

Infrared spectra of C₂H₂ under jet-cooled and *para*-H₂ matrix conditions

Ying-Chi Lee ^a, V. Venkatesan ^a, Yuan-Pern Lee ^{a,b,*}, P. Macko ^{c,1}, K. Didiache ^{c,2},
M. Herman ^{c,*}

^a Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

^c Laboratoire de Chimie quantique et Photophysique, CP160/09, Université libre de Bruxelles, Ave. Roosevelt, 50, B-1050, Brussels, Belgium

Received 3 November 2006; in final form 29 December 2006

Available online 10 January 2007

Abstract

In spectra of jet-cooled C₂H₂ recorded with an FTIR spectrometer, the ν_5 , $\nu_4 + \nu_5$, ν_3 and $\nu_2 + \nu_4 + \nu_5$ bands all exhibit an intensity distribution corresponding to ~ 6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C₂H₂ isolated in solid *p*-H₂ show no evidence of rotation of C₂H₂. The strong interaction between ν_3 and $\nu_2 + \nu_4 + \nu_5$ in the gas phase is diminished in solid *p*-H₂. Lines associated with dimer, trimer and tetramer of C₂H₂ are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Acetylene (C₂H₂) is an important species in planetary atmospheres and interstellar space. Its gas-phase spectra have been extensively investigated [1,2]. Clusters and crystalline C₂H₂ are expected also to be present in a planetary atmosphere [3]; their spectra are reasonably well characterized [4].

Infrared absorption spectra of C₂H₂ dispersed in various matrices have been reported [5–7]. Although several small non-diatomic molecules such as CH₄, NH₃, H₂O are known to rotate in matrices [8,9], no evidence of rotation of C₂H₂ in low-temperature matrices has been reported.

Because of the ‘softness’ associated with the properties of *p*-H₂ as a quantum solid, guest molecules are expected to rotate more readily in solid *p*-H₂ than in other matrices. The rotational parameters of species isolated in *p*-H₂ are typically $\sim 90\%$ of those for the gas phase [10,11]. Internal rotation of CH₃OH is reported to occur in solid *p*-H₂, but not in solid Ne or Ar [12]. Because of the special properties associated with *p*-H₂, it would be interesting to discover whether C₂H₂ can rotate in this quantum solid. A direct comparison of spectra of jet-cooled C₂H₂ and matrix-isolated C₂H₂ not only helps in the assignments but also reveals spectral differences between C₂H₂ in the gas phase and in matrices.

2. Experiments

Spectra of jet-cooled C₂H₂ were measured under high resolution in Belgium. The jet-expansion system named FANTASIO is described elsewhere [13] and only the major features are presented here. The circular nozzle has a diameter 500 μ m. Spectra are recorded with a Fourier-transform infrared spectrometer (FTIR) (Bruker IFS120HR) at

* Corresponding authors. Address: Department of Applied Chemistry, Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (Y.-P. Lee). Fax: +886 3 5713491.

E-mail addresses: yplee@mail.nctu.edu.tw (Y.-P. Lee), mherman@ulb.ac.be (M. Herman).

¹ FNRS and ARC postdoctoral researcher; Permanent address: Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia.

² FRIA Researcher.

0.0043 cm^{-1} resolution (defined as $0.9/\delta$, in which δ is the maximum optical path difference). Multipass optics around the expansion leads to an increase of signal to noise ratio ~ 5 times over single pass. The v_5 and $v_4 + v_5$ bands were recorded with a HgCdTe detector, and flow conditions were 0.08 L min^{-1} for C_2H_2 and 4.2 L min^{-1} for Ar, with injection and residual pressures of 700 and 1.6×10^{-2} torr, respectively. For the v_3 region, an InSb detector was used; flow conditions were 0.05 L min^{-1} for C_2H_2 , and 2.8 L min^{-1} for Ar, with injection and stagnation pressures of 470 and 9×10^{-3} torr, respectively. The contribution of the residual gas in the cell, having higher temperature, could be eliminated from the spectrum by a subtraction procedure based on measurements of molecular density from a quadrupole mass filter with a retractable probe coupled to the chamber.

