkel segment is created
when it is significantly stretched, which leads to the stress
level showing up in the fast-mode region. The strain harden-
ing of the fast mode as shown in Fig. 2 can be understood by
examining the tensile force FF on a Fraenkel segment de-
noted by b:

FIG. 1. Comparison of the Rouse theory �—� and the results of GS�t� �� at
�=1; � at �=2� and G�1�t� ��at �=1; � at �=2� obtained from simula-
tions on the five-bead Rouse chain following the application of a step shear
strain �.

FIG. 2. Comparison of the results of GS�t ,�� �solid line at �=0.5, long dash
at �=1, medium dash at �=2, and short dash at �=4� and G�1�t ,�� �� at
�=0.5, � at �=1, � at �=2, and � at �=4� obtained from simulations on
the five-bead Fraenkel chain following the application of a step shear strain
�.
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FF =
HF

b0
2 b −

HF

b0
	 b

�b�
 = HF
��t�
b0

3 b , �4�

where ��t� is defined by Eq. �16� in Paper I. As shown in Fig.
4, right after the application of a step shear to the Fraenkel
chain at equilibrium, a �b�t=0+�� �in this report t=0+ is al-
ways used to denote the state right after the application of a
step shear� value larger than b0 �set equal to 1� in average is
created; as a result, the second term of Eq. �4� becomes
smaller than the first term, leading to a tensile force that
would pull the two separated beads back to the equilibrium
distance—a recoiling effect. In the equilibrium simulation as
studied in Paper I, ��t� is used to represent the deviation of

the bond length �b� from the b0 value in the linear region. For
the present study in the nonlinear region, ��t� is treated more
as a parameter, characterizing the nonlinear enhancement of
the tensile force on the segment as the segment is signifi-
cantly stretched.

From close examination of the calculated values of
GS�� , t=0+� as a function of strain � �Fig. 6�, nonlinear in-
crease in the shear stress can be noticed at the shear strain �
as low as �0.005. The average tensile force should start to
increase nonlinearly greatly at �
0.3, enhancing the stress
level in the fast-mode region in an obvious way. Besides this
obvious expectation, this effect leads to the emergence of the
second normal-stress difference. The second normal-stress
difference is of significant magnitude in the fast-mode re-
gion; as the time enters the slow-mode region, it declines
towards the zero line and beyond, and finally relaxes as a
negative tail. This effect can be understood from the follow-
ing analysis.

The use of the Langevin equation has implied that our
studied system is ergodic.5,9,10 Thus, we shall simply use the
language of the ensemble averaging to discuss the results
obtained from averaging the behavior of a single chain over
time in the equilibrium state or over the repeating cycles
following the step deformation. As obtained from the equi-
librium simulation, the mean squared bond length �b2�0 is
only larger than b0

2=1 by 1.3%, and the ensemble-averaged
components of �b2�0 are identical: �bx

2�0= �by
2�0= �bz

2�0

=0.3377. However, in the ensemble different segments have
different bx

2, by
2, and bz

2 values. Among the segments with the
same bx

2, those with larger by
2 are expected to have a smaller

bz
2. Following the step shear deformation �Eq. 4 of Paper I�,

those segments with a larger by
2 and a smaller bz

2 will be
stretched more, leading to nonlinear enhancements in their
tensile forces as characterized by the parameter ��t�, than
those with a smaller by

2 and a larger bz
2. Since the contribution

of a segment to the normal stress in the y direction is pro-
portional to ��t�by�t�2 at time t, the average of the initial
value ��0+�by�0+�2 �right after the application of the step
strain� is much more weighted by those segments with larger
by

2; the opposite can be said about the normal stress in the z
direction. As a result, the effect leads to a positive second
normal-stress difference, N2�t��0, in the short-time or fast-
mode region, as shown in Fig. 3. Such an effect will not
occur to a Rouse segment, whose tensile force increases with
bond length linearly.

As explained above, the segmental tensile force created
by the step deformation will shrink the segmental length
back to its equilibrium value. Those segments with a larger
initial y component, having larger tensile forces, will be most
affected by the recoiling effect. The average values �bx�0+�2�,
�by�0+�2�, and �bz�0+�2� in accordance with the affine defor-
mation are expected to be given respectively by �bx

2�t=0+��
= �bx

2�0+�2�by
2�0=0.3377�1+�2�, �by

2�t=0+��= �by
2�0=0.3377,

and �bz
2�t=0+��= �bz

2�0=0.3377. These values obtained from
the simulations are in close agreement with the expected val-
ues at different strains. As the chain configuration evolves
according to the Langevin equation, the recoiling effect
causes all the �bx�t�2�, �by�t�2�, and �bz�t�2� values to decline,

FIG. 3. Second normal stress N2�t ,�� obtained from simulations on the
five-bead Fraenkel chain following the application of a step shear strain ��
at �=0.5, � at �=1, � at �=2, and � at �=4�.

