
Theoretical Computer Science 370 (2007) 293–298
www.elsevier.com/locate/tcs

Note

Improved hardness amplification in NP

Chi-Jen Lua,∗, Shi-Chun Tsaib, Hsin-Lung Wub

a Institute of Information Science, Academia Sinica, Taipei, Taiwan
b Department of Computer Science, National Chiao Tung University, Hsinchu 30050, Taiwan

Received 17 March 2005; received in revised form 26 September 2006; accepted 9 October 2006

Communicated by A. Razborov

Abstract

We study the problem of hardness amplification in NP. We prove that if there is a balanced function in NP such that any circuit
of size s(n) = 2Ω(n) fails to compute it on a 1/poly(n) fraction of inputs, then there is a function in NP such that any circuit of
size s′(n) fails to compute it on a 1/2 − 1/s′(n) fraction of inputs, with s′(n) = 2Ω(n2/3). This improves the result of Healy et al.
(STOC’04), which only achieves s′(n) = 2Ω(n1/2) for the case with s(n) = 2Ω(n).
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Hardness amplification; Pseudorandom generator; NP

1. Introduction

We study the problem of transforming a hard function into a harder function. We say that a Boolean function f is
ε-hard for circuits of size s if any such circuit fails to compute f on at least an ε fraction of the input. A function on
n bits is called average-case hard, mildly hard, and worst-case hard, respectively, when ε is 1/2 − 2−Ω(n), 1/poly(n),
and 1/2n . A central question in complexity theory is to understand the relationship among such hardness conditions
in complexity classes, which has played an important part in the research on derandomization. Given a complexity
class, can we transform any function in it which is worst-case hard into one in it which is average-case hard? After
a long series of work, this has been shown to be possible for high complexity classes, such as DTIME(2O(n)) [6,11].
However, it remains open for lower complexity classes. In fact, there are results showing that the same techniques
used for high complexity classes can not be used for the class NP to obtain average-case hardness when starting from
worst-case hardness [1,12,13] or even starting slightly below mild hardness [12,8,13].1

In this paper, we focus on the task of transforming mild hardness to average-case hardness for the complexity class
NP. One attempt is to use Yao’s XOR lemma [14,3], which transforms a given function f : {0, 1}

n
→ {0, 1} into a

function f ′
: ({0, 1}

n)k
→ {0, 1} defined by f ′(x1, . . . , xk) = f (x1) ⊕ · · · ⊕ f (xk). However, we do not know if

∗ Corresponding author.
E-mail addresses: cjlu@iis.sinica.edu.tw (C.-J. Lu), sctsai@csie.nctu.edu.tw (S.-C. Tsai), hsinlung@csie.nctu.edu.tw (H.-L. Wu).

1 Although [12,13] only addressed explicitly the case of starting from worst-case hardness, it seems that the techniques used there can be extended
to case of starting below mild hardness.

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.009

http://www.elsevier.com/locate/tcs
mailto:cjlu@iis.sinica.edu.tw
mailto:sctsai@csie.nctu.edu.tw
mailto:hsinlung@csie.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2006.10.009


294 C.-J. Lu et al. / Theoretical Computer Science 370 (2007) 293–298

this works here, since we do not know if NP is closed under the XOR operation. O’Donnell [10] gave the first result
along this line, showing how to convert any balanced function f ∈ NP which is mildly hard for polynomial-size
circuits into another f ′

∈ NP which is (1/2 − 1/n1/2−α)-hard for polynomial-size circuits, for any constant α > 0.
He considered transformations of the form: f ′(x1, . . . , xk) = C( f (x1), . . . , f (xk)), where C is a polynomial-time
computable monotone function. Then he used the “tribes” function and the “recursive majority” function, and took
their composition as the function C . Recently, Healy et al. [4] were able to amplify hardness beyond 1/2−1/poly(n),
showing how to convert any balanced function in NP which is mildly hard for circuits of size s(n) into one in NP
which is (1/2 − 1/s′(n))-hard for circuits of size s′(n), with s′(n) = s(n1/2)Ω(1). In particular, s′(n) = nω(1) when
s(n) = nω(1), s′(n) = 2nΩ(1)

when s(n) = 2nΩ(1)
, and s′(n) = 2Ω(n1/2) when s(n) = 2Ω(n). A key source of their

improvement came from derandomizing O’Donnell’s proof (the other source being the use of nondeterminism in
computing the new function). They observed that the function C used by O’Donnell can be computed by a small-size
read-once branching program and thus can be fooled by the pseudorandom generator of Nisan [9]. Unfortunately, this
generator becomes the bottleneck of their approach when s(n) = 2Ω(n), which prevents them from achieving the goal
of having s′(n) = 2Ω(n).