The matrix experiments were performed in Taiwan [12]. A nickel-plated copper plate, maintained at 3.6 K with a closed-cycle refrigerator, served both as a cold substrate for the matrix sample and as a mirror to reflect the incident infrared (IR) beam to the detector. IR absorption spectra were recorded with a FTIR (Bomem, DA8) with a HgCdTe detector. A gaseous mixture of $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/5000 to 1/22000) was deposited over a period of 1–3 h. Typically, 200 scans at a resolution of 0.05 cm^{-1} were recorded. In some experiments the matrix sample was maintained $\sim 4.5 \text{ K}$ for 0.5–1.0 h for annealing, but all IR measurements were performed at 3.6 K.

C_2H_2 (99.6%) was degassed at 77 K before use. H_2 (99.9999%) was used after passage through a trap at 77 K before its conversion to $p\text{-H}_2$. The efficiency of conversion is controlled by the temperature of the catalyst; the concentration of *o*- H_2 is ~ 100 ppm at a conversion temperature of 15 K.

3. Results and discussion

3.1. Spectra of jet-cooled C_2H_2

The region $700\text{--}1400 \text{ cm}^{-1}$ contains the v_5 (729.163 cm^{-1}) and $v_4 + v_5$ (1328.081 cm^{-1}) bands. The v_5 band, corresponding to excitation of the *cis*-bending motion, is of $\Pi_u \leftarrow \Sigma_g^+$ type, thus with P, R and prominent Q branches (Fig. 1a). The weaker $v_4 + v_5$ band, of $\Sigma_u^+ \leftarrow \Sigma_g^+$ type with P and R branches (Fig. 2a), corresponds to simultaneous excitation of *cis*- and *trans*-bending motions [2].

The region $3270\text{--}3310 \text{ cm}^{-1}$ contains the v_3 and $v_2 + v_4 + v_5$ (3281.899 and 3294.839 cm^{-1}) bands, both are of $\Sigma_u^+ \leftarrow \Sigma_g^+$ type with P and R branches (Fig. 3a) and are already reported under jet-cooled conditions using FTIR [14]. A strong anharmonic resonance connecting the two upper vibrational states is responsible for the observation of $v_2 + v_4 + v_5$ that hence acquires intensity similar to that of the v_3 [15].

The rotational temperature was determined to be 6.1 and 7.0 K, respectively, from relative intensities of rovibrational lines in v_3 and $v_4 + v_5$. The latter value therefore also

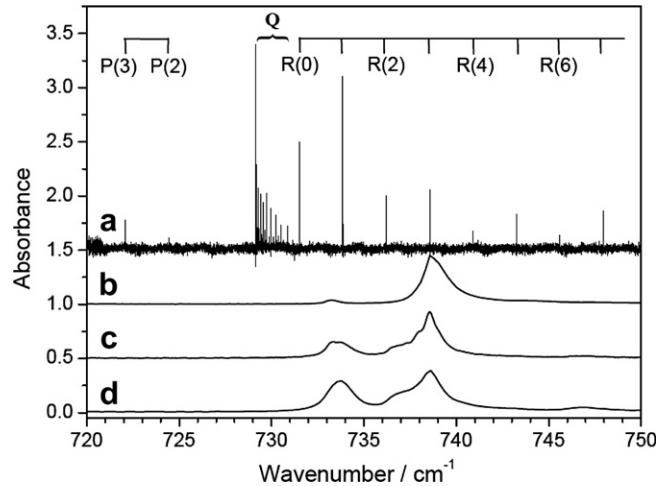


Fig. 1. IR absorption spectra of C_2H_2 in the region $720\text{--}750 \text{ cm}^{-1}$. (a) Under jet-cooled conditions (see Section 2), with rotational assignments indicated; (b) annealed $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/22000) matrix; (c) $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/10000) matrix; (d) $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/5000) matrix.

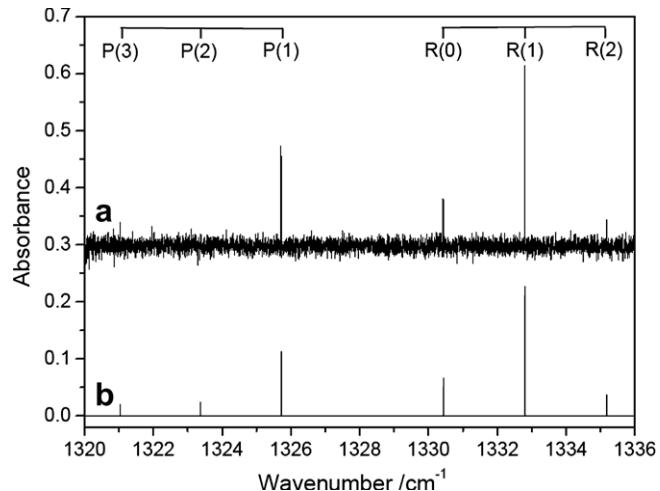


Fig. 2. IR absorption spectra of C_2H_2 under jet-cooled conditions in the region $1320\text{--}1340 \text{ cm}^{-1}$. (a) Observed, with the P(2) line within the experimental noise limit and P(3) barely identifiable; (b) simulated for $T_{\text{rot}} = 7 \text{ K}$ with no nuclear-spin conversion; rotational assignments are indicated.