FIG. 4. �b�t�2� �top� and ��b�t��� �bottom� as a function of time following the
application of a step shear strain ��=0.5, 1, 2, and 4� obtained from simu-
lations on the five-bead Fraenkel chain. The insets show the oscillations in
�b�t�2� and ��b�t��� visible in the time region of 102–103 before reaching
their stable equilibrium values.

074903-3 Stress relaxation in nonlinear polymer viscoelasticity J. Chem. Phys. 126, 074903 �2007�
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as shown in Fig. 5. Due to the nonlinearly enhanced initial
tensile force associated with segments with larger by

2, �by�t�2�
decreases faster than �bz�t�2� as �b�t�2� approaches its equi-
librium value at a time which is about the end of the fast
mode, as shown in Fig. 4. As �b�t�2� reaches or comes very
close to its equilibrium value, �by�t�2� and �bz�t�2� reach their
respective minimum points �at around 20–40 time steps�,
meaning the ending of recoiling. Due to its fast declining rate
from the very beginning,�by�t�2� is smaller than �bz�t�2� at the
end of the recoiling process. Thus, at about this point the
second normal-stress difference N2�t ,�� crosses the zero line
and becomes negative. In the time region corresponding to
the early part of the slow mode, even though there is a sig-
nificant degree of segmental-orientation anisotropy, the ten-
sile force on the segment �as reflected by �b�t�2� or ��b�t���;
see the insets of Fig. 4� is oscillating in a small magnitude
around the value identical to that observed in an equilibrium
state. As mentioned in Paper I, the small overshooting �only
observed at �=0.5 and 1� and damped oscillations should be
the aftereffects of the recoiling of the stretched segment. As
a result, as shown in Fig. 3, the second normal stress differ-
ences in the region are of small magnitude and, being most
sensitive to the small changes in the tensile force on the

segment, show some waviness. One can observe most clearly
in the time region of 102–103 that when �b�t�2� or ��b�t��� is
at the crests of its oscillation, �N2�t ,��� is also at the crests of
its wavy form �see Fig. 3�. �Also see Fig. 9; the waviness
showing up in �N2�t ,��� but not in �by�t�2�− �bz�t�2� or
�uy�t�2�− �uz�t�2� indicates that the cause is the oscillation in
the tensile force on the segment.� The above described
mechanism of the chain dynamics as revealed in the results
shown in Figs. 2–5 becomes more prominently visible as the
applied strain � increases.

IV. THE LODGE–MEISSNER RELATION
FOR THE FRAENKEL CHAIN

The relation GS�t ,��=G�1�t ,�� first proposed by Lodge
and Meissner was based on a phenomenological argument.8

However, the Lodge–Meissner relation observed for the
Fraenkel-chain model from the simulation as shown in Fig. 2
can be proved analytically. This is done by considering the
configurations of all the chains in a finite volume V as
changed by the applied step deformation and their subse-
quent evolution.

Consider a volume containing n Fraenkel chains, each
with N beads. Right after the application of a step shear
deformation E �Eq. 4 of Paper I� to a system at equilibrium,
the shear stress,−�xy�0+�, is given by �setting kT=1�

− �xy�0+� =
n�N − 1�

V
�Tx�0+�by�0+��

=
HF

Vb0
3�

k

n

�
s

N−1

�s
k����bs,x

0,k + �bs,y
0,k��bs,y

0,k� , �5�

where Tx denotes the x component of the tensile force FF

on a representative Fraenkel segment in the ensemble;
bs,�

0,k��=x ,y� denotes specifically the � component of the sth
segment on the kth chain of the system in an equilibrium
state right before the application of the deformation E. Be-
cause of the presence of �s

k���, which depends on the applied
strain and the orientation of the segment, the summation of
the terms containing the products of bs,x

0,k and bs,y
0,k over all

segments is not zero. In the Rouse model, as �s
k��� is a con-

stant, the sum equals zero. Because at equilibrium �b2�
=1.013b0

2, we may conveniently regard each segment as hav-
ing a unit length before the initial step deformation is applied
�the unit length is not a required assumption to prove the
Lodge–Meissner relation as given below for the Fraenkel-
chain model; see Ref. 11�, and the stress component as given
by Eq. �5� but normalized to that for a single segment �de-
noted by −Sxy�0+�� can be expressed by

− Sxy�0+� = HF������ux
0uy

0 + �uy
0uy

0��u0, �6�

where

���� = 1 −
1

��ux
0 + �uy

0�2 + �uy
0�2 + �uz

0�2
, �7�

with ux
0, uy

0 and uz
0 denoting the x, y, and z components of a

unit vector u0 representing the orientation of a segment in the
system at equilibrium right before the step shear deformation

FIG. 5. �bx�t�2� �solid line�, �by�t�2� �long dash�, and �bz�t�2� �short dash�,
and �ux�t�2� ���, �uy�t�2� ���, and �uz�t�2� ��� as a function of time follow-
ing the application of a step shear strain ���=0.5, 1, 2, and 4� obtained from
simulations on the five-bead Fraenkel chain.
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is applied; and �f�u0 denotes averaging f over all orientations
of u0.

