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Abstract

We give a competitive algorithm to identify all d defective edges in a hypergraph with d unknown. Damaschke did the d = 1 case
for 2-graphs, Triesch extended the d = 1 case to r-graphs, and Johann did the general d case for 2-graphs. So ours is the first attempt
to solve the searching for defective edges problem in its full generality. Further, all the above three papers assumed d known. We
give a competitive algorithm where d is unknown.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A hypergraph is of rank r if the maximum number of vertices in an edge is r. In particular, if every edge has r vertices,
then it is known as an r-graph. We will represent a hypergraph G by its edge-set E, while V(E) denotes the set of
vertices in E. We also let G(S) denote the subgraph of G induced by the set S of vertices.

In our problem, we want to identify a subset D C E of defective edges with a minimum number of edge fests, where
an edge test takes an arbitrary subset S of V(E) and asks whether the subgraph G(S) contains a defective edge. Note
that the edge test is an extension of the group test which has a much longer history [4]. In a group-testing problem, a
vertex is either defective or good. A group test takes an arbitrary subset S of V' and asks whether S contain a defective
vertex. The group-testing problem can be interpreted as an edge-testing problem on a 1-graph where a 1-edge is just a
vertex.

For a brief history of edge testing, Chang and Hwang [2] first cast a special group-testing problem as searching for
a single edge in a complete bipartite graph. Since a group test is convertible to an edge test in the single-edge case,
this problem can be interpreted as the first formulation of an edge-testing problem. However, Aigner [1] was the first
who consciously proposed the edge-testing problem for general 2-graphs, thus bringing the “graph” into focus. Let
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M (E, d) denote the minimum number of edge tests guaranteeing to find the d defective edges in E. He conjectured for
2-graphs

M(E,1)<[log,|E|1+ ¢ where c is a constant.

Damaschke [3] proved the conjecture with ¢ = 1. Triesch [8] generalized to hypergraphs (of rank r) withc =r — 1.
Du and Hwang [4] conjectured for 2-graphs

_ El
M(E,d)<d ( logz% + c) where c is a constant.

Recently, Johann [6] made a breakthrough into the d > 1 problem by proving for 2-graphs

B E
M(E,d)<d< logz% +7).

All above results assumed that d is known. For the case that d is unknown, Hwang [5] gave a competitive algorithm
requiring d([log,|E|] + 4) tests.

In this paper, we study the problem of searching for all defective edges in an r-graph and give a competitive algorithm
(guaranteeing its performance against all d) requiring

dflog,|E|1 + (r — DEld" + od")

tests, where r is assumed to be a small constant. Note that the information-theoretic lower bound with d known is

E
log, <|d|) ~ d(log,|E| — log, d).

Then we extend it to general hypergraphs.

To motivate our problem, we cite a biological application [7]. Many biological phenomena occur due to the joint
presence of several molecules. Suppose there exists a set D where each member is a set of molecules whose joint
presence would cause a particular biological phenomenon. Then we can construct a hypergraph by taking the set of
relevant molecules as vertices, all subsets of vertices which are candidates of members of D as edges, and the unknown
set D as the set of defective edges to be identified. There exist biological experiments which can recognize the existence
of a set of molecules causing the particular phenomenon.

2. The general approach for r-graphs

We follow Johann’s approach in general, but also have to resolve some problems unique to r-graphs for » > 2 and to
competitive algorithms. Three important issues are the following:

(i) After a positive test (a test with a positive outcome), how do we identify a defective edge efficiently?

(i1) A defective edge can be removed only by removing some vertices in it, which is undesirable since there may
be other defective edges incident to these vertices. But if we do not remove defective edges, how do we avoid
repetitively identifying the same defective edge?

(iii) How do we analyze the number of tests?

We deal with these issues one by one.

(i) Johann commented that for r =2, Triesch’s algorithm to find the single defective edge in E by [log,|E|] + 1 tests
works with a little modification even if E contains many defective edges. In a private communication, Johann actually
revealed that the modification works for general hypergraphs with rank r.