characterizes v_5 , which was recorded simultaneously with $v_4 + v_5$ but suffers from saturation. The intensity conforms to nuclear-spin statistics 1:3 in favor of odd J-lines, as confirmed by spectral simulations. An example is presented in Fig. 2 for $v_4 + v_5$. It thus indicates the absence of nuclear-spin conversion during cooling processes to reach 6 K; these results are similar to those reported previously for C_2H_2 at 31 K in the literature [14].

3.2. Spectra of C_2H_2 in solid $p\text{-H}_2$

IR spectra of samples of $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/5000 to 1/22000) at 3.6 K exhibit intense features near 738 and 3279 cm^{-1} , as shown in Traces B–D of Figs. 1 and 3, respectively, for var-

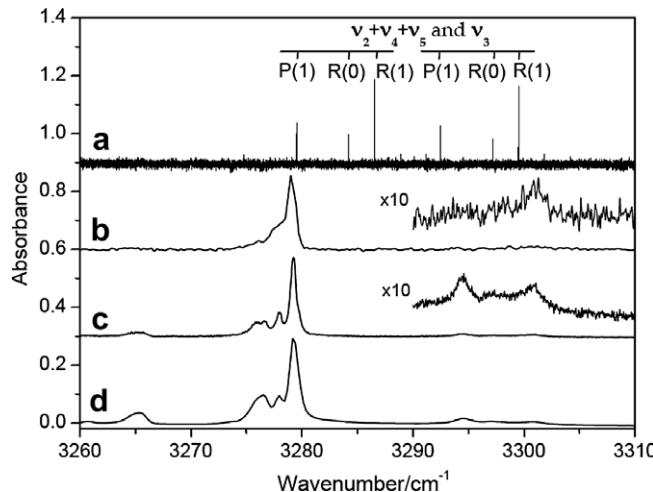


Fig. 3. IR absorption spectra of C_2H_2 in the region 3250–3310 cm^{-1} . (a) Under jet-cooled conditions (see Section 2), with rotational assignments indicated for the two observed bands (v_3 and $v_2 + v_4 + v_5$); (b) annealed $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/22000) matrix; (c) $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/10000) matrix; (d) $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/5000) matrix.

ious molar ratios. At such a low temperature, if rotation were feasible and nuclear spin conserved, one would expect to observe absorption lines originating only from ground-state levels $J'' = 0$ (*para*) and 1 (*ortho*) of C_2H_2 in solid *p*- H_2 . If rotation of C_2H_2 does not occur in the *p*- H_2 matrix, only a single line corresponding to the purely vibrational transition is predicted to appear.

3.2.1. The v_5 band

An experiment with an annealed sample of C_2H_2 in highly pure *p*- H_2 (*o*- H_2 less than 0.23% and a slight H_2O impurity) yielded a spectrum showing side bands much diminished relative to the main band at 738.5 cm^{-1} (Fig. 1b). The observed spectral pattern is inconsistent with that expected for $\text{Q}(1)$, $\text{R}(0)$ and $\text{R}(1)$, with no nuclear-spin conversion (similar to Fig. 1a). These observed features of C_2H_2 in *p*- H_2 are therefore unlikely to be attributable to rotational lines of v_5 . The feature at 738.5 cm^{-1} is thus assigned to a purely vibrational – thus rotationless – transition of v_5 .