In this note, we make a further progress towards this goal, at the high end of the spectrum:

Theorem 1. Suppose there is a balanced function in NP which is mildly hard for circuits of size s(n) = 2Ω(n). Then
there is a function in NP which is (1/2 − 1/s′(n))-hard for circuits of size s′(n), with s′(n) = 2Ω(n2/3).

Our improvement comes from a closer look into the structure of the function C used by Healy et al., which enables
us to construct a better pseudorandom generator to fool C . More precisely, we observe that the function C , which
is the composition of the tribes function (a DNF) with the recursive majority function, can be seen as some kind of
combinatorial rectangle, though the range in each dimension is large. This suggests that we fool each dimension by
a separate copy of Nisan’s generator and provide their seeds using the output of Lu’s pseudorandom generator for
rectangles [7]. Our generator then is the composition of these two generators.

2. Preliminaries

We will basically follow the notations and definitions of [4]. For n ∈ N, let [n] denote the set {1, . . . , n}, and let Un
denote the uniform distribution over {0, 1}

n . For q ∈ N, we identify the set {0, 1}
q with [2q

]. For a set R, we also use
R to denote its membership function. We say that a function G : {0, 1}

`
→ {0, 1}

m is explicitly computable if given
x ∈ {0, 1}

` and i ∈ [m], the i th bit of G(x) can be computed in time poly(`, log m). A function f : {0, 1}
n

→ {0, 1}

is called balanced if Pr [ f (Un) = 1] = 1/2. For a function f : {0, 1}
n

→ {0, 1}, let f ⊗k
: {0, 1}

kn
→ {0, 1}

k be the
function defined by f ⊗k(x1, . . . , xk) = ( f (x1), . . . , f (xk)), for x1, . . . , xk ∈ {0, 1}

n .
Next, we define what we mean by a hard function.

Definition 1. For 0 ≤ δ ≤ 1/2 and s(n) ≤ 2O(n), we say that a function f : {0, 1}
n

→ {0, 1} is δ-hard for size s(n)

if every circuit of size s(n) fails to compute f on at least a δ fraction of inputs.

As shown by Impagliazzo [5], one can basically see a δ-hard function as a δ-random function defined below, as
they cannot be distinguished by circuits of size slightly smaller than s(n).

Definition 2. A probabilistic function g : {0, 1}
n

→ {0, 1} is called δ-random if it is balanced and there is a subset
H ⊂ {0, 1}

n with |H | = 2δ2n such that g(x) is an independent random bit for x ∈ H and g(x) is deterministic for
x /∈ H .

Note that any probabilistic function g can also be seen as a deterministic function with respect to a random string
y, and we will use gy to denote this deterministic function.

2.1. Hardness amplification

Given a hard function f , one would like to transform it into a harder function f ′. One typical way is to apply a
function C : {0, 1}

k
→ {0, 1} to the function f ⊗k to get the function f ′

= C ◦ f ⊗k
: {0, 1}

nk
→ {0, 1}, defined as

(C ◦ f ⊗k)(x1, . . . , xk) = C( f (x1), . . . , f (xk)). For hardness amplification within NP, to ensure that C ◦ f ⊗k
∈ NP



C.-J. Lu et al. / Theoretical Computer Science 370 (2007) 293–298 295

whenever f ∈ NP, O’Donnell [10] chose C to be a polynomial-time computable monotone function. In particular, he
considered the functions TRIBES and RMAJ, defined as follows.

Definition 3. Define the function TRIBESt : {0, 1}
t
→ {0, 1} as

TRIBESt (x1, . . . , xt ) = (x1 ∧ · · · ∧ xb) ∨ (xb+1 ∧ · · · ∧ x2b) ∨ · · · ∨ (xdt/beb−b+1 ∧ · · · ∧ xt ),

where b is the largest integer such that (1 − 2−b)
t/b

≥ 1/2. Note that this makes b = O(log t). Also, let MAJ be the
majority function, and define the function RMAJr : {0, 1}

3r
→ {0, 1} recursively as:

RMAJ1(x1, x2, x3) = MAJ(x1, x2, x3),

RMAJr (x1, . . . , x3r ) = RMAJr−1(MAJ(x1, x2, x3), . . . , MAJ(x3r −2, x3r −1, x3r )).