Similarly, the first normal-stress difference −��xx�0+�
−�yy�0+�� can be expressed by

− ��xx�0+� − �yy�0+��

=
n�N − 1�

V
��Tx�0+�bx�0+�� − �Ty�0+�by�0+���

=
HF

Vb0
3�

k

n

�
s

N−1

��s
k����bs,x

0,k + �bs,y
0,k��bs,x

0,k + �bs,y
0,k�

− �s
k����bs,y

0,k�2� . �8�

In the same way as obtaining Eq. �6�, the first normal-stress
difference normalized to that for a single segment can be
expressed by

N1�0+� = − �Sxx�0+� − Syy�0+��

= HF������ux
0 + �uy

0��ux
0 + �uy

0� − �����uy
0�2�u0,

�9�

which, as shown in the Appendix, can be rewritten as

N1�0+� = HF�������ux
0uy

0 + �uy
0uy

0��u0 = − �Sxy�0+� . �10�

As there is one-to-one correspondence between the orienta-
tion representation and the segmental �molecular�
representation—i.e., between Eqs. �5� and �6� and between
Eqs. �8� and �9�—the contribution of �k

n�s
N−1�s

k�����bs,x
0,k�2

− �bs,y
0,k�2+�bs,x

0,kbs,y
0,k�, corresponding to Eq. �A1�, has to be

zero; in other words, corresponding to Eq. �10�, Eq. �8� may
be rewritten as

− ��xx�0+� − �yy�0+��

=
HF

Vb0
3��

k

n

�
s

N−1

�s
k����bs,x

0,k + �bs,y
0,k��bs,y

0,k� . �11�

The comparison of Eqs. �5� and �11� indicates that both the
shear stress and the first normal-stress difference arise from
the same molecular source �k

n�s
N−1�s

k����bs,x
0,k+�bs,y

0,k��bs,y
0,k�;

therefore, the same evolutions of the corresponding configu-
rations are responsible for their relaxations. As N1�0+�
=−�Sxy�0+� �Eq. �10��, the Lodge–Meissner relation is fol-
lowed. The above analysis can be more easily applied to the
Rouse model, in which N1�0+�=�2GS�0+� and −Sxy�0+�
=�GS�0+�. As opposed to GS�t� and G�1�t� being indepen-
dent of strain as given by Eqs. �2� and �3� for the Rouse
chain model, GS�t ,�� and G�1�t ,�� as defined by

GS�t,�� = −
Sxy�t,��

�
, �12�

G�1�t,�� =
N1�t,��

�2 �13�

have the same strain dependence as shown in Fig. 2. The
initial values: GS�t=0+,�� or G�1�t=0+,�� at different �
may be calculated numerically using Eq. �6� or �10� �i.e.,
performing the averaging over all orientations� for compari-
son with the values obtained from the simulations, as shown

in Fig. 6. As also shown in the figure, the calculated curve
may be further improved by the multiplication of the correc-
tion factor �b2�0 /b0

2=1.013. The close agreement between
simulations and numerical calculations as shown in Fig. 6
and the agreement between the simulation results of GS�t ,��
and G�1�t ,�� as shown in Fig. 2 confirm the above theoret-
ical analysis.

Only after an averaging so complete that �k
n�s

N−1�s
k���

	��bs,x
0,k�2− �bs,y

0,k�2+�bs,x
0,kbs,y

0,k�→0, Eq. �8� becomes the same
as Eq. �11�. Before this is fully realized, G�1�t ,�� should
show a higher noise level than GS�t ,�� as indeed observed in
the simulation. Thus, by the Monte Carlo simulations the
Lodge–Meissner relation is shown followed only within
some noise.

The second normal-stress difference as a function of
time obtained from the simulation of the Fraenkel chain is
nonzero, as shown in Fig. 3. It can be similarly shown that
the initial value of the second normal-stress difference

N2�0+� = − �Syy�0+� − Szz�0+�� = HF�������uy
0�2 − �uz

0�2��u0

�14�

is nonzero.