It should be pointed out that at higher concentrations two lines at 733.7 and 738.5 cm^{-1} were observed (Fig. 1c and d); their separation of 4.8 cm^{-1} is near that, 4.7 cm^{-1} , between $\text{Q}(1)$ and $\text{R}(1)$ lines in the jet-cooled spectrum (Fig. 1a) and might lead to some confusion. Similarly, two lines were observed when substantial *o*- H_2 impurity was present, as shown in Fig. 4; the intensity of the feature near 733.7 cm^{-1} increased relative to that near 738.5 cm^{-1} as the concentration of *o*- H_2 increased from 0.28% (trace C) to 0.51% (trace B) and to 1.21% (trace A), and the maximum also shifted from 733.8 cm^{-1} to 735.0 cm^{-1} . The feature near 733.7 cm^{-1} can therefore be ascribed, at least in part, to C_2H_2 with nearby *o*- H_2 . The observation in Fig. 4 that v_5 (*cis*-bending) but not v_3 (C–H stretching) is affected by the presence of *o*- H_2 indicates

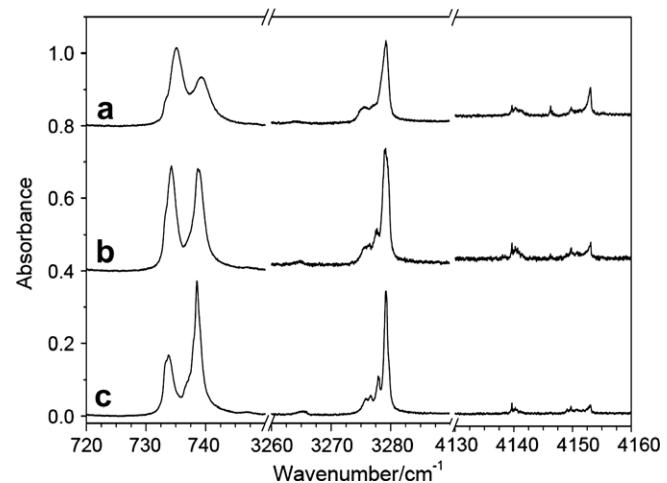


Fig. 4. IR absorption spectra of C_2H_2 in the region 720–750, 3260–3290 and 4130–4160 cm^{-1} for solid $\text{C}_2\text{H}_2/p\text{-H}_2$ (1/10000); impurity levels of *o*- H_2 are (a) 1.21%, (b) 0.51% and (c) 0.28%. The intensity of the band at 4153 cm^{-1} , corresponding to the $\text{Q}_1(0)$ line of H_2 , indicates the relative concentration of *o*- H_2 in various samples.

that *o*- H_2 might be attached at the side of C_2H_2 . A doublet structure was also observed in v_5 for T-shaped complexes of C_2H_2 with HX ($\text{X} = \text{F}, \text{Cl}, \text{Br}$) in solid Ar [16], and for C_2H_2 in solid N_2 [7].

3.2.2. The v_3 band

The matrix spectrum in highly pure *p*- H_2 shows an intense line at 3279.2 cm^{-1} and some unresolved weak features in the v_3 region (Fig. 3b); the spectral pattern also indicates that there is no rotation for C_2H_2 . At higher concentrations, three subsidiary features at 3278.0, 3276.6 and 3275.9 cm^{-1} increase in intensity (Fig. 3c and d). These features are unlikely to be associated with rotational structure of v_3 . Furthermore, they are unlikely to arise from any other vibrational transition of the monomer. An exhaustive survey of possible vibrational energy states in $^{12}\text{C}_2\text{H}_2$ indicates that no accessible state other than $v_2 + v_4 + v_5$ exists within 100 cm^{-1} of v_3 [1]. In the gas phase, the two bands are separated by $\sim 13 \text{ cm}^{-1}$ and have nearly identical intensities (Fig. 3a) [15]. In the matrix, the observed weak features are separated from v_3 by less than 4 cm^{-1} . Assigning one of them to $v_2 + v_4 + v_5$ would imply a significantly reduced intramolecular anharmonic coupling between $v_2 + v_4 + v_5$ and v_3 in the *p*- H_2 matrix.

The weak feature at 3300.9 cm^{-1} (Fig. 3b) might correspond to the $v_2 + v_4 + v_5$ assignment. A 2 by 2 interaction matrix model reproducing the anharmonic coupling between v_3 and $v_2 + v_4 + v_5$ using the parameters in Ref. [15] shows that, with a splitting $\sim 20 \text{ cm}^{-1}$, the intensity ratio for bands $v_2 + v_4 + v_5$ to v_3 is expected to decrease from ~ 1 in the gas phase to ~ 0.056 if the interaction matrix element is assumed to be unchanged from the gas to the matrix. An observed intensity ratio of 0.04 ± 0.01 for these two features is consistent with this prediction. The intensity of the $v_2 + v_4 + v_5$ band relative to the v_3

band was observed to be reduced to ~ 0.5 in an Ar matrix with energy splitting $\sim 14 \text{ cm}^{-1}$ [5], and to < 0.03 in an N_2 matrix with energy splitting $\sim 28.4 \text{ cm}^{-1}$ [7].