Given any δ ≥ 1/poly(n), to amplify from a δ-hard function f : {0, 1}
n

→ {0, 1}, O’Donnell used the composition

AMPδ
k = TRIBESt ◦ RMAJ⊗t

r

as the function for C , with k = t3r , t ∈ N, and r = O(log(1/δ)). He showed that the resulting function
f ′

= C ◦ f ⊗k
: {0, 1}

n′

→ {0, 1} has hardness 1/2 − 1/kc for some constant c. Note that the new function f ′ now
has an input length n′

= kn, so its hardness when expressed in terms of the input length n′ is only 1/2 − 1/poly(n′).
That is, even if a super-polynomial k is used, the resulting hardness does not go beyond 1/2 − 1/poly(n′).

To overcome this bottleneck, Healy et al. [4] showed that one can take a super-polynomial k while keeping the input
size of f ′ small (polynomial in n) if the k inputs to f ⊗k are generated in some pseudorandom way, in the following
sense.2 To simplify our presentation, we state things in a slightly different way from [4].

Definition 4 ([4]). For a probabilistic function h : {0, 1}
n

→ {0, 1}, define its expected collision probability as
EXPCP [h] = Ex [2 · Pry,y′ [hy(x) = hy′(x)] − 1].

Definition 5. We say that a generator G : {0, 1}
`

→ ({0, 1}
n)k ε-fools the δ-EXPCP of a function C : {0, 1}

k
→ {0, 1}

if for any δ-random function g : {0, 1}
n

→ {0, 1},∣∣∣EXPCP
[
(C ◦ g⊗k)

]
− EXPCP

[
(C ◦ g⊗k) ◦ G

]∣∣∣ ≤ ε.

Given such a generator G for C = AMPδ
k , the amplified function f ′ is defined as f ′

= C ◦ f ⊗k
◦ G. The seed

length of the generator G now becomes the input length of the new function f ′. The following lemma states that the
task of hardness amplification can be reduced to that of constructing such a generator.

Lemma 1 ([4]). Suppose for any δ ≥ 1/poly(n) and any k = t3r
≤ 2O(n), with t ∈ N and r = O(log(1/δ)),

there exists an explicitly computable generator G : {0, 1}
`(n)

→ ({0, 1}
n)k which 2−Ω(n)-fools the δ-EXPCP of the

function AMPδ
k . Then for any δ ≥ 1/poly(n) and any s(n) ≥ 2Ω(n), if there exists a balanced function in NP which

is δ-hard for size s(n), one can convert it into a function in NP which is (1/2 − 1/s′(n))-hard for size s′(n), for some
s′(n) ≥ 2Ω(`−1(n)).

Remark 1. Lemma 1 does not appear explicitly in [4] but can be derived from arguments therein. In fact, Healy
et al. [4] used two kinds of generators: one for preserving indistinguishability and one for fooling the δ-EXPCP of the
function AMPδ

k . In the case with s(n) ≥ 2Ω(n), the bottleneck lies in that for AMPδ
k . They observed that the function

AMPδ
k can be computed by a read-once branching program of small size, and they showed that a pseudorandom

generator fooling such branching programs (see Definitions 6 and 7) can fool the δ-EXPCP of the function AMPδ
k .

Therefore, they reduced the task of hardness amplification to that of finding a pseudorandom generator to fool such
branching programs. (See for example Theorem 6.2 in the journal version of [4].) However, using currently available
generators for branching programs, they were only able to obtain a generator of seed length Ω(n2) for fooling the
δ-EXPCP of AMPδ

k . Instead of fooling branching programs, we will show that it suffices to fool a simpler class of
tests: combinatorial rectangles, for which a better generator can indeed be found.

2 Another issue when using a super-polynomial k is that the function AMPδ
k is no longer computable in time poly(n). As shown in [4], this can

be handled using non-determinism.



296 C.-J. Lu et al. / Theoretical Computer Science 370 (2007) 293–298

2.2. PRGs for branching programs and rectangles

Our generator will be based on pseudorandom generators that fool read-once branching programs and
combinatorial rectangles, respectively.

Definition 6. A function G : {0, 1}
`

→ {0, 1}
t is called an ε-PRG for a class of functions from {0, 1}

t to {0, 1} if for
any T in this class, |Pr [T (Ut )] − Pr [T (G(U`))]| ≤ ε.