V. STRESS AND SEGMENTAL ORIENTATION

It was shown in Paper I, studying the linear viscoelastic
response of the Fraenkel chain, that the slow mode reflects
the fluctuation or randomization of the segmental orientation
anisotropy, with the bond length being the same as in an
equilibrium state; therefore, the slow mode is an entropy-
driven dynamic process. Here we show that at the nonlinear
strains studied �from �=0.5 to 4�, the strong correlation be-
tween the stress and the segmental orientation is well main-
tained in the slow-mode region. In Fig. 7 we show the com-
parison of the time dependences of −Sxy�t�, �bx�t�by�t��, and
�ux�t�uy�t��; in Fig. 8, the comparison of N1�t�, �bx�t�2�

FIG. 6. Comparison of the initial values GS�t=0+,�� ��� and G�1�t
=0+,�� ��� obtained from simulations on the five-bead Fraenkel chain with
the �-dependent curve calculated numerically using Eq. �6� and �10� �—�;
the �– – –� line indicating the �-dependent curve corrected for the ratio
�b2�0 /b0

2=1.013.
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− �by�t�2�, and �ux�t�2�− �uy�t�2�; and in Fig. 9, the compari-
son of �N2�t��, �by�t�2�− �bz�t�2�, and �uy�t�2�− �uz�t�2�. The
most important feature of these results is that in the slow-
mode region, the stress components are proportional to the
corresponding orientation components by about the same
factor of 4 in all cases, which can be concisely denoted by

− S�t,�� = 4�b�t,��b�t,��� �15�

or

− S�t,�� = 4�u�t,��u�t,��� , �16�

with the difference between �b�t�b�t�� and �u�t�u�t�� being
negligibly small. In the case of the Rouse theory, it is ex-
pected to have

− S�t,�� = 3�b�t,��b�t,��� . �17�

Note that Sxz�t�=Syz�t�=0 in both Eqs. �15� �or �16�� and
�17�, and Syy�t��Szz�t� in Eq. �15� �or �16��, while Syy�t�
=Szz�t� in Eq. �17�. The factor 4 in Eq. �15� being so close to
the value 3 expected from the entropic force constant of the
Rouse segment �Eq. �17�� strongly indicates the entropic na-
ture of the slow mode. The revealed entropic nature of the
slow mode is very significant considering that the Fraenkel
segment is much stiffer than the Rouse segment and that the
segment has been greatly stretched by the application of a
strain in the nonlinear region. Of course, this is made pos-
sible by the fast relaxation of the segment tension, allowing
the segment length to reach its equilibrium value while the
segmental orientation anisotropy is still at a high level.

With the unit vector u representing the direction of the
segment, we may denote the polarizability of a Fraenkel seg-
ment at equilibrium length in the direction parallel to u by ��

and in the perpendicular direction by ��. Then the aniso-
tropic part of the polarizability tensor of each Fraenkel seg-
ment may be expressed as9,12,13

��
 = ��� − ����u�u
 − 1
3��
� . �18�

With the polarizability anisotropy being given by Eq. �18�,
the relation as given by Eq. �16� means that the stress-optical
law holds in the entropic region. The widely observed stress-
optical law in the entropic region has been explained by
assuming that the distribution of the distance between any
two beads in a chain is Gaussian.9,12 The Gaussian statistics
applied to the chain conformation is also the source of the
entropic force constant on a Rouse segment. Here, we show
that both the existence of an entropic region in the stress
relaxation and its associated stress-optical law can be satis-
fied by the Fraenkel-chain model without invoking the
Gaussian statistics for both the segment and chain conforma-
tion. In fact, the Gaussian statistics for the chain should not

FIG. 7. Comparison of the time dependences of −Sxy�t ,�� ���, 4�bx�t�by�t��
�—�, and 4�ux�t�uy�t�� �---� obtained from simulations on the five-bead
Fraenkel chain at different � �0.5, 1, 2, and 4�. To avoid overlapping be-
tween curves, the results at different � values have been shifted along the
vertical axis by the indicated factors.

FIG. 8. Comparison of the time dependences of N1�t ,�� ���, 4��bx�t�2�
− �by�t�2�� �—�, and 4��ux�t�2�− �uy�t�2�� �---� obtained from simulations on
the five-bead Fraenkel chain at different � �0.5, 1, 2, and 4�. To avoid
overlapping between curves, the results at different � values have been
shifted along the vertical axis by the indicated factors.

FIG. 9. Comparison of the time dependences of �N2�t ,��� ���, −4��by�t�2�
− �bz�t�2�� �—�, and −4��uy�t�2�− �uz�t�2�� �---� obtained from simulations on
the five-bead Fraenkel chain at different � �0.5, 1, 2, and 4�; the vertical
lines indicate the points where N2�t ,�� changes sign. To avoid overlapping
between curves, the results at different � values have been shifted along the
vertical axis by the indicated factors.
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hold in the nonlinear region of strain as covered in this study,
even in the entropic �long-time� region of GS�t ,��.