In the following, we describe Johann’s edge-testing version of Triesch’s algorithm. Triesch used group testing to
describe the testing scheme which is known to be convertible to edge testing if |[D| = 1. To be more specific, let
C = (vy,...,v:) be a vertex cover on E. Then each edge contains a vertex of C. We say an edge e is led by v; if e
contains no v; € C with j <i. Triesch’s group tests are always on {vy, ..., v;} for some j, which can be converted to
edge tests on the complementary sets, i.e., on V\{vy, ..., v;}. The testing ends when a leader of a defective edge is



568 T. Chen, F.K. Hwang / Discrete Applied Mathematics 155 (2007) 566—571

identified. Then the problem is reduced to finding a defective (r — 1)-edge which can be done by induction. We will
refer to Johann’s edge-testing version as the 7J-procedure. We now formally state the TJ-procedure. Let V denote the
vertex set of E.

Step 1: Use the greedy algorithm (as specified by Triesch) to construct a vertex cover C = (vy, ..., v.) of E with
d(vy)=2d(v2) > -+ >d(v.) where d(v;) is the degree of vertex 7 in the graph obtained from E by deleting vy, ..., vj_|
and their edges. Let T be the rooted binary tree with leaves v1, ..., v. from left to right in that order, and the path of v;
has length [log, %1, 1 <i <c (the existence of T is guaranteed by Kraft’s inequality). Let 71, and Tr denote the left
and right subtree of 7, and Vi, and VR their leave-sets, respectively.

Step 2: Test V\WL. If positive, set T = T and V = V\ VL ; if negative, set T = T1..

Step 3: If T has more than one leave, go back to Step 2.

Step 4: Output the only leave in 7 as the leader in a defective edge.

Note that Triesch’s procedure always identifies the defective edge with the minimum leader while Johann’s edge-
testing version identifies the one with the maximum leader. When d = 1, the minimum leader is the maximum
leader, so both procedures are reduced to the same (r — 1)-graph. But for d > 1, they are reduced to different
(r — 1)-graphs. So not only the number of tests in finding the minimum and maximum leader can be different,
the subsequent reductions can also lead to different number of tests. However, these differences disappear in our
worst-case analysis. By the above explanation and since Triesch’s algorithm requires at most [log,|E|] + r tests,
we have:

Lemma 1 (TJ-procedure). Let E be a hypergraph of rank r, i.e., |e| <r for all edges e € E. There exists an algorithm
which finds one of several defective edges in E with at most [1og,|E|] 4 r edge-tests.

(i1) The working of the TJ-procedure is based on the premise that £ does not contain a defective edge e already
identified. Because if it did, then the procedure might identify e repeatedly. To prevent this from happening, as soon
as a defective edge is identified, we must partition its vertices into different subsets such that a future test on vertices
of a given subset will not encounter an identified defective edge. This is the purpose of the partition stage in Johann’s
procedure.

However, we still need to identify defective edges whose vertices spread into different subsets. But testing vertices
from different subsets may bring back identified defective edges. For r = 2, each defective edge involves only two
vertices. This problem was cleverly handled by Johann by mixing vertices from two subsets only when one of them
contains a single vertex. Say, the two subsets are V; and V;, and v is the single vertex from V;. Then we can avoid
any identified defective edges (v, u), u € V; by deleting (temporarily) u from V;. For r > 2, the problem is much more
complicated.

Instead of taking one vertex from outside (of V;) to test with vertices in V;, we have to take a set K of k vertices
from outside to test with vertices in V; since such a combination of vertices may contain a defective edge. We do this
by fixing a K and then searching for all defective edges containing this K. This is achieved by requiring every test to
contain K. Let CH(r) denote our proposed algorithm for r-graphs. Suppose we test K U S, where S is a subset of the
vertex set of V\ K. Then we can call the subroutine CH(r — k) to search for all induced defective edges ¢’ (with rank
r — k) such that ¢’ U K is a defective edge.