Definition 7. A read-once branching program of size s with block-length n is a finite state machine of s states, with
each edge labelled by a subset of {0, 1}

n . The computation proceeds as follows. The input is read sequentially in one
pass, one block of n bits at a time. When the machine reads a block β ∈ {0, 1}

n , it goes from the current state to the
state reached by the edge labelled with β. Let BP(s, n) denote the class of functions computed by such read-once
branching programs.

Definition 8. For m, d ∈ N, let R(m, d) denote the collection of rectangles R = R1×· · ·×Rd ⊆ [m]
d , with Ri ⊆ [m]

for all i ∈ [d].

To fool these two classes of functions, we will use the PRGs of Nisan [9] and Lu [7], respectively.

Lemma 2 ([9]). For any n ∈ N and any s ≤ 2n , there exists an explicitly computable 2−Ω(n)-PRG G N : {0, 1}
`

→

{0, 1}
sn for BP(s, n) with ` = O(n log s).

Lemma 3 ([7]). For any m, d ∈ N and any ε ∈ (0, 1), there exists an explicitly computable ε-PRG GL : {0, 1}
`

→

[m]d for R(m, d) with ` = O(log m + log d + log3/2(1/ε)).

3. Proof of Theorem 1

Consider any δ ≥ 1/poly(n) and any k = t3r
≤ 2O(n), with t ∈ N and r = O(log(1/δ)). Given Lemma 1, our

task is to construct a generator with a short seed which fools the δ-EXPCP of the function AMPδ
k . Let ORd denote

the OR function on d bits and let ANDb denote the AND function on b bits. Consider an arbitrary δ-random function
g : {0, 1}

n
→ {0, 1}, and let A : {0, 1}

kn
→ {0, 1} be the function

A = AMPδ
k ◦ g⊗k

= ORd ◦

(
ANDb ◦ RMAJ⊗b

r ◦ g⊗b3r
)⊗d

,

where k = db3r
= 2O(n), b = poly(n), d = 2O(n), and r = O(log(1/δ)) = O(log n). Note that A is a probabilistic

function (because of g), and let Ay denote the function A taking the random string y. Observe that each A−1
y (0) can

be seen as a rectangle in R(2b3r n, d). As we will see, to fool the δ-EXPCP of AMPδ
k , it suffices to have a good PRG

for rectangles in R(2b3r n, d). However, the range in each dimension of such rectangles is too large for us to apply
Lemma 3 effectively. To resolve this, we use d copies of Nisan’s PRGs to fool the d functions in the d dimensions
respectively, with the d seeds coming from the output of Lu’s PRG. Formally, we use the following two generators,
with ε = 2−Ω(n):

• Let G N : {0, 1}
q

→ {0, 1}
b3r n be Nisan’s (ε/d)-PRG for BP(nc, n), for some large enough constant c. From

Lemma 2, one can have q = O(n log n).
• Let GL : {0, 1}

`
→ {0, 1}

dq be Lu’s ε-PRG for R(2q , d). From Lemma 3, one can have ` = O(n log n) +

O(n3/2) = O(n3/2).

Then define our generator G : {0, 1}
`

→ {0, 1}
db3r n as

G(u) =

(
G⊗d

N ◦ GL

)
(u) = G⊗d

N (GL(u)).

It is easy to see that G is explicitly computable since both G N and GL are. To show that G is a good generator,
we shall bound the value |EXPCP [A] − EXPCP [A ◦ G] |. Let Cy,y′ be the function defined as Cy,y′(x) = 1 if



C.-J. Lu et al. / Theoretical Computer Science 370 (2007) 293–298 297

Ay(x) = Ay′(x) and Cy,y′(x) = 0 otherwise. Then

|EXPCP [A] − EXPCP [A ◦ G] | = 2
∣∣∣∣Ex

[
Pr
y,y′

[
Cy,y′(x) = 1

]]
− E

u

[
Pr
y,y′

[
Cy,y′(G(u)) = 1

]]∣∣∣∣
≤ 2 E

y,y′

[∣∣∣Pr
x

[
Cy,y′(x) = 1

]
− Pr

u

[
Cy,y′(G(u)) = 1

]∣∣∣] .

It remains to show that for any y and y′, G fools the function Cy,y′ . However, neither C−1
y,y′(0) nor C−1

y,y′(1) appears to
be a rectangle, so some twist is needed.

In fact, C−1
y,y′(0) is the symmetric difference of the two rectangles Ry

= A−1
y (0) and Ry′

= A−1
y′ (0) in R(2b3r n, d),

denoted as Ry
	 Ry′

. That is,

C−1
y,y′(0) = Ry

	 Ry′

= (Ry
\ Ry′

) ∪ (Ry′

\ Ry).

Then Prx [x ∈ Ry
	 Ry′

] = Prx [x ∈ Ry
] + Prx [x ∈ Ry′

] − 2 Prx [x ∈ Ry
∩ Ry′

] and similarly for
Pru[G(u) ∈ Ry

	 Ry′

]. Thus∣∣∣Pr
x

[
Cy,y′(x) = 1

]
− Pr

u

[
Cy,y′(G(u)) = 1

]∣∣∣
=

∣∣∣Pr
x

[
Cy,y′(x) = 0

]
− Pr

u

[
Cy,y′(G(u)) = 0

]∣∣∣
=

∣∣∣Pr
x

[
x ∈ Ry

	 Ry′
]

− Pr
u

[
G(u) ∈ Ry

	 Ry′
]∣∣∣

≤

∣∣∣Pr
x

[
x ∈ Ry]

− Pr
u

[
G(u) ∈ Ry]∣∣∣ +

∣∣∣Pr
x

[
x ∈ Ry′

]
− Pr

u

[
G(u) ∈ Ry′

]∣∣∣
+ 2

∣∣∣Pr
x

[
x ∈ Ry

∩ Ry′
]

− Pr
u

[
G(u) ∈ Ry

∩ Ry′
]∣∣∣ .

Note that Ry , Ry′

, and Ry
∩ Ry′

are all rectangles in R(2b3r n, d). Furthermore, they all satisfy the property that the
membership function of the set in each dimension can be computed in BP(nc, n) for some constant c, according to
[4].3 Therefore, it remains to show the following.

Lemma 4. For any R = R1 × · · · × Rd ∈ R(2b3r n, d) such that Ri ∈ BP(nc, n) for any i ∈ [d], | Prx [x ∈ R] −

Pru [G(u) ∈ R] | ≤ 2ε.

Proof. Observe that | Prx [x ∈ R] − Pru [G(u) ∈ R] | is at most∣∣∣Pr
x

[x ∈ R] − Pr
v

[
G⊗d

N (v) ∈ R
]∣∣∣ +

∣∣∣Pr
v

[
G⊗d

N (v) ∈ R
]

− Pr
u

[
G⊗d

N (GL(u)) ∈ R
]∣∣∣ , (1)

where v is sampled from Udq with dq = O(d · n log n). It remains to bound the two terms above.
First, note that G N is an (ε/d)-PRG for BP(nc, n) and can fool each Ri . Using a standard hybrid argument (see

e.g. [2]), one can show that G⊗d
N is an (d · ε/d)-PRG for such a rectangle R. Thus, the first term in (1) above is at

most ε.

3 Recall that A = AMPδ
k ◦ g⊗k

= ORd ◦ (ANDb ◦ RMAJ⊗b
r ◦ g⊗b3r

)⊗d . From [4], the function ANDb ◦ RMAJ⊗b
r is in BP(poly(n), 1), and

the probabilistic function ANDb ◦ RMAJ⊗b
r ◦ g⊗b3r

can be computed by a probabilistic BP(poly(n), n). Thus by fixing the random string of
A to any string y, the set Ry

= A−1
y (0) seen as a rectangle in R(2b3r n , d) has the property that each of its d dimensions has its membership

function in BP(poly(n), n). Next, we argue that for any y and y′, each dimension of the rectangle Ry
∩ Ry′

also has its membership function in

BP(poly(n), n). To see this, first observe that the i th dimension of Ry
∩ Ry′

is exactly Ry
i ∩ Ry′

i , where Ry
i and Ry′

i are the i th dimension of Ry

and Ry′
, respectively. Suppose Ry

i and Ry′

i are recognized by read-once branching programs B and B′ with state spaces S and S′, respectively.

Then the set Ry
i ∩ Ry′

i is recognized by the read-once branching program B′′ with state space S × S′, which goes from state (s, s′) to state (t, t ′)
when reading an input block x if and only if B goes from s to t and B′ goes from s′ to t ′, respectively, when reading x . The initial state of B′′ is the
state (s0, s′

0) where s0 and s′
0 are the initial states of B and B′, respectively, while the accepting states of B′′ are exactly those states (t, t ′) where t

and t ′ are the accepting states of B and B′, respectively. Thus, if B and B′ are both in BP(poly(n), n), so is B′′.



298 C.-J. Lu et al. / Theoretical Computer Science 370 (2007) 293–298

To bound the second term, consider the rectangle R′
= {v : G⊗d

N (v) ∈ R} ∈ R(2q , d) with q = O(n log n). That
is, R′

= R′

1 × · · · × R′

d , with R′

i = G−1
N (Ri ) ⊆ {0, 1}

q for i ∈ [d]. Since GL is an ε-PRG for R(2q , d), we have
| Prv

[
v ∈ R′

]
− Pru

[
GL(u) ∈ R′

]
| ≤ ε. Thus, the second term in (1) above is also at most ε. Therefore we have the

lemma. �

Combining the lemma and the discussion above, we have

|EXPCP [A] − EXPCP [A ◦ G] | ≤ 2(2ε + 2ε + 4ε) = 16ε = 2−Ω(n).

That is, our generator G, which uses a seed of length `(n) = O(n3/2), is able to 2−Ω(n)-fool the δ-EXPCP of the
function AMPδ

k . Then by Lemma 1, we have our main theorem.

Discussion

Our generator uses a seed of length O(n3/2), and as a result, we can only amplify hardness to 1/2 − 1/s′(n)

against size s′(n) with s′(n) = 2Ω(n2/3). The main bottleneck is the generator for rectangles. However, to achieve the
goal of having s′(n) = 2Ω(n) using our approach, we need to improve both the generator for branching programs
and the generator for rectangles. Without improving Nisan’s PRG, even if we could have an optimal ε-PRG for
R(m, d), with seed length Θ(log m + log d + log(1/ε)), the resulting generator would still need a seed of length
Θ(n log n) + O(n) = Ω(n log n) (see the definition of the generator G and the calculation of its seed length on the
previous page), and we would only be able to achieve s′(n) = 2Ω(n/ log n).

References

[1] Andrej Bogdanov, Luca Trevisan, On worst-case to average-case reductions for NP problems, in: Proceedings of the 44th Annual Symposium
on Foundations of Computer Science, 2003, pp. 11–14.

[2] Oded Goldreich, Foundations of Cryptography, Basic Tools, volume 1, Cambridge University Press, Cambridge, 2001.
[3] Oded Goldreich, Noam Nisan, Avi Wigderson, On Yao’s XOR lemma, Technical Report TR95–050, Electronic Colloquium on Computational

Complexity, 1995.
[4] Alexander Healy, Salil P. Vadhan, Emanuele Viola, Using nondeterminism to amplify hardness, in: Proceedings of the 36th ACM Symposium

on Theory of Computing, 2004, pp. 192–201, SIAM Journal on Computing 35 (4) (2006) 903–931 (in press) (Final version).
[5] Russel Impagliazzo, Hard-core distributions for somewhat hard problems, in: Proceedings of the 36th Annual IEEE Symposium on

Foundations of Computer Science, 1995, pp. 538–545.
[6] Russel Impagliazzo, Avi Wigderson, P = BPP if E requires exponential circuits: Derandomizing the XOR lemma, in: Proceedings of the 29th

ACM Symposium on Theory of Computing, 1997, pp. 220–229.
[7] Chi-Jen Lu, Improved pseudorandom generators for combinatorial rectangles, Combinatorica 22 (3) (2002) 417–434.
[8] Chi-Jen Lu, Shi-Chun Tsai, Hsin-Lung Wu, On the complexity of hardness amplification, in: Proceedings of the 20th Annual IEEE Conference

on Computational Complexity, 2005, pp. 170–182.
[9] Noam Nisan, Pseudorandom generators for space-bounded computation, Combinatorica 12 (4) (1992) 449–461.

[10] Ryan O’Donnell, Hardness amplification within NP, Journal of Computer and System Sciences 69 (1) (2004) 68–94.
[11] Madhu Sudan, Luca Trevisan, Salil Vadhan, Pseudorandom generators without the XOR lemma, Journal of Computer and System Sciences

62 (2) (2001) 236–266.
[12] Emanuele Viola, The complexity of constructing pseudorandom generators from hard functions, Computational Complexity 13 (3–4) (2004)

147–188.
[13] Emanuele Viola, On constructing parallel pseudorandom generators from one-way functions, in: Proceedings of the 20th Annual IEEE

Conference on Computational Complexity, 2005, pp. 183–197.
[14] Andrew Chi-Chih Yao, Theory and applications of trapdoor functions, in: Proceedings of the 23rd Annual IEEE Symposium on Foundations

of Computer Science, 1982, pp. 80–91.


	Improved hardness amplification in NP
	Introduction
	Preliminaries
	Hardness amplification
	PRGs for branching programs and rectangles

	Proof of Theorem 1
	References