In the entropic region where the stress-optical law is
valid, the orientation angle �� of the stress ellipsoid is iden-
tical to the extinction angle � of the birefringence; the stress
relaxation corresponds to the reduction of the birefringence
�n with time.14 Because the Lodge–Meissner relation holds
over the whole time range of the stress relaxation, the orien-
tation angle �� remains the same in both the fast-mode and
slow-mode regions. While �=�� in the slow-mode region, it
is not clear from the present simulation whether the same is
true in the fast-mode region, as this would require the knowl-
edge of how the polarizability changes with the elongation of
the segment. However, it is very likely that the stress-optical
coefficient will be quite different if another stress-optical rule
holds in the fast-mode region. Inoue et al.15,16 have analyzed
the results of linear dynamic viscoelasticity and birefrin-
gence measurements on different polymers by using the sum
of two stress-optical rules, one for the high-frequency region
�glassy component, as denoted by Inoue et al., occurring in
the energetic-interactions region� and the other for the low-
frequency region �rubbery component, as denoted by Inoue
et al., which occurs in the entropic region and is equivalent
to the kind ordinarily encountered�. The two stress-optical
coefficients obtained by Inoue et al. are, in general, of very
different magnitude and some with opposite signs; for in-
stance, CR=−5	10−9 vs CG=3	10−11 for polystyrene
melts.

VI. COMPARISON OF NONLINEAR RELAXATION
MODULUS BETWEEN ENTANGLED POLYMER
SYSTEM AND ENTANGLEMENT-FREE
FRAENKEL-CHAIN SYSTEM

A. Overall line shapes of GS„t ,�…

One may recall the two consecutive processes: the chain-
tension relaxation5,9,17–19 �theoretically denoted by 
B

* �t ,E�
in Refs. 18 and 19� and the terminal mode �theoretically
denoted by 
C�t� in Refs. 18 and 19� occurring in the non-
linear relaxation modulus G�t ,�� of an entanglement system
�see Figs. 4–7 of Ref. 19 or Figs. 12.4–12.7 of Ref. 5�; there
are some interesting similarities in these two processes to the
two relaxation modes in GS�t ,�� of the entanglement-free
Fraenkel chain as revealed in the present study. To draw an
analogy between the two systems, we regard each Fraenkel
segment as corresponding to an entanglement strand and
each bead as corresponding to a slip link �as in the
Doi–Edwards model20�. As what we intend to discuss is
mainly an analogy, there are significant differences between
the counterparts: For instance, a particularly strong chain
tension on an entanglement strand will draw segments from
neighboring entanglement strands, slipping through the en-
tanglement links, while uneven tension in the Fraenkel chain
is basically localized in each segment �see Ref. 21�. The
tensile force on the Fraenkel segment is quite large—
proportional to HF /b0 �see Eq. �4��, which is much greater
than 3kT /b0—while the tensile force on an entanglement
strand is typically of the order 
3kT /a, with a��b0� being
the entanglement distance.5,9,20 Thus, in applying the models

to an experiment, the segment-tension relaxation of the
Fraenkel chain would occur in the short-time region of
G�t ,�� with a very high modulus �for example, in the case of
polystyrene, G�t ,�→0� in the short-time region has modulus
values of 4	107–1010 dynes/cm2, which are much larger
than the plateau modulus GN, 2	106 dynes/cm2,22 occur-
ring in a longer-time region; the plateau modulus is related to
the entanglement molecular weight by GN=4�RT /5Me�,
while the chain-tension relaxation 
B

* �t ,E� with a modulus
similar in magnitude to the plateau modulus occurs in the
time region corresponding to the plateau region of the linear
G�t� �see Figs. 12.3 and 12.8 of Ref. 5�. In spite of these
differences, the similarity of showing two-step relaxation in
the G�t ,�� line shape between the two cases is obvious. Fur-
thermore, of great interest and importance is the common
effect that occurs in both the processes following the two
different kinds of tension relaxation processes—namely, the
terminal mode in the entangled polymer case and the slow
mode in the entanglement-free Fraenkel-chain case. A dis-
cussion of the effect may shed light on the basic nature of the
physics affecting a wide time/frequency range of polymer
viscoelasticity. Following the process of either the segment-
tension relaxation or chain-tension relaxation, it is the ran-
domization of orientation anisotropy that is responsible for
the relaxation of the remaining stress. In the entanglement-
free Fraenkel-chain case, the randomization of the
segmental-orientation anisotropy is caused directly by the
Brownian motion of the beads in the chain, while in the
entangled polymer system, the orientation associated with
the entanglement strand �or primitive step� is randomized by
the reptation mechanism moving the primitive chain back
and forth and eventually out of the deformed �or oriented�
tube �of the Doi–Edwards model�, with assistance from the
chain contour-length fluctuation process.5,18,19,23,24 Either of
the two different orientation-randomization processes is an
entropy-driven process: In the Fraenkel-chain case, the pro-
cess is well described by the Rouse model as shown in paper
I �also see Fig. 10�, while in the case of an entangled poly-
mer system, the process is well described by the 
C�t� pro-
cess in the extended reptation model,5,18,19,23,24 with the
strain dependence of the modulus quantitatively described by
the damping function of the Doi–Edwards theory.5,9,18–20,25,26

As it turns out, the strain dependence of GS�t ,�� in the en-
tropic region of the Fraenkel chain also closely follows the
Doi–Edwards damping function for a different physical rea-
son as analyzed in the following.

B. Damping factor in the entropic region of GS„t ,�…

As shown in Fig. 10, the entropic region of the Fraenkel-
chain GS�t ,�� curves at different � values can be superposed
on one another very well by a vertical shift, allowing the
damping factors h��� to be defined and determined from the
simulation results. That is,

h��� = 	 GS�t,��
GS�t,� → 0�
 , �19�

with t spanning only the slow-mode region. At the same
time, the damping factor is closely related to the strain de-
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pendence of the orientation tensor �u�t ,��u�t ,��� in the en-
tropic region as indicated by Eq. �16�. As shown in Figs. 7–9,
�u�t ,��u�t ,��� in the very early part of the entropic region
remains basically the same as it is right after the application
of the step strain; in other words, the randomization of the
segmental orientation has hardly taken place as the fast mode
completes its relaxation—i.e., during the recoiling of seg-
ments back to the equilibrium length. Thus the obtained
damping factors h��� should be closely correlated with the
function h0��� calculated from the initial orientation caused
by the step strain via affine deformation:

h0��� =
g���

g�� → 0�
, �20�

with

g��� = � �ux
0 + �uy

0�uy
0

���ux
0 + �uy

0�2 + �uy
0�2 + �uz

0�2��u0
. �21�

From Eq. �21�, one obtains g��→0�=0.2. One can notice
that Eqs. �20� and �21� simply define the damping function of
the Doi–Edwards theory with the independent-alignment ap-
proximation, which is close to the exact one over the whole
range of strain �, both explaining very well the experimental
results obtained in the terminal region of G�t ,�� of a well-
entangled nearly monodisperse polymer system.5,9,18–20,25,26

Note that the unit vector u here represents the orientation of
a Fraenkel segment as opposed to representing the orienta-
tion associated with an entanglement strand or primitive step
in the Doi–Edwards theory. While Eq. �20� serves as an ap-
proximation to the exact expression in the Doi–Edwards
theory,5,9,18–20,25,26 using them here is based on the observa-
tion �Figs. 7–9� that the relaxation strength of the slow mode
is basically directly related to the initial orientation as ex-
plained above. In Fig. 11, we compare the h0��� curve cal-
culated numerically from Eqs. �20� and �21�, and the h���
values—as defined by Eq. �19�—determined from the super-

position of the G�t ,�� curves as shown in Fig. 10. As the
difference between h��=0.2� and h��=0.5� is very small,
and the numerically calculated results indicate that h0��
=0.2� is only smaller than h0��→0� by 1%, we have substi-
tuted h��=0.2� for the role of h��→0� in determining h���
at different values of �. As shown, h0��� has basically de-
scribed the trend of change in h��� with increasing strain.

It is interesting and important to note that, as opposed to
the similarity between their relationships to orientation as
both can be characterized by the damping function given by
Eqs. �20� and �21�, the functional forms of relaxation modu-
lus in the entanglement-free Fraenkel-chain case and in the
entangled system are very different. The relaxation strength
in the former case receives equal contributions from all nor-
mal modes �see Eq. �2��, while in the latter case is dominated
by the lowest normal mode �see Eq. �13� of Ref. 19 or Eq.
�9.11� of Ref. 5�.

In Fig. 11, we also show the comparison of h0��� with
the damping factor associated directly with the unit vector u
in the entropic region, hu���, defined by

hu��� =
�ux�t,��uy�t,���/�

��ux�t,��uy�t,���/���→0
. �22�

More directly representing the orientation, the hu��� values
appear to have a closer agreement with h0��� than h���. The
small differences between hu��� and h���, less than 10%,
merely reflect the small deviations of the proportional con-
stant in Eq. �16� from being exactly the same for all strains.
These small differences, which may arise from the fluctua-
tions in simulations or hidden approximations that may be
involved in the interpretation, do not affect the basic physics
that the slow mode as well as its entropic nature is closely
correlated with the segmental-orientation anisotropy.

FIG. 10. Superposition of the GS�t ,�� curves at different strains obtained
from simulations on the five-bead Fraenkel chain as shown in Fig. 2 by an
upward vertical shift �multiplied by 1 at �=0.2 and 0.5, 1.1 at �=1, 1.5 at
�=2, and 3.5 at �=4�.