We have to avoid identifying a defective edge contained in K U S which is already identified before the induction stage
CH(r — k) is reached. This means that all such identified defective edges must be broken into at least two subsets which
are not to be mixed in tests. On the other hand, these subsets may contain an induced defective edge not identified yet,
thus we need to mix them in tests. This dilemma is solved by recursively partitioning V; in a sequence of subroutines
until the induced defective edge is of rank 1, namely, r — 1 vertices have been specified to attach to each test in the
subroutine. Then any vertex in V; which together with the » — 1 specified vertices constitute an identified defective
edge can be deleted from V;. Since the breaking up of an identified defective edge for general r has more implications
than the r = 2 case, we have to replace the more efficient but complicated multi-subset scheme in [6] by a 2-subset
scheme.

For r’ < r, since CH(r") may be called as a subroutine, we need to solve CH(r’) in a more general context. Suppose
CH(r') has vertex-set V’. Then a set K not in V' is imposed so that all defective edges in CH(r') are induced by K, i.e.,
the set of induced defective edges in CH(r') is { X\ K : where X is a defective edge containing K }. If CH(r’) is not used
as a subroutine, i.e., ¥’ =r, then K = @.
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(iii) We assume that 7 is small and can be treated as a constant. Thus the number of tests will be represented as a
function of | V|, |E| and d. As in Johann’s algorithm, we will bound the number of tests in identifying each defective
edge, including negative tests (tests with a negative outcome) occurred during the process. Since a positive test always
initiates the TJ-procedure and is counted as a test of the procedure, all positive tests are counted as tests in identifying
defective edges. Further, some negative tests also occur in that procedure and are counted. So the analysis is reduced
to counting negative tests occurred elsewhere. Unlike Johann’s algorithm, we do not attempt to optimize the size of
negative tests (we cannot since we do not know d), and we do not associate each negative test with the identification
of a defective edge. The consequence is a very simple algorithm and analysis. The price we pay is that each defective
edge consumes [log,|E|] tests instead of [log, ‘5—'] tests as Johann obtained (we suspect that a competitive algorithm
cannot achieve the latter).

3. An algorithm for r-graphs

Let Eo(K) ={ele UK C E, e C Vp}. Let K; denote the subset imposed on CH(i), i.e., K; is a part of every test
in CH(7). If the original problem is defined on an r-graph, then |K;| = r — i. Finally, let I denote the set of currently
identified defective edges (in the original problem). For a set W of vertices, let /(W) denote the subset of / formed by
those edges whose vertices all belong to W.

We give an algorithm CH(r) recursively. We first define CH(1).

Algorithm CH(1)
Input: E, Ky, Vp, V1, I (If CH(1) is not a subroutine, then Vo = V(E), K1 = V| = I = (). Attach K to every test.
Step 1: Test Vy. If positive, use the halving procedure, which we will treat as a special case of the TJ-procedure, to
identify a defective vertex u (e = K1 U {u}). Set I =1 U {e}, Vo = Vp\{u} and go back to Step 1.
Step 2: For every vertex v € Vp, test K1 U {v}. If positive, set I =1 U {K U {v}}.
Step 3: Stop.
Algorithm CH(r") (r >r' >2)

The partition stage:
Input: E, K,/, Vo, V1, I (If CH(+') is not a subroutine, i.e., ¥’ =r, then Vo= V(E) and V| = K,» = I = (). Attach K,/
to every test.

Step 1: Test Vy. If positive, use the TJ-procedure to identify a defective edge e ={v1, va, ..., v/} C V. Add the vertex
vy to Vy. Set Vo = Vo\{v1} and I =T U {{e} U K,/}. If | V| >, go back to Step 1.
Step 2: Stop.

Suppose Vy, V; are nonempty. Go to the search stage.

The search stage:

Step 1: Setk = 1.