3.2.3. The $v_4 + v_5$ band

Two broad features at 1331.6 and 1340.1 cm^{-1} were observed in the $v_4 + v_5$ region. Similar to that observed for v_5 , the intensity of the former increases relative to that of the latter as the concentration of *o*- H_2 increases from 0.28% to 1.21%. Hence, we assign the feature at 1340.1 cm^{-1} to C_2H_2 and the feature at 1331.6 cm^{-1} to C_2H_2 with nearby *o*- H_2 .

Table 1 compares observed wavenumbers of the various spectral features assigned to monomer absorption in various environments.

3.3. Absorption bands of clusters

Three intense lines at 3272 , 3266 and 3261 cm^{-1} were reported in the literature for clusters of C_2H_2 produced under jet-cooled conditions and are assigned to the T-shaped dimer, trimer and tetramer of C_2H_2 ; these lines are separated from the monomer band by 17 , 23 and 28 cm^{-1} , respectively [4]. They were also observed using FANTASIO (Fig. 5, flow conditions $\text{C}_2\text{H}_2 = 0.35 \text{ L min}^{-1}$ and $\text{Ar} = 7 \text{ L min}^{-1}$) but are not specifically analyzed yet. Upon dilution of C_2H_2 in solid *p*- H_2 , we observed that lines at 3265.8 , 3260.9 and 3254.8 cm^{-1} have reduced intensities relative to that of the main feature at 3279.2 cm^{-1} (Fig. 3b–d); the separations of 13.6 , 18.5 and 24.6 cm^{-1} are slightly smaller but parallel to those observed in the gas phase. We tentatively assign these lines to absorption of dimer (perhaps also the line at 3275.9 cm^{-1}), trimer and tetramer of C_2H_2 , respectively. Analogously, we assign the observed line at 746.5 cm^{-1} (and perhaps a line overlapping the feature at 733.7 cm^{-1}) to a dimer of C_2H_2 . A band due to solid state acetylene near 3235 cm^{-1} , similar to the one reported in a pulsed-jet experiment [17] was also observed here in the jet (Fig. 5), but not in the matrix, at molar ratios of acetylene/*p*- $\text{H}_2 \leq 1/400$. At this concentration, direct deposition of a flowing (not jet-cooled) mixture of acetylene in *p*- H_2 cannot form solid acetylene on the cold support.

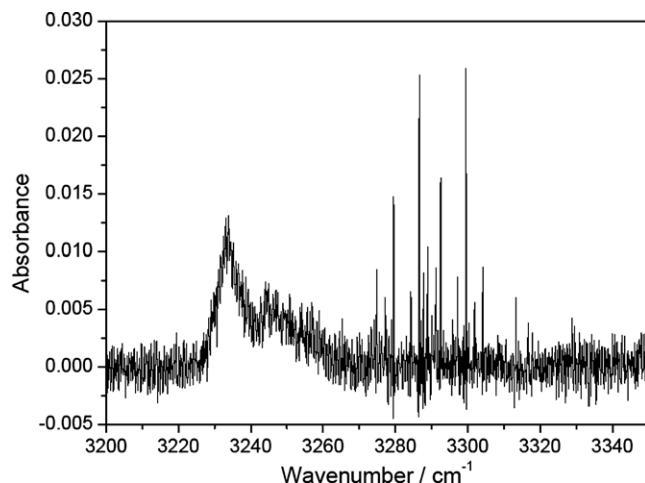


Fig. 5. IR absorption spectra of solid-state C_2H_2 under jet-cooled conditions (see Section 2) in the region 3200 – 3350 cm^{-1} .

4. Conclusion

Infrared absorption spectra of C_2H_2 under jet-cooled conditions and in solid *p*- H_2 were compared. No evidence for rotation of C_2H_2 in solid *p*- H_2 has been detected. The interaction between the v_3 and $v_2 + v_4 + v_5$ states of C_2H_2 , known to be strong in the gas phase, is much weaker, if not absent, in solid *p*- H_2 . Additional features associated with bending modes of C_2H_2 were ascribed to C_2H_2 with nearby *o*- H_2 . Bands due to dimer, trimer and tetramer of C_2H_2 were tentatively assigned for C_2H_2 in solid *p*- H_2 , whereas evidence for solid acetylene was obtained in the expansion.

Acknowledgements

At ULB we are indebted to Dr. Vander Auwera for various experimental inputs, and to Q. Baire and S. Robert for spectral simulations. The Fonds National de la Recherche Scientifique (FNRS, contracts FRFC and IISN) and the Action de Recherches Concertées de la Communauté française de Belgique sponsored this work in Belgium. It is also performed within the activity of the ‘LEA HiRes’. The National Science Council supported this work in Taiwan (Grant No. NSC95-2113-M-009-002).

References

- [1] M. Herman, A. Campargue, M.I. El Idrissi, J. Vander Auwera, *J. Phys. Chem. Ref. Data* 32 (2003) 921.
- [2] S. Robert, M. Herman, J. Vander Auwera, G. Di Lonardo, L. Fusina, G. Blanquet, M. Lepère, A. Fayt, *Mol. Phys. (in press)*.
- [3] A. Coustenis, B. Schmitt, R.K. Khanna, F. Trotta, *Planetary Space Sci.* 47 (1999) 1305.
- [4] G.W. Bryant, D.F. Eggers, R.O. Watts, *J. Chem. Soc. Faraday Trans.* 84 (1988) 1443.
- [5] K. Sundararajan, K. Sankaran, K.S. Viswanathan, A.D. Kulkarni, S.R. Gadre, *J. Phys. Chem. A* 106 (2002) 1504.
- [6] H. Tanskanen, L. Khriachtchev, J. Lundell, M. Räsänen, *J. Chem. Phys.* 121 (2004) 8291.

Table 1
Origin/ cm^{-1} of C_2H_2 bands observed under jet conditions and in matrices

Band	Jet	p - H_2 matrix	Ar matrix [5]	Kr matrix [6]	N_2 matrix [7]
v_5	729.163	738.5	736.8	732	742.0, 747.4
$v_4 + v_5$	1328.081	1340.1	1334.5	1325.5	–
v_3^a	3281.899	3279.2	3288.9	3280	3282.6
$v_2 + v_4 + v_5^a$	3294.839	3300.9	3302.9	3293	3311.0
	(~1.0)	(~0.04)	(~0.5)	(~1.0)	(<0.03)

^a The v_3 and $v_2 + v_4 + v_5$ states are connected by anharmonic resonance. The intensities of the $v_2 + v_4 + v_5$ band relative to that of the v_3 band are listed in parentheses.

- [7] K. Sundararajan, K.S. Viswanathan, *J. Mol. Struct.* 798 (2006) 109.
- [8] J.R. Durig, J.F. Sullivan, in: A.J. Barnes, W.J. Orville-Thomas, A. Müller, R. Gaufres (Eds.), *Matrix Isolation Spectroscopy*, Reidel, Holland, 1981.
- [9] B.I. Swanson, L.H. Jones, in: J.R. Durig (Ed.), *Vibrational Spectra and Structure*, vol. 12, Elsevier, Netherlands, 1983, pp. 1–68.
- [10] S. Tam, M.E. Fajardo, H. Katsuki, H. Hoshina, T. Wakabayashi, T. Momose, *J. Chem. Phys.* 111 (1999) 4191.
- [11] T. Momose, M. Miki, M. Uchida, T. Shimizu, I. Yoshizawa, T. Shida, *J. Chem. Phys.* 103 (1995) 1400.
- [12] Y.-P. Lee, Y.-J. Wu, R.M. Lees, L.-H. Xu, J.T. Hougen, *Science* 311 (2006) 365.
- [13] M. Herman, K. Didiriche, D. Hurtmans, P. Macko, A. Rizopoulos, P. Van Poucke, *Mol. Phys.* (in press).
- [14] A. Amrein, M. Quack, U. Schmitt, *J. Phys. Chem.* 92 (1988) 5455.
- [15] J. Vander Auwera, D. Hurtmans, M. Carleer, M. Herman, *J. Mol. Spectrosc.* 157 (1993) 337.
- [16] J. Andrews, G.L. Johnson, B.J. Kelsail, *J. Phys. Chem.* 86 (1982) 3374.
- [17] S. Hirabayashi, Y. Hirahara, *Chem. Phys. Lett.* 361 (2002) 265.