FIG. 11. Comparison of the damping factors h��� ��� determined using Eq.
�19� from simulations on the five-bead Fraenkel chain at different � with the
h0��� curve calculated numerically from Eqs. �20� and �21�, Also shown are
the values of hu��� ��� �Eq. �22�� obtained from the simulations.
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VII. SECOND NORMAL-STRESS DIFFERENCE
VERSUS FIRST NORMAL-STRESS DIFFERENCE

Experimentally the second normal-stress difference
N2�t ,�� is, in general, much smaller than the first normal-
stress difference N1�t ,��, so is indicated by the comparison
of the two obtained from the present simulations as shown in
Fig. 12. As pointed out above, as opposed to N1�t ,�� being
positive over the whole time range, N2�t ,�� is negative in the
entropic region. If a polymer system can be described by the
Fraenkel-chain model, one may use birefringence measure-
ments to determine the hard-to-obtain first and second
normal-stress differences in the entropic region experimen-
tally, as the stress-optical law has been shown applicable in
this region �Sec. V�. Interestingly, this is also the way in
which Osaki et al.27 have carried out a study on the stress
relaxation in an entangled system. By showing that the
stress-optical law is followed in the terminal-mode region
�i.e., the 
C�t� process� of an entangled nearly monodisperse
polystyrene solution �Mw=6.7	105; 32.6% in Aroclor
1248�, Osaki et al. have studied the first and second normal-
stress differences in the region by measuring the birefrin-
gence as a function of time following a step shear deforma-
tion. The second normal-stress difference in the terminal
region as determined by Osaki et al. in comparison with the
first normal-stress difference are similar to the simulation
results shown in Fig. 12 in several aspects. This may not be
surprising as both the terminal mode of an entangled poly-
mer system and the slow mode of an entanglement-free
Fraenkel-chain system reflect the randomization of
orientation—of the entanglement strand �or primitive step� in
the former case and of the segment in the latter case; the
orientations in both cases can be described well by the same
shear damping function calculated from Eqs. �20� and �21�.
Thus, even though the relaxation functional forms are very
different as pointed out above, their first and second normal-
stress differences are of opposite signs in the same way and

their −N2�t ,�� /N1�t ,�� ratios have nearly the same values
and � dependence. Just as the shear damping function h0���
can be calculated from Eqs. �20� and �21�, the ratio
−N2�t ,�� /N1�t ,�� can be calculated from the Doi–Edwards
expression with the independent-alignment approximation
for comparing with the values determined from the present
simulations and the experimental values obtained by Osaki
et al., as shown in Fig. 13. The simulation values of
−N2�t ,�� /N1�t ,�� being about 30% below the calculated
curve is most likely related to the changing sign of N2�t ,��
upon entering the slow-mode region. In this study we have
given the picture that the fast mode is dominated by the
relaxation of the segment tension, while the slow mode
mainly reflects the randomization of the segmental-
orientation anisotropy, without saying very much about the
mutual contamination of the two dynamic processes in the
two modes. It is most likely that while a very small degree of
randomization of segmental orientation should have taken
place before the “end” of the fast mode, some residual
stretching of segment may have entered the slow-mode re-
gion. As a result, in the slow-mode region, the N1�t ,�� value
may be enhanced somewhat by the residual stretching of the
segment, while an effect in the opposite direction may occur
in the absolute value of N2�t ,��. Such an effect can be de-
tected from the noticeable difference between the compari-
sons of N1�t ,�� and �N2�t ,��� with their corresponding tensor
elements derived from the segmental orientation �u�t�u�t��
�multiplied by 4�, as shown in Figs. 8 and 9. The values of
�N2�t ,��� being smaller than expected from the segmental
orientation occur together with the small-amplitude oscilla-
tion observed in �N2�t ,��� during the early time of the slow
mode, as discussed in Sec. III.

The great similarity between the present studied system
and that of Osaki et al. is further indicated by their observa-
tion of the Lodge–Meissner relation in the whole time region

FIG. 12. Comparison of the N1�t ,�� �—� and �N2�t ,��� �– – –� results ob-
tained from simulations on the five-bead Fraenkel chain at different strains
��=0.5, 1, 2, and 4�; the vertical lines indicate the points where N2�t ,��
changes sign. To avoid overlapping between curves, the results at different �
values have been shifted along the vertical axis by the indicated factors.

FIG. 13. Comparison of the simulation values ��� of −N2�t ,�� /N1�t ,�� in
the slow-mode region obtained from the present study and the experimental
values ��� in the terminal region of the entangled system studied by Osaki
et al. �Ref. 27�, with the numerically calculated curve �—� equivalent to the
Doi–Edwards expression using the independent-alignment approximation.
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of the terminal mode. The expected result of maintaining
�2 cot 2�� /�=1 in the entropic region of the present studied
system—expected from the holding of the Lodge–Meissner
relation over the whole time range and the holding of the
stress-optical rule in the entropic region—has also been
clearly observed by Osaki et al. in the terminal-mode region
�see Fig. 4 of Ref. 27�. These agreements together with the
agreement with respect to the damping function strongly
suggest that the close correlation of the slow mode or the
terminal mode as well as its entropic nature with orientation
anisotropy—as of the Fraenkel segment or the primitive step
in the Doi–Edwards theory—as revealed in this study is a
generally valid physical concept in polymer viscoelasticity.

VIII. SUMMARY

As shown in Paper I, the slow mode in the relaxation
modulus of the Fraenkel chain in both the linear and nonlin-
ear regions of strain is well described by the relaxation func-
tional form of the Rouse theory with correspondingly the
same number of beads. However, in reference to the consti-
tutive equation, the Fraenkel chain behaves very differently
from the Rouse chain in several important aspects. While the
Lodge–Meissner relation, GS�t ,��=G�1�t ,��, holds in the
Fraenkel-chain model over the whole course of stress relax-
ation as shown both analytically and by simulation, both
GS�t ,�� and G�1�t ,�� are strain dependent. The physical ef-
fects responsible for the strain hardening in the fast mode
and the strain softening in the slow mode are studied. That
the strain dependence of GS�t ,�� and G�1�t ,�� in the slow-
mode region of the Fraenkel chain basically follows a form
identical to the damping function of Doi and Edwards with
the independent-alignment approximation is explained and
illustrated. Furthermore, unlike being zero in the Rouse
theory, the second normal-stress difference N2�t ,�� of the
Fraenkel chain has the same sign as the first normal-stress
difference N1�t ,�� in the fast-mode region and changes sign
as it enters the slow-mode region. The cause for the sign
change has been analyzed.

As the stress tensor in the slow-mode region is directly
proportional to the orientation of the segment as expressed
by �u�t�u�t��, the applicability of the stress-optical law in this
region of time is indicated. If a polymer can be modeled as a
Fraenkel chain, this result also indicates that the hard-to-
obtain first and second normal-stress differences in the slow-
mode region can be studied by the birefringence measure-
ments as done by Osaki et al.27 in the study of an entangled
system. The obtained ratio −N2�t ,�� /N1�t ,�� and its strain
dependence in the slow-mode region are indistinguishable
from what have been observed in the terminal-mode region
by Osaki et al. This as well as the agreement in the damping
factor has been shown closely correlated with the great simi-
larity in orientation anisotropy between the Fraenkel segment
and the entanglement strand �or primitive step�. This study
suggests that this close correlation of the slow mode or the
terminal mode and its entropic nature with the orientation
anisotropy is a generally valid physical concept in polymer
viscoelasticity.
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APPENDIX: THE PROOF OF THE LODGE–MEISSNER
RELATION

If we can prove

�������ux
0�2 − �uy

0�2 + �ux
0uy

0��u0 = 0, �A1�

then Eq. �9� becomes Eq. �10�. Considering the symmetry,
we have ���ux

0�2− �uy
0�2+�ux

0uy
0��u0 =0, thus, Eq. �A1� is true if

A��� =� �ux
0�2 − �uy

0�2 + �ux
0uy

0

��ux
0 + �uy

0�2 + �uy
0�2 + �uz

0�2�
u0

�A2�

is zero for all values of �. Both the numerator and denomi-
nator of Eq. �A2� contain even and odd terms with respect to
the transformation ux

0→−ux
0 or uy

0→−uy
0. The averaging over

all orientations of u0 is invariant to a rotation of the coordi-
nate system. The way to show A���=0 is to do an orthogonal
transformation to Eq. �A2�, making its denominator contain
only even terms. This can be done by finding the principal
axes for the quadratic form inside the square root of the
denominator, which is simply u0 ·C ·u0, with C being the
Cauchy tensor. With C represented by a matrix C:

C = �1 � 0

� 1 + �2 0

0 0 1
� �A3�

and the unit vector u0 represented by a column U:

U = �ux
0

uy
0

uz
0� , �A4�

we may write

u0 · C · u0 = UTCU . �A5�

Expressing the unit vector u0 with respect to the principal
axes as

U� = �ux�

uy�

uz�
� , �A6�

the orthogonal transformation is given by

U = SU� �A7�

with

074903-10 Y.-H. Lin and A. K. Das J. Chem. Phys. 126, 074903 �2007�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 06:21:30



S = � �2 /�
 + ��
 �− � − �
� /�2�
 + ��
 0

�� + �
� /�2�
 + ��
 �2 /�
 + ��
 0

0 0 1
� , �A8�

where 
=�2+4. In terms of ux�, uy�, and uz�, Eq. �A2� is ex-
pressed by

A��� =� − �
ux�uy�

�q1�ux��
2 + q2�uy��

2 + q3�uz��
2�

u�

, �A9�

where q1, q2, and q3 are the three eigenvalues of C:

q1 =

 − 2 + ��


2
, �A10�

q2 =

 − 2 − ��


2
, �A11�

q3 = 1. �A12�

While the denominator of Eq. �A9� contains only even terms,
the numerator is an odd term. Thus, A���=0 for all �; this
leads to the result that the Lodge–Meissner relation
GS�t ,��=G�1�t ,�� holds.
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