Step 2: Let K be a k-subset of Vj. Set K,_; = K,» U K. Construct a vertex cover C (C N K,'_ =®) on I (K, _; U
V(Eo(K, _y))). Call subroutine CH(r’ — k) with E = Eq(K,_;), V =V (Eo(K, _;)), Vo=V (Eo(K,—))\C
and V; =C. If for some v € Vp, K, U{v} € I(K,_; UV (Eo(K,_i))) (possible only for k =" — 1), delete
v from Vj.

Do this for all k-subsets K. Set k = k + 1. If k < r’, go back to Step 2.
Step 3: Test all r'-subsets S (except those such that S U K,» € I) of V. If positive, set I =1 U {SU K,/}.

We will refer to tests in Step 3 as direct tests.
Step 4: Stop.

Theorem 1. Let E be an arbitrary r-graph which contains d defective edges, where d is not necessarily known. Then
the algorithm CH(r) identifies all defective edges of E with at most d[log,|E|]1 4+ (r — 1) L2lgr + o(d") tests.

Proof. Clearly, all edges identified as positive by the algorithm are through either the TJ-procedure or direct tests, both
are error-free. Thus it suffices to prove that a defective edge is always identified.

Suppose a defective edge with vertex set X is not identified at the partition stage of CH(r). Then a nonempty subset
X’ C X must lie in Vj. At the search stage, the selection of K runs through all k-subsets of V| for 1 <k <r. One such
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selection is K = X’. Suppose |X’| = k. Then the problem is reduced to the subroutine CH(r — k) with K imposed. By
induction on r, the induced defective edge X\ K can be identified in the subroutine, which implies X\K UK = X isa
defective edge.

It remains to count the number of tests CH(r) uses. By Lemma 1, the TJ-procedure uses at most [log,|E|] + r
tests. Since a defective edge is identified by either the TJ-procedure or a direct test, the number of tests consumed
in identifying one defective edge is bounded by [log,|E|] 4 r. This bounded number of tests includes the possible
positive test initiating the identification process, and all negative tests occurred during the process of identifying the
defective edge. Thus, the number of tests identifying d defective edges is at most d([log,|E|] + r). Further it suffices
to count the number N (r) of negative tests occurred elsewhere in CH(r). There are three sources for tests in N (r): one
negative test from the partition stage, those from subroutines and the direct tests.

Denote Dk as the set of all defective edges in K U V (Eo(K)). Let dg = |Dg|. Note that for K # K’, Dk and Dg
may overlap in defective edges containing some vertices in K N K’ and other vertices in V (E(K)). Hence we can
only bound dg by d. However, for |K| = 1, Dx and D are disjoint; hence ZK:|K\:1dK is bounded by d. We count
the number N (r) of negative tests in CH(r) by induction on r.

For r =1, N(r) is easily verified to be at most 1 + dg since the negative tests counted in N (r) consists of 1 at the
end of Step 1 and occur in Step 2; but |V;| <dg. So Theorem 1 holds for r = 1.

Note that a vertex is in V; either because it is in the vertex cover C (which covers the set of identified defective
edges), or it is a vertex in a defective edge identified from the updated V;y at the partition stage. Thus every vertex in
Vi corresponds to a distinct defective edge; hence | V1| <d.

We prove the general r >>2 case by induction.

r—2
N(r)<1+z Z NG —k) + Z N(1)+<|‘:1|>

k=1 KCVi:|K|=k KCVi:|K|=r—1
r—2
r—k
< Y —k=DT T rod Y+ Y (d+do+d
k=1 KCVy:|K|=k KCVii|K|=r—1

r—2
< Y -2 Y Y k-l v v +a

KCVi:|K|=1 k=2 KCVy:|K|=k
+o(d")
» -l r—2 d
<=t Y dk |+ -3 ( k)d’—k +2d" +o(d")
KCVi:|K|=1 k=2

< =327 = 3)d" +2d" +o(d")
= ((r =32 +2)d" + o(d")
<@ — DLld" 4+ o).
Thus, N(r) < (r — 1)!21d" 4 o(d") holds for general r.
Let T'(r) denote the total number of tests required by CH(r). Since T (r) <d([log,|E|] 4+ r) + N(r) and N(r) <

(r — D'21d" + o(d"), we have that T (r) <d[log,| E|] + (r — 1)!21d” 4 o(d") holds for r >2. Therefore, algorithm
CH(r) needs at most d[log, |E|] 4+ (r — l)ngdr + o(d") tests to identify all d defective edges in E. [

Unfortunately, we are not able to provide more specific functions than the o() function we used in derivation.
4. An algorithm for hypergraphs

Let E be a hypergraph of rank r, i.e., |e| <r for all edges e € E. It is assumed that no defective edge is contained in
another (this is an assumption made in all models dealing with the quoted biological application). To identify the set

D C E in a hypergraph, we follow the general approach in algorithm CH(r) for r-graphs with a slight modification.
Let CH*(r) denote the algorithm for hypergraphs of rank r.
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The search stage in CH*(r) will be a little different from CH(r). When we choose a k-subset K of V| before
constructing a vertex cover and then calling CH*(r — k), we should test K itself. If the outcome is positive, then K € D.
By our assumption, there is no other defective edge containing K, so we do not need to call CH*(r — k) further. If the
outcome is negative, call CH*(r — k) to identify all induced defective edges in E((K).

Algorithm CH*(1) is same as CH(1). Now, we give the algorithm CH*(r) recursively.

Algorithm CH*(r") (r >r' >22)
Input: E, K,, Vy, Vi, I (If CH*(r’) is not a subroutine, then Vo = V(E) and V| = K,» = I = ).

The partition stage:

Step 1: Test Vj. If positive, use the TJ-procedure to identify a defective edge e = {vy, v, ..., v5} C Vp (s <r’). Add
the vertex vy to V. Set Vo = Vo\{vi}and I =1 U {{e} U K,»}. If V # @, go back to Step 1.
Step 2: Stop.

Suppose Vp, V| are nonempty. Go to the search stage.

The search stage:

Step 1: Setk = 1.

Step 2: Choose a k-subset K of Vi, where G(K,» U K) does not contain any identified defective edge in 1. Set K,/_; =
K, UK.
Test K,/_j. If positive, let I =1 U {K,/_;}.
Else construct a vertex cover C (C N K, _y = @) on I (K, _; U V(Eo(K, _x))). Call subroutine CH*(r' — k)
with E=Ey(K, _;), V=V (Eo(K, _1)), Vo=V (Eo(K, _;))\C and Vi =C. If forsome v € Vy, K, _; U{v} €
I(K,_; UV (Ey(K, _r))) (possible only for k=r"—1), delete v from Vy. Attach K,/_ to any testin CH*(+' —k).
Do this for all k-subsets K. Set k = k + 1. If k <r’, go back to Step 2.

Step 3: Test all r'-subsets S (except those such that S U K,» € I) of V. If positive, set I =1 U {SU K,/}.

We will also refer to tests in Step 3 as direct tests.
Step 4: Stop.

Theorem 2. Let E be a hypergraph of rank r with d defective edges, where d is not necessarily known. Then the
algorithm CH* (r) identifies all defective edges in E with at most d[log,|E|1 + (r — I)Lder + o(d") tests.

Proof. Similar to the proof of Theorem 1, we can show that CH*(r) identifies all defective edges of the hypergraph E.
To count the number of tests CH*(r) uses, let N*(r) and T*(r) be the counterparts of N(r) and T (r) in CH*(r).
The analysis of the test number of CH*(r) is also similar to that of CH(r). The only difference is that the subroutine
of CH*(r) should need N*(r — k) + 1 tests instead of N (r — k) tests in CH(r). But it does not change the result; so
N*(r)<(r — I)L%Jd’ + o(d"). Consequently, T*(r) <d[log, |E|1 + (r — I)L%Jd’ + o(d") holds for r >2. Therefore,
algorithm CH*(r) needs at most d[log,|E|] + (r — 1) Lalgr + o(d") tests to identify all d defective edges of E. [
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