
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 198–215
GSR: A global seek-optimizing real-time disk-scheduling algorithm

Hsung-Pin Chang a,*, Ray-I Chang b, Wei-Kuan Shih c, Ruei-Chuan Chang d

a Department of Computer Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan, ROC
b Institute of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, ROC

c Department of Computer Science, National Tsing Hau University, Hsinchu, Taiwan, ROC
d Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 22 August 2005; received in revised form 31 March 2006; accepted 31 March 2006
Available online 22 May 2006
Abstract

Earliest-deadline-first (EDF) is good for scheduling real-time tasks in order to meet timing constraint. However, it is not good enough
for scheduling real-time disk tasks to achieve high disk throughput. In contrast, although SCAN can maximize disk throughput, its
schedule results may violate real-time requirements. Thus, during the past few years, various approaches were proposed to combine
EDF and SCAN (e.g., SCAN-EDF and RG-SCAN) to resolve the real-time disk-scheduling problem. However, in previous schemes,
real-time tasks can only be rescheduled by SCAN within a local group. Such restriction limited the obtained data throughput. In this
paper, we proposed a new globally rescheduling scheme for real-time disk scheduling. First, we formulate the relations between the
EDF schedule and the SCAN schedule of input tasks as EDF-to-SCAN mapping (ESM). Then, on the basis of ESM, we propose a
new real-time disk-scheduling algorithm: globally seek-optimizing rescheduling (GSR) scheme. Different from previous approaches, a
task in GSR may be rescheduled to anywhere in the input schedule to optimize data throughput. Owing to such a globally rescheduling
characteristic, GSR obtains a higher disk throughput than previous approaches. Furthermore, we also extend the GSR to serve fairly
non-real-time tasks. Experiments show that given 15 real-time tasks, our data throughput is 1.1 times that of RG-SCAN. In addition,
in a mixed workload, compared with RG-SCAN, our GSR achieves over 7% improvement in data throughput and 33% improvement in
average response time.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Real-time disk scheduling; Disk scheduling; Operating systems
1. Introduction

Recent advancement in hardware technology and network communications has increased the popularity of data ser-
vices. In some applications, the data services must be provided with timing characteristics. For example, media data must
be accessed under real-time constraints to guarantee jitter-free playback. Furthermore, media data are often in large vol-
ume and consume significant disk bandwidth. As a result, performances of multimedia applications depend heavily on
the real-time disk-scheduling algorithm applied (Lougher and Shepherd, 1993; Steinmetz, 1995). A well-behaved real-time
disk scheduling should maximize data throughput while guaranteeing real-time constraints.

The earliest time at which a disk task can start is defined as its ready time (or release time). The latest time at which a
disk task must be completed is its deadline. The actual times at which a disk task is started and completed are its start-

time and fulfill-time, respectively. To meet timing constraints for real-time data services, each disk task must guarantee
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.03.045

* Corresponding author. Tel.: +886 4 22852106; fax: +886 4 22853869.
E-mail address: hpchang@cs.nchu.edu.tw (H.-P. Chang).

mailto:hpchang@cs.nchu.edu.tw

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 199
that its start-time scheduled is not earlier than its ready time achieved. Moreover, its fulfill-time scheduled is not later
than its deadline set (Stankovic and Buttazzo, 1995). Different from the conventional disk-scheduling problem, timing
constraints on accessing real-time data is crucial for supporting timing critical applications (Anderson et al., 1991,
1992; Chang et al., 1997). Although the well-known SCAN algorithm, which scans disk surface back and forth to retrieve
the data under disk head, has been proved as the best algorithm for maximizing disk throughput (Chen and Yang, 1992;
Chen et al., 1992), its output result may not meet timing constraint on scheduling real-time disk tasks. Therefore, real-
time data retrieved by SCAN may be meaningless and even harmful to systems (Gemmell et al., 1995; Gemmell and
Christodoulakis, 1992).

In contrast, earliest-deadline-first (EDF), which serves tasks in deadline order, is one of the best-known schemes for
scheduling real-time tasks (Liu and Layland, 1973; Lehoczky, 1990). However, EDF earns its optimization under the
assumption that tasks are independent. Nevertheless, in real-time disk scheduling, tasks are non-preemptive and inter-
dependent. Once a disk task is issued to a disk drive, its service cannot be interrupted. Moreover, for each disk task, its
service time depends not only on the location of the data block retrieved, but also on the location of the current disk head.
As a result, taking only deadlines into account without service time consideration, EDF incurs excessive seek-time costs
and results in poor disk throughput (Yee and Varaiya, 1991; Reddy and Wyllie, 1994). Actually, owing to the non-preemp-
tive property and the non-prespecified service time of disk tasks, it is very hard to optimize the schedule result of real-time
disk tasks. This problem has been proved to be NP-complete (Wong, 1980).

Previous studies have examined heuristic methods for combining the features of SCAN type of seek-optimizing algo-
rithms with EDF type of real-time scheduling algorithms. In 1993, Reddy and Wyllie proposed the SCAN-EDF method
that first sorts input tasks by the EDF order and, then reschedules tasks with the same deadlines by SCAN. Experiments
show that their obtained results depend highly on the probability of tasks that have the same deadlines. To increase the
probability of employing SCAN to reschedule tasks, DM-SCAN (deadline-modification-SCAN) and RG-SCAN (resched-
ulable-group-SCAN) are proposed to select automatically contiguous tasks that can be rescheduled by SCAN (Chang
et al., 1998, 2002). In other words, these contiguous tasks can be viewed as having the ‘‘same deadline’’ in SCAN-EDF.

However, previous approaches are locally seek-optimizing schemes; i.e., tasks can only be rescheduled by SCAN within a
local group. Note that, each group is a set of consecutive tasks that can be rescheduled by SCAN without missing their
respective timing constraints. For example, in SCAN-EDF, a group is made up of tasks having the same deadline. Simi-
larly, given a set of EDF tasks, DM-SCAN automatically selects groups of consecutive tasks and these groups are named
as MSGs (maximum-scannable-groups). RG-SCAN also has its own group definition and is called R-Group (reschedula-
ble-group). However, no matter in SCAN-EDF, DM-SCAN, or RG-SCAN, once a task belongs to a certain group, it can-
not be rescheduled to a different group; even though such a rescheduling derives a better performance. The detailed
operations of DM-SCAN and RG-SCAN with their proposed MSG and R-Group concepts are introduced in Section 2.

To resolve the drawback of previous approaches, we propose herein a globally seek-optimizing scheduling approach:
GSR (globally seek-optimizing rescheduling) scheme. First, a graph of EDF-to-SCAN mapping (ESM) is introduced to
explore relations between the EDF schedule and the SCAN schedule of input tasks. Given a set of real-time disk tasks,
schedule results of EDF and SCAN just denote two permutations of input tasks. By representing each task as a vertex
and connecting each task in the EDF schedule to the same task in the SCAN schedule with an edge, there is a bipartite
mapping; which is called ESM in this paper. On the basis of this ESM mapping, our algorithm then identifies scan-groups
where each scan-group contains the maximum number of contiguous tasks that are in the same SCAN direction (left-to-
right or right-to-left). Now, the input schedule can be viewed as a piecewise-SCAN schedule. After that, input tasks are
tested for being rescheduled into suitable scan-groups to achieve the highest improvement of disk throughput while guar-
anteeing real-time requirements. Thus, our scheme provides a good combination of the EDF scheme and the SCAN
scheme.

Note that, since there are at most n scan-groups where n is the number of input tasks, a naive algorithm will take O(n2)
time to decide the best reschedule result for the selected task. To speed up its computation, we introduce a concept of the
schedulable-region to each input task. With the help of the pre-computed schedulable-regions, the best-fit scan-group for
rescheduling each input task can be decided in O(n) time. In addition, we extend the GSR to serve mixed real-time/non-
real-time disk tasks such that non-real-time tasks can be served to minimize response time while guaranteeing the timing
constraints of real-time tasks. Compared with DM-SCAN, experiments show that our GSR algorithm can support over
11% data throughput improvement in a real-time system. Moreover, in a mixed workload, our GSR achieves over 7%
improvement compared with RG-SCAN scheme in data throughput and offers 33% improvement compared with RG-
SCAN in terms of average response time of non-real-time tasks.

The remainder of this paper is organized as follows. Section 2 gives mathematical definitions about real-time disk sched-
uling and shows some related work. The EDF-to-SCAN mapping and our proposed GSR algorithm are introduced in Sec-
tion 3. In Section 4, we present the definition of reschedulable region and proposed a speed-up method for scheduling.
Section 5 demonstrates how GSR is extended to efficiently serve mixed real-time/non-real-time disk tasks. Finally, Sections
6 and 7 show the experimental results and conclusion remarks, respectively.

200 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
2. Problem descriptions and related work

2.1. Real-time disk-scheduling problem

The problem input considered in this paper is a set of real-time disk tasks T = {T0,T1, . . . ,Tn} where n is the number of
tasks. The ith task is represented by Ti = (ri, di,ai, li,bi) where ri is its ready time, di is its deadline, ai is its track location, li is
its sector number and bi is its data size. While serving disk task Ti, the disk head needs to be moved from the current track
to the target track ai by a seek time cost. Then, a rotational latency is presented for the desired sector li rotated under the
disk head. Finally, data under disk head are retrieved with size bi by a transfer time. The first task T0 is assigned as a special
task to represent the initial location of disk head. Without loss of generality, it can be assumed to be at the outermost track
(track 0). Assume that the schedule sequence is TjTi (Ti is served after Tj). The service time of task Ti is calculated as,
cj;i ¼ seek timeðabsðai � ajÞÞ þ rotational latencyðliÞ þ transfer timeðbiÞ: ð1Þ

Clearly, the service time not only depends on the issued disk task itself, but is also related to the previous one. For example,
in a HP 97560 hard disk (Ruemmler and Wilkes, 1994), the seek time seek_timej,i with moving distance Dj,i = |aj � ai| can be
modeled by
seek timej;i ¼
3:24þ 0:4

ffiffiffiffiffiffiffi
Dj;i

p
; Dj;i 6 383;

8:00þ 0:008Dj;i; Dj;i > 383:

(
ð2Þ
Since Ti is a real-time task, the ready time ri and deadline di are used to characterize its timing constraint (Stankovic and
Buttazzo, 1995). Because disk service is non-preemptive, the related start-time and fulfill-time are ei = max{ri, fj} and
fi = ei + cj,i. A simple example T = {T0,T1,T2,T3} for demonstrating the terminology used in this paper is shown in Fig. 1.

A schedule result of real-time disk tasks T = {T0,T1, . . . ,Tn} is called feasible if all input tasks Ti, for i = 0 to n, satisfy
real-time requirements ri 6 ei and fi 6 di (Lehoczky, 1990; Stankovic and Buttazzo, 1995). To measure the efficiency of a
real-time disk scheduling algorithm, given a set of real-time disk tasks, the applied disk scheduling algorithm should serve
as many tasks as possible under tasks’ timing constraints. If the same number of tasks is feasibly served, the applied disk
scheduling algorithm needs to maximize data throughput.

To determine the data throughput improvement, we define schedule fulfill-time as the finish time it takes to serve all
input tasks according to their respective timing constraints. Clearly, this is the finish time of the latest task f(n). Since
the disk throughput is related to the inverse of schedule fulfill-time, thus, the problem objective to maximize disk through-
put can be redefined as to minimize schedule fulfill-time. In real-time disk scheduling, the system time required for serving
each task is determined by its schedule sequence (Peterson and Silberschatz, 1985). However, the schedule sequence of a
task depends on its service time required. Thus, it is hard to decide the optimal schedule result that maximizes the disk
throughput without violating real-time requirements.

2.2. Related work

Owing to the NP-complete feature, previous real-time disk scheduling algorithms thus apply heuristically the seek-opti-
mizing SCAN scheme to an EDF schedule for reducing the disk service time. For example, the well-known SCAN-EDF
scheme reschedules tasks having the same deadline in an EDF order to reduce service times of tasks. However, since only
request ri di ai bi cj,i i = 0 i = 1 i = 2 i = 3

T0 0 0 0 0 j = 0 - 3 5 6

T1 1 11 2 1 j = 1 3 - 3 4

T2 0 5 4 1 j = 2 5 3 - 2

T3 3 12 5 1 j = 3 6 4 2 -

r1

r3

r2

10

d0

d1

d3

d2

r0T0

T2

T3

T1

32 54 76 98 1110 1312

10 32 54

timedisk

Fig. 1. The terminology used for a simple example T = {T0,T1,T2,T3}. For simplicity, we ignore the rotational latency.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 201
tasks having the same deadline are seek-optimized, the reduction in schedule fulfill-time compared with EDF is not signif-
icant. To increase the probability of employing the SCAN scheme to reschedule input tasks, DM-SCAN (deadline-mod-
ification-SCAN) proposed the concept of maximum-scannable-group (MSG) (Chang et al., 1998). Given an EDF schedule,
consecutive tasks that can be rescheduled by SCAN without missing their respective timing constraints can be directly
derived by the concept of MSG. Given a set of real-time disk tasks with EDF-ordered T = T1T2. . .Tn, the MSG Gi starting
from Ti is defined as the sequential tasks Gi = TiTi+1Ti+2. . .Ti+m with each task Tk for k = i to i + m satisfies fk 6 di and
rk 6 si. However, DM-SCAN requires that the input tasks must be EDF-ordered. Therefore, they proposed a deadline-

modification scheme that transfers a non-EDF schedule into an EDF order by modifying tasks’ deadlines. Unfortunately,
in order to guarantee real-time constraints, the modified deadlines are earlier than the original ones. As a result, the dead-
line modification scheme causes a negative impact on the number of supported tasks by DM-SCAN.

To relieve from such a constraint, RG-SCAN (reschedulable-group-SCAN) is proposed with the concept of R-Group
(reschedulable group). Given a set of real-time disk tasks T = T1T2. . .Tn, the R-Group Gi starting from task Ti is defined as
the maximum number of consecutive tasks Gi = TiTi+1 . . . Ti+m with each task Tk for k = i to i + m satisfies following
criteria:
Fig. 2.
that th
fiþm 6 min
iþm

k¼i
fdkg and max

iþm

k¼i
frkg 6 si: ð3Þ
RG-SCAN also shows that after seek-optimizing tasks within an R-Group, it can obtain more data throughput while
guaranteeing real-time requirements.

However, previous approaches are locally seek-optimizing algorithms. SCAN scheme is only applied to a set of consec-

utive tasks. Thus, a task would only be rescheduled by SCAN within its own group. In other words, a task belonging to a
group i, say R-Group, cannot be rescheduled to another group j, since this would violate the constraints of Eq. (3) even if
such a rescheduling would derive a higher disk throughput. Therefore, in this paper, we propose a globally seek-optimizing
real-time disk-scheduling algorithm, GSR, to overcome the limitations of previous approaches. In GSR, a task belonging
to a group i would be ‘‘globally’’ rescheduled to another group j as long as the new rescheduled result obtains a higher data
throughput while guaranteeing real-time constraints.

3. GSR: Globally seek-optimizing rescheduling scheme

In this section, we present the design of our proposed GSR real-time disk-scheduling algorithm. Section 3.1 first shows
the construction scheme of EDF-to-SCAN mapping (ESM) graph to relate an EDF schedule to a SCAN schedule. Then, we
present the idea of scan-groups, which is derived from an ESM graph. On the basis of scan-groups, our proposed GSR
algorithm is described in Section 3.2.

3.1. EDF-to-SCAN mapping

As described in Section 1, although SCAN can maximize data throughput, its schedule result does not meet the timing
constraints of real-time tasks. In contrast, the EDF schedule is good for real-time requirements. However, its disk through-
put is low. Fig. 2 demonstrates the SCAN schedule and EDF schedule of the example shown in Fig. 1. In Fig. 2(a), the
0 1 2 3 4 5 6 7 8

SCAN = T0 T1 T2 T3

T1 T2 T3

9

d2

T2 miss deadline

(a)

(b)

10 11 12

10 11 12

T3 T2 T1

TEDF = T0 T2 T1 T3

t

0 1 2 3 4 5 6 7 8 9
t

For the example presented in Fig. 1, the schedule results obtained by (a) the SCAN approach and (b) the EDF approach are demonstrated. Note
e schedule result obtained by SCAN is not feasible.

202 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
SCAN schedule derives a shorter schedule fulfill-time but is not feasible. In contrast, the EDF schedule shown in Fig. 2(b)
owns a feasible result but results in a longer schedule-fulfill time. There is a tradeoff relation between these two extreme
schedule cases. It motivates us to construct a graph of EDF-to-SCAN mapping (ESM) to develop a new scheme for
real-time disk scheduling.

Given a set of real-time disk tasks T = {T0,T1, . . .,Tn}, their SCAN schedule is TSCAN = TS(0)TS(1). . .TS(n) with data
locations aS(0) 6 aS(1) 6 � � � 6 aS(n) where S(i), for i = 0 to n, is a permutation of indexes {0,1, . . .,n}. We can represent
TSCAN by an one-dimensional graph GSCAN = (VSCAN,ESCAN) where the vertex set VSCAN = T and the edge set
ESCAN = {(TS(i � 1), TS(i)) j for i = 1 to n}. The same idea can be applied to tasks’ EDF schedule TEDF = TE(0)TE(1). . .TE(n)

with deadlines dE(0) 6 dE(1) 6 � � � 6 dE(n) where E(i), for i = 0 to n, is also a permutation of indexes {0, 1, . . .,n}. The related
graph is GEDF = (VEDF,EEDF), where the vertex set VEDF = T and the edge set EEDF = {(TE(i � 1), TE(i)) | for i = 1 to n}.
Since VSCAN = VEDF = T, there is a bipartite mapping between GSCAN and GEDF.

Definition 1. [EDF-to-SCAN mapping (ESM)] EDF-to-SCAN mapping of real-time disk tasks T = {T0,T1, . . .,Tn} is a
bipartite graph GESM = (VESM,EESM) that satisfies (1) the vertex set VESM = VEDF [VSCAN, and (2) the edge set EESM =
{(TE(j), TS(i)) j for TE(j) 2 V EDF, TS(i) 2 VSCAN and TE(j) = TS(i)}.

Fig. 3(a) shows an example of ESM for the input tasks in Fig. 1. Using this mapping, we can investigate the possible
transformations from the real-time EDF schedule to the seek-optimized SCAN schedule to find a good real-time disk
schedule.

To mimic the behavior of the SCAN schedule, we first track the scan directions of tasks in the input schedule (EDF,
usually but not necessary) to decompose the input schedule into a sequence of scan-groups where each scan-group contains
the maximum number of contiguous tasks with the same SCAN direction. Therefore, the input schedule can be represented
by a piecewise-SCAN schedule. Given an input schedule T0T1T2. . .Tn, an O(n) algorithm to identify all these scan-groups is
shown as follows:

Algorithm 1 (Scan-groups identification (SGI))

/* INPUT: an EDF schedule T0T1T2. . .Tn. OUTPUT: a set of scan-groups. */
Initial the 1-st scan-group S1 = T0T1;
Initial direction = +1; /* from location a0 = 0 to location a1, where a0 6 a1 */
i = 1; /* the index of scan-group */
for k = 2 to n do begin /* for each task */
Fig. 3.
groups
if (ak�1 6 ak) then new_direction = +1;
else new_direction = �1;

if (direction = new_direction) then Si = Si + Tk; /* in the same scan-group */
else begin /* new scan-group */

i = i + 1;
TEDF = T0 T2 T1 T3

TSCAN = T0 T1 T2 T3

(a)

scan-groups

S2=T2T1

S1=T0T2

S3=T1T3

(b)

(a) The EDF-to-SCAN mapping (ESM) graph for the tasks presented in Fig. 1 is shown. (b) Based on this mapping graph, we can identify scan-
for the EDF schedule.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 203
Initial the ith scan-group Si = Tk�1Tk;
Initial direction = new_direction;

end /* else */
end /* for */

As the example shown in Fig. 3(b), by mapping the input EDF schedule T0T2T1T3 to the SCAN schedule T0T1T2T3, we
obtain a piecewise-SCAN schedule with three scan-groups S1 = T0T2, S2 = T2T1 and S3 = T1T3. It introduces a new point
of view for analyzing the relations between the input schedule and the SCAN schedule. Different heuristic methods can be
developed for real-time disk scheduling. For example, we may try to minimize the number of scan-groups or to maximize
the sizes of scan-groups under real-time requirements of such a piecewise-SCAN schedule. Since the more the tasks can be
seek-optimized, the more the disk throughput is obtained. In this paper, on the basis of ESM, an effective and efficient real-
time disk scheduling method GSR is proposed. Note that although the same idea can be employed to represent a SCAN
schedule by a piecewise-EDF schedule, its schedule result usually violates real-time requirements.

3.2. GSR algorithm

In this subsection, we describe our proposed GSR algorithm. Without loss of generality, we assume that the input is a
feasible TEDF schedule to meet basic timing constraints. Our algorithm then selects an input task according to the first-in-
first-serve (FIFS) order and tries to reschedule the selected task into the best-fit scan-group to maximize disk throughput
under real-time requirements. For example, given the input tasks shown in Fig. 1, we can improve disk throughput by
rescheduling task T3 into scan-group T0T2. The new scan-groups are S1 = T0T2T3 and S2 = T3T1, as shown in Fig. 4. Note
that, it reduces the number of scan-groups by 1 (S3 is removed) and increases the size of scan-group S1 from 2 to 3. In this
paper, a rescheduled result is accepted only when it is feasible and the disk throughput is improved. Considering the input
tasks shown in Fig. 4, T2 will miss its deadline if T1 is rescheduled into the scan-group T0T2. The rescheduled result
T0T1T2T3 is not acceptable as it violates real-time constraints. A detailed description of the proposed GSR algorithm is
illustrated as follows.

Algorithm 2 (GSR real-time disk-scheduling algorithm)

/*INPUT: an feasible EDF schedule T0T1T2. . .Tn. OUTPUT: an improved schedule result.*/
Identify all scan-groups {S1,S2, . . .} of input schedule T0T1T2. . .Tn;
for i = 2 to n do begin /* for all tasks Ti */
Fig. 4.
throug
Assume that Ti is in the jth scan-group Sj;
Initialize the index of scan-group tested by task Ti as p = j;
The initial value of the improvement of data throughput is Op = 0;
for q = j-1 down to 1 do begin /* test all scan-groups Sj */

Try to reschedule task Ti into scan-group Sq as a new schedule;
Compute the improvement of data throughput Oq after rescheduling;
if ((the new schedule is feasible) and (Op 6 Oq))

then the new index of the best-fit scan-group is p = q;
10 11 12

T1T2 T3

Tnew = T0 T2 T3 T1

0 1 2 3 4 5 6 7 8 9

t

For the example presented in Fig. 1, we can select a suitable task T3 and reschedule it into the suitable scan group T0T2 to improve the disk
hput.

Fig
Fo

204 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
end /* for */

if (Op > 0) then do begin
Reschedule Ti into Sp as the rescheduled result Tresch

Identify all scan-groups {S1,S2, . . .} of Tresch;
end /* if */

end /* for */
After identifying all scan-groups, GSR tries to reschedule each task into all scan-groups before its own scan-group and
to compute the improvement of data throughput of each rescheduling result. The one with the largest throughput improve-
ment while guaranteeing a feasible schedule is selected for rescheduling (the task is rescheduled from its own scan-group to
the new one.) Notably, the above algorithm assumes that the input schedule is feasible. However, even an infeasible input
schedule is given, GSR may still produce feasible output schedule, although it is not guaranteed.

Example 3.1. We show an example to clarify the GSR algorithm. Fig. 5 shows a set of five tasks with their timing
attributes, track numbers, and the requested data size. T0 is added as a special task to represent the initial location of the
disk head and is assumed to be at track 0.

(1) Suppose that the input schedule is EDF-ordered and TEDF = T0T2T1T3T4T5. After applying Algorithm 1, we have
three scan groups: S1 = T0T2, S2 = T2T1, and S3 = T3T4T5. Furthermore, from Fig. 5, the schedule fulfill time of
TEDF = 19.

(2) i = 2: since T1 is in scan-group S2, thus p = j = 2, Op = 0.
[1] q = 1, reschedule T1 into scan-group S1 and the new schedule Tnew = T0T1T2T3T4T5. The schedule fulfill time of

Tnew = 16. Since the new schedule is feasible and Oq = 21%. > 0, thus p = 1. GSR has found a new reschedule

result which is better than the input schedule.

[2] Since Op. = 21% > 0, the new schedule Tresch = T0T1T2T3T4T5. Furthermore, the new scan groups of Tresch:
S1 = T0T1T2T3, S2 = T3T4, and S3 = T4T5.
(3) i = 3: since T3 is in scan-group S1, thus p = j = 1, Op = 0 Because q = 0 < 1, the second for loop is not executed.
(4) i = 4: since T4 is in scan-group S2, thus p = j = 2, Op = 0.

[1] q = 1, reschedule T4 into scan-group S1 and the new schedule Tnew = T0T1T4T2T3T5. The schedule fulfill time of
Tnew = 13. However, the new schedule is infeasible since f2 (=8) > d2 (=6). Actually, the Tnew schedule is SCAN-
ordered. Although it obtains the largest data throughput, however, it violates tasks’ timing constraints and is not
acceptable.
(5) i = 5: since T5 is in scan-group S3, thus p = j = 3, Op = 0.
[1] q = 2, reschedule T5 into scan-group S2 and the new schedule Tnew = T0T1T2T4T3T5. The schedule fulfill time of

Tnew = 14. Since the new schedule is feasible and Oq = 12.5%. > 0, thus p = 2. GSR has found a new reschedule

result which is better than the previous reschedule result.

[2] q = 1, reschedule T5 into scan-group S1 and the new schedule Tnew = T0T1T2T4T3T5. The schedule fulfill time of
Tnew = 15. The new schedule is feasible and Oq = 6.25% > 0. However, Oq < Op, Thus, p is not updated.

[3] Since Op. = 12.5% > 0, the new schedule Tresch = T0T1T2T4T3T5. Furthermore, the new scan groups of Tresch:
S1 = T0T1T2, S2 = T2T4, and S3 = T4T3T5.
From Example 3.1, the input schedule has its schedule fulfill time as 19. After the completion of Algorithm 2, GSR
derives a reschedule result that has a schedule fulfill time of 15. As a result, compared with the input schedule, the data
throughput of the new reschedule has an improvement of 21% compared to the original input schedule.
task ri di ai bi cj,i i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

T0 0 0 0 0 j = 0 - 3 5 6 4 7

T1 1 11 2 1 j = 1 3 - 3 4 2 5

T2 0 7 4 1 j = 2 5 3 - 2 2 3

T3 3 12 5 1 j = 3 6 4 2 - 3 2

T4 3 14 3 1 j = 4 4 2 2 3 - 4

T5 4 15 6 1 j = 5 7 5 3 2 4 -

. 5. The four tuple (ri,di,ai,bi) of a set of five tasks used in Example 3.1. Furthermore, we also shows cj,i for all combination of schedule sequence TjTi.
r simplicity, we ignore the rotational latency.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 205
4. Speed-up method

However, in Algorithm 2, when rescheduling a task into a tested scan-group, a native algorithm will take O(n) time to
verify the feasibility of rescheduled result and to measure the improvement of data throughput. Since there are at most n

scan-groups to be tested, it totally takes O(n2) time to decide the best-fit scan-group for each task. To accelerate the testing
process, in this paper, we further introduce the schedulable-region concept to reduce the time complexity from O(n2) to
O(n).

In this section, we show how to speed up the testing process by the concept of schedulable-region. Section 4.1 should first
introduce the definition of schedulable-region. After that, a fast algorithm involving the schedulable-region is presented in
Section 4.2.
4.1. Schedulable-region

Before defining the schedulable-region, for each task Tk in the input schedule T0T1. . .Tn, we first introduce the minimal
schedulable fulfill-time f L

k , the minimal schedulable start-time eL
k , the maximal schedulable fulfill-time f R

k and the maximal

schedulable start-time eR
k . The superscripts ‘‘L’’ and ‘‘R’’ represent ‘‘Left-most’’ and ‘‘Right-most’’, respectively.

Definition 2. [Minimal schedulable start-time/fulfill-time] For each task in the input schedule, the minimal schedulable start-
time/fulfill-time is the earliest (Left-most) start-time/fulfill-time to serve the task without violating real-time requirements.

Given eL
0 ¼ f L

0 ¼ 0 to represent the initial disk head by T0 = (0, 0,0,0,0), the minimal schedulable start-time eL
k and the

minimal schedulable fulfill-time f L
k of task Tk, for k = 1 to n, can be computed by the aggressive scheduling scheme (Chang

et al., 1997) as follows:
eL
k ¼ maxfrk; f L

k�1g;
f L

k ¼ eL
k þ ck�1;k:

ð4Þ
Obviously, the start-time eL
k and fulfill-time f L

k obtained are minimized to serve task Tk as early as possible under a feasible
schedule sequence T0T1. . .Tn. (The real-time requirements f L

k 6 dk, for k = 1 to n, are guaranteed.) According to the sim-
ilar idea, we can define the maximal schedulable start-time and fulfill-time as follows.

Definition 3. [Maximal schedulable start-time/fulfill-time] For each task in an input schedule, the maximal schedulable
start-time/fulfill-time is the latest (Right-most) start-time/fulfill-time for serving the task without violating real-time
requirements.

According to the above definition, tasks are served as late as possible under a feasible schedule sequence T0T1. . .Tn. To
guarantee a feasible schedule, for the last task Tn, its maximal schedulable fulfill-time is its deadline, i.e., f R

n ¼ dn. Then, its
maximal schedulable start-time can be decided by eR

n ¼ f R
n � cn�1;n ¼ dn � cn�1;n. Using the same method, the maximal

schedulable start-time and fulfill-time of task Tk, for k = n � 1 down to 0, can be computed by the lazy scheduling scheme
(Chang et al., 1997) as follows:
f R
k ¼ minfdk; eR

kþ1g;
eR

k ¼ f R
k � ck�1;k;

ð5Þ
where the service time c�1,0 is assigned as 0. From Eqs. (4) and (5), f L
k � eL

k ¼ f R
k � eR

k ¼ ck�1;k. Furthermore, we can prove
that eL

k 6 eR
k , f L

k 6 f R
k .

Lemma 1. By the definition of eL
k , eR

k , f L
k , f R

k from Eqs. (4) and (5), we have eL
k 6 eR

k , f L
k 6 f R

k .

Proof. We prove it by the induction scheme.

(1) When k = 1, eL
1 ¼ maxfr1; f L

0 g ¼ r1 (since f L
0 ¼ 0). Thus, f L

1 ¼ eL
1 þ c0;1 ¼ r1 þ c0;1: In order to guarantee a feasible

schedule, r1 + c0,1 must be smaller than or equal to d1. Thus
f L
1 ¼ r1 þ c0;1 6 d1: ð6Þ
From Eq. (5), f R
1 ¼ minfd1; eR

2 g, we discuss it in the following two cases.
(a) Suppose d1 6 eR

2 ; then, f R
1 ¼ d1. Thus, from Eq. (6),
f L
1 ¼ r1 þ c0;1 6 d1 ¼ f R

1 : ð7Þ

206 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
From Eqs. (5) and (6), eR
1 ¼ f R

1 � c0;1 ¼ d1 � c0;1. To guarantee a feasible schedule, d1 � c0,1 must be larger than or
equal to r1. Thus,
eR
1 ¼ f R

1 � c0;1 ¼ d1 � c0;1 P r1 ¼ eL
1 : ð8Þ
From Eqs. (7) and (8), we have eL
1 6 eR

1 , f L
1 6 f R

1 .
(b) Suppose eR

2 6 d1, then, f R
1 ¼ eR

2 . The proof can be derived in the same way as the proof in (a)
From (a) and (b), we derive that when k = 1, we have eL

1 6 eR
1 , f L

1 6f R
1 .

(2) Suppose when k = n, we have eL
k 6 eR

k , f L
k 6 f R

k . Then, when k = n + 1, we can prove that eL
kþ1 6 eR

kþ1, f L
kþ1 6 f R

kþ1 in
the same way as the proof in (1). As a result, from (1) and (2), we prove that eL

k 6 eR
k , f L

k 6 f R
k . h

After the definition of minimal schedulable start-time/fulfill-time and minimal schedulable start-time/fulfill-time, an
arbitrary schedulable-region Ri,j, for 0 6 i 6 j 6 n, can be defined as follows.

Definition 4. [Schedulable-region] For a set of contiguous tasks TiTi+1. . .Tj in the input schedule T0T1. . .Tn, the
schedulable-region Ri,j is the time region that TiTi+1. . .Tj can be served without violating real-time requirements.

From the definitions of the minimal/maximal schedulable start-time/fulfill-time, the schedulable-region of tasks
TiTi+1. . .Tj is from the minimal schedulable start-time eL

i of the first task Ti to the maximal schedulable fulfill-time f R
j

of the last task Tj. It is denoted as Ri;j ¼ ½eL
i ; f

R
j �.

4.2. A fast algorithm

Assume that the task Tx (0 < x 6 n) of input schedule T = T0T1. . .Tn is selected for rescheduling. To record T’s schedule
fulfill-time, we add a null task Tn+1 with rn+1 = 0 and dnþ1 ¼ f L

n to the end of schedule. The service time ci,n+1 = 0 for all i.
Removing the selected task Tx from the input schedule, the new schedule is TA = TA(0)TA(1). . .TA(n) = T0T1. . .Tx�1

Tx+1. . .Tn+1. By applying Eqs. (4) and (5), we can pre-compute the minimal schedulable fulfill-time f L
AðjÞ and the maximal

schedulable fulfill-time f R
AðjÞ, for j = 0 to n, in O(n) time. Note that the schedulable-region of TA = TA(0)TA(1). . .TA(n), i.e.,

RA(0),A(n) should be upper bounded by the original schedule fulfill-time f L
n . That is, the schedulable-region

RAð0Þ;AðnÞ ¼ ½0; f R
AðnÞ ¼ f L

n �. As shown in Section 3.2, the GSR tries to reschedule task Tx into different scan-groups. Assume
that Tx is rescheduled into a scan-group and is served before TA(k). The new start-time and fulfill-time of task Ti, for i = 0
to n + 1, in the new rescheduled result TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) are denoted as eAðkÞ

i and f AðkÞ
i , respectively. Since

the original schedulable region RA(k),A(k) is known and the new schedulable region of TxTA(k) can be decided in O(1) time,
the feasibility of rescheduled result can be verified in O(1) time.

Theorem 1. By applying the pre-computed minimal schedulable fulfill-time f L
AðjÞ and maximal schedulable fulfill-time f R

AðjÞ (for

j = 0 to n) for input schedule TA(0)TA(1). . .TA(n), the feasibility of schedule TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) can be verified

in O(1) time.

Proof. Divide the rescheduled result into three sub-schedules: TA(0)TA(1). . .TA(k�1),TxTA(k) and TA(k+1)TA(k+2). . .TA(n).

(a) We can serve sub-schedule TA(0)TA(1). . .TA(k�1) by the aggressive scheduling scheme as shown in Eq. (3). Since
TA(0)TA(1) . . . TA(k�1) = T0T1. . .Tk�1, the start-time and the fulfill-time are eAðkÞ

AðiÞ ¼ eL
j and f AðkÞ

AðjÞ ¼ f L
i , respectively

for j = 0 to k � 1. The feasibility of sub-schedule T Að0ÞT Að1Þ . . . T Aðk�1Þ ðf AðkÞ
AðjÞ ¼ f L

j 6 dAðjÞ ¼ dj for j = 0 to k � 1) is
guaranteed.

(b) In schedule sequence TxTA(k), we can compute the minimal schedulable fulfill-time f AðkÞ
x and f AðkÞ

AðkÞ as follows:
f AðkÞ
x ¼ eAðkÞ

x þ cAðk�1Þ;x ¼ maxfrx; f L
Aðk�1Þg þ cAðk�1Þ;x ð9Þ

f AðkÞ
AðkÞ ¼ eAðkÞ

AðkÞ þ cx;AðkÞ ¼ maxfrAðkÞ; f AðkÞ
x g þ cx;AðkÞ ¼ maxfrAðkÞ;maxfrx; f L

Aðk�1Þg þ cAðk�1Þ;xg þ cx;AðkÞ: ð10Þ
Since f L
Aðk�1Þ is pre-computed, real-time requirements f AðkÞ

x 6 dx and f AðkÞ
AðkÞ 6 dAðkÞ can be verified in O(1) time.

(c) From the definition of schedulable-region, real-time requirements ðf AðkÞ
AðjÞ 6 dAðjÞ for j ¼ k þ 1 to nÞ of the remainder

schedule TA(k+1)TA(k+2). . .TA(n) is guaranteed if f AðkÞ
AðkÞ 6 f R

AðkÞ. Since f R
AðkÞ is pre-computed and f AðkÞ

AðkÞ can be computed

from Eq. (10), the feasibility of sub-schedule TA(k+1)TA(k+2). . .TA(n) can be verified in O(1) time.

(d) According to the pre-computed f L
AðjÞ and f R

AðjÞ (for j = 0 to n), the feasibility of rescheduled result
TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) can be verified in O(1) time. h

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 207
Fig. 6 shows an example for demonstrating the schedulable-region concept (input schedule is T0T2T1T3 as shown in
Fig. 1). The null taskT4 is added to the end of schedule. Assume that task T3 is selected and removed from input schedule
for rescheduling. Using our algorithm, we can reschedule task T3 into the front of T1.

Note that, in the proposed GSR algorithm, tasks are selected and rescheduled into the best-fit scan-groups to minimize
the schedule fulfill-time under real-time requirements. We need to calculate not only the feasibility, but also the schedule

fulfill-time of rescheduled result (to determine if the new rescheduled result obtains a better data throughput than other
schedules). Assume that the rescheduled result is TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) as described above. The improvement
of schedule fulfill-time vAðkÞ

AðnÞ can be calculated in O(1) time.

Theorem 2. With the pre-computed W AðiÞ ¼
Piþ1

j¼nðeR
AðjÞ � f R

Aðj�1ÞÞ and V AðiÞ ¼ minfðeR
AðjÞ � f R

Aðj�1Þ þ W AðjÞÞ; for j = n to i + 1},

for i = 0 to n, the improvement of schedule fulfill-time vAðkÞ
AðnÞ for the rescheduled result TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) can

be computed by vAðkÞ
AðnÞ ¼ minfV AðkÞ; f R

AðkÞ � f AðkÞ
AðkÞ þ W AðkÞg in O(1) time.

Proof. Divide this rescheduled result TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) into three sub-schedules: TA(0)TA(1). . .TA(k�1),
TxTA(k) and TA(k+1)TA(k+2). . .TA(n).

(a) Since the first sub-schedule TA(0)TA(1). . .TA(k�1) = T0T1. . .Tk�1 is not changed, we have eAðkÞ
AðiÞ ¼ eL

i and f AðkÞ
AðiÞ ¼ f L

i for
i = 0 to k � 1.

(b) Define the improvement of schedule fulfill-time for sub-schedule TA(0)TA(1). . .TA(i) as vAðkÞ
AðiÞ ¼ f R

AðiÞ � f AðkÞ
AðiÞ . In sub-sche-

dule TxTA(k), the fulfill-time f AðkÞ
AðkÞ can be computed by Eq. (10). The improvement in schedule fulfill-time
Fig. 6.
region
vAðkÞ
AðkÞ ¼ f R

AðkÞ � f AðkÞ
AðkÞ ð11Þ
is obtained in O(1) time.
(c) As shown in Fig. 7, for task TA(i) in the remainder sub-schedule TA(k+1)TA(k+2). . .TA(n), the improvement in schedule

fulfill-time vAðkÞ
AðiÞ (for i = k + 1 to n) can be computed by
vAðkÞ
AðiÞ ¼ minfuAðiÞ; v

AðkÞ
Aði�1Þ þ wAðiÞg ð12Þ
where the parameters uAðiÞ ¼ eR
AðiÞ � rAðiÞ and wAðiÞ ¼ eR

AðiÞ � f R
Aði�1Þ denote the upper bound and the lower bound of

improvement vAðkÞ
AðiÞ , respectively.

(d) The improvement in schedule fulfill-time vAðkÞ
AðnÞ for an arbitrary task TA(k) can be defined as the following recursive

function.
vAðkÞ
AðnÞ ¼

minfuAðnÞ; v
AðkÞ
Aðn�1Þ þ wAðnÞg if ðn > kÞ

f R
AðnÞ � f AðkÞ

AðnÞ if ðn ¼ kÞ

8<
: ð13Þ
T2 T1

T3

Identify schedulable-regions

T2

T1

T2
T1

T4

T4

Serve T2T3T1 in time region R2,1

time 0 1 2 3 4 5 6 7 8 9 10 11 12

d2 d1 d3Input Schedule d0

T0T2T1T3

Remove the selected request T3

Add the last null request T4

Insert request T3 into scan-group T0T2

Rescheduled Result

T0 T2T3T1

R2,1

T2

T3 T1

A simple example to demonstrate the schedulable-region concept. Task T3 can be served before task T1 if T2T3T1 can be served in the schedulable-
R2,1.

rA(i) eR
A(i)

vA(k)
A(i) = vA(k)

A(i-1) + wA(i)

vA(k)
A(i-1)

f R
A(i-1)

vA(k)
A(i) = uA(i)

wA(i) = eR
A(i) - f R

A(i-1)

uA(i) = eR
A(i) - rA(i)

rA(i) eR
A(i)

f R
A(i-1) vA(k)

A(i-1)

rA(i) eR
A(i)

f R
A(i-1)

Fig. 7. A simple example to illustrate the recursive relation between the improvement vAðkÞ
Aði�1Þ and the improvement vAðkÞ

AðiÞ . The upper bound and lower bound
of the related improvement are shown.

208 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
Define W AðiÞ ¼
Piþ1

j¼nwAðjÞ, UA(i) = uA(i) + WA(i) and VA(i) = min{UA(n), UA(n�1), . . .,UA(i+1)} for i = 0 to n. The above
recursive function can be rewritten as follows:
vAðkÞ
AðnÞ ¼ minfuAðnÞ; vAðkÞ

Aðn�1Þ þ wAðnÞg ¼ minfuAðnÞ;minfuAðn�1Þ; v
AðkÞ
Aðn�2Þ þ wAðn�1Þg þ wAðnÞg

¼ minfuAðnÞ; uAðn�1Þ þ wAðnÞ; v
AðkÞ
Aðn�2Þ þ wAðn�1Þ þ wAðnÞg

¼ minfuAðnÞ; uAðn�1Þ þ W Aðn�1Þ; . . . ; uAðkþ1Þ þ W Aðkþ1Þ; v
AðkÞ
AðkÞ þ W AðkÞg

¼ minfU AðnÞ;U Aðn�1Þ; . . . ;UAðkþ1Þ; v
AðkÞ
AðkÞ þ W AðkÞg ¼ minfminfU AðnÞ;U Aðn�1Þ; . . . ;U Aðkþ1Þg; vAðkÞ

AðkÞ þ W AðkÞg

¼ minfV AðkÞ; f R
AðkÞ � f AðkÞ

AðkÞ þ W AðkÞg: ð14Þ
(e) With the pre-computed WA(i) and VA(i) (for i = 0 to n), the improvement in schedule fulfill-time vAðkÞ
AðnÞ for an arbitrary

task TA(k) can be obtained in O(1) time. h
As there are at most n scan-groups to be considered, thus, the GSR takes O(n) time to find out the best rescheduled
result TA(0)TA(1). . .TA(y�1)TxTA(y). . .TA(n) that satisfies vAðyÞ

AðnÞ ¼ maxfvAðkÞ
AðnÞ, for serving Tx before tasks TA(y) in different

scan-groups}.
5. Supporting non-real-time tasks

In a real-time system, although most disk accesses are timing critical, there are still a few disk tasks for non-real-time
data access. For example, in a Video-on-Demand (VoD) system, users may first browse the archive to select the desired
video. After that, a continuous real-time retrieval of selected video should be guaranteed by the applied real-time disk-
scheduling scheme for jitter-free playback. Although the non-real-time browsing task has no deadline constraints, reason-
able response time should be offered to provide a comfortable service to users. Of course, such a reasonable response must
be offered under the timing requirements of real-time tasks.

Intuitively, non-real-time tasks would be served after the completion of all real-time tasks. However, such an approach
would cause an undesired large response time and at worst, be starved of service to non-real-time tasks. Assume that
T0T1. . .Tn is the original schedule and Tn+1 is a newly added non-real-time task. Another naive approach would set the
ready time rn+1 = 0 and the deadline dn+1 =1, thus, non-real-time task Tn+1 can be viewed as a real-time task and sched-
uled by previous real-time scheduling algorithms. For example, as shown in Fig. 8, the non-real-time task will be placed at
SCAN-EDF

non-real-time tasks

RG-SCAN

non-real-time tasks

input schedule

input schedule

Fig. 8. Non-real-time tasks can only be rescheduled with the last task or the last scan-group in SCAN-EDF and RG-SCAN.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 209
the end of input schedule and rescheduled with the last task (by SCAN-EDF) or the last R-Group (by RG-SCAN). Nev-
ertheless, such an approach still results in an undesired long response time. Although we may assign an earliest deadline to
the non-real-time task, the choice of a proper deadline is not easy.

In this paper, we extend the GSR algorithm described in Section 3.2 to serve fairly non-real-time tasks. Let
TA(0)TA(1). . .TA(n) = T0T1. . .Tn be the schedule of real-time tasks. The non-real-time task Tn+1, just as Ti described in Algo-
rithm 2, is selected from the task queue for rescheduling into one of the scan-groups. Note that, as our previous algorithm
is designed to maximize disk throughput, the best-fit scan-group is selected for rescheduling. As a result, Ti = Tn+1 will not
be served as soon as possible. However, for serving non-real-time tasks, the response time should be minimized. Conse-
quently, for each non-real-time task, we try to reschedule it into its first-fit scan-group. To serve Tn+1 as soon as possible,
the schedulable-region of TA(0)TA(1). . .TA(n) should be upper bounded by the deadline dn of the last task Tn (it is upper
bounded by f L

n in Algorithm 2). Moreover, it is not necessary to add a null task with deadline f L
n to the end of input sche-

dule. By applying similar operation steps in Algorithm 2, we try to reschedule non-real-time task Tx (=Tn+1) into the first-

fit scan-group Sk (it may not be the best-fit one in terms of maximizing data throughput). The index k is as small as possible
to offer non-real-time task Tx a short response time without causing the real-time tasks to violate their timing requirements.

As shown in the proposed fast algorithm, after pre-computing some problem parameters WA(i) and VA(i) (for i = 0 to n),
the feasibility for serving each rescheduled result TA(0)TA(1). . .TA(k�1)TxTA(k). . .TA(n) can be verified in constant time. It
takes a total of O(n) time to decide the best schedule result that serves fairly non-real-time tasks without violating timing
requirements of the original schedule. Its time complexity is the same as that of conventional methods.

6. Experimental results

In this section, the experimental results of our proposed GSR algorithm are compared with those of previous
approaches. Table 1 shows the important parameters of HP 97560, which is used as the disk model in our experiments
(Reddy and Wyllie, 1993). The seek time cost is defined in Eq. (2). The rotational latency is assumed half of the time of
a full track revolution. Each real-time task is assumed to request for a track of data (36 KB in HP 97560). Ready times
of tasks are uniformly distributed among 0 and 240 ms. The related deadline is the summation of its ready time and a per-
iod time that varies from 120 to 480 ms. Non-real-time tasks are assumed to arrive with a Poisson distribution. The mean
inter-arrival time between each non-real-time task is described in the related experiments. The queuing principle for non-
real-time tasks is followed by FIFO order for its simplicity and fairness. The size of data accessed by each non-real-time
task is assumed to be 4 KB. The workloads of both real-time and non-real-time tasks are uniformly distributed over the
disk surface. In all following experiments, 100 experiments are conducted with different seeds for random number gener-
ation and the average value is used for performance evaluation.

6.1. Number of supported tasks

The number of tasks supported is one of the most important factors in measuring performance of a real-time disk sched-
uling algorithm. In Table 2, we summarize the minimum, the maximum and the average number of real-time disk tasks that
can be supported by different methods, such as GSR, RG-SCAN, and SCAN-EDF. For fair comparison, we apply the
same one hundred test examples to different test methods. In each test example, a set of 30 real-time disk tasks are given
and the number of feasibly completed tasks is counted.

According to the experimental results, our GSR method can support more tasks than conventional schemes. In average,
the number of tasks supported by our method is larger than the conventional SCAN-EDF method with 50% improve-
ments. Comparing to RG-SCAN, our method shows around 10% improvements. Notably, based on the above
experiments, test examples that are not schedulable for conventional method can be successfully scheduled by our GSR
method. This is because GSR scheme is a global seek-optimizing algorithm. As a result, compared to previous local
Table 1
Disk parameters of HP 97560

No. of cylinders per disk 1972
No. of tracks per cylinder 19
No. of sectors per track 72
Sector size 512 bytes
Seek time function (ms)

SeekðdÞ ¼ 3:24þ 0:4
ffiffiffi
d
p

; d 6 383

8:00þ 0:008d; d > 383

(

Revolution speed 4002 RPM
Transfer time 10 MBps

Table 2
The minimal, maximal, and average number of supported real-time tasks under different scheduling policies

Algorithms Number of supported tasks

Minimum Maximum Average

GSR 18 28 23
RG-SCAN 18 27 21
SCAN-EDF 14 23 15

210 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
seek-optimizing schemes, input tasks’ services times are further reduced after rescheduling and thus more tasks can
be served before their deadlines. In other words, the further reduction of tasks’ service times prompts more tasks to be
served.

6.2. Improvement of disk throughput

Note that, if the same input tasks are given, a well-behaved real-time disk-scheduling algorithm should finish the sche-
dule as quickly as possible to maximize data throughput. In this paper, test workloads with different numbers of input tasks
are employed to measure the disk throughput obtained under different disk-scheduling schemes. To compare the results
with SCAN-EDF, we let the test workloads to be feasibly scheduled by the EDF method. The result is shown in Fig. 9.
Note that the improvement in data throughput is compared with achieved by SCAN-EDF. Experiments show that the data
throughput obtained by our GSR method is always better than that obtained by SCAN-EDF and DM-SCAN, regardless
of the problem size of test workload. Table 3 summarizes the minimum, the maximum, the average schedule fulfill-time,
and the improvement in data throughput obtained under 15 input real-time tasks for detailed comparisons. Table 3 shows
that the data throughput achieved by GSR is 1.1 times that of RG-SCAN’s. Table 4 presents the same performance metric
but assumes 20 input real-time tasks. Likewise, our GSR scheme achieves 11% improvement when compared with the RG-
SCAN scheme. As stated in Section 2, previous schemes are locally seek-optimizing scheme; a task can only be rescheduled
to the locally best position (within a limited group) in terms of data throughput improvement. In contrast, GSR is a glob-
ally rescheduling scheme; that is, a task is rescheduled to the globally best position. As a result, the further reduction in
service time of tasks promotes a higher disk throughput achieved by the GSR scheme.
0

5

10

15

20

25

30

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Real-Time Tasks

Im
pr

ov
em

en
t (

%
)

DM_SCAN RG_SCAN GSR

Fig. 9. The data throughput improvement of various real-time disk scheduling algorithm under different number of input real-time tasks.

Table 3
Given 15 real-time tasks, the minimum, maximum, average schedule fulfill-time, and the obtained data throughput improvement of different disk
scheduling approaches

Algorithms Schedule fulfill-time (ms)

Minimum (ms) Maximum (ms) Average (ms) Improvement (%)

GSR 139.23 207.58 172.46 22.60
RG-SCAN 146.34 261.64 189.35 15.02
DM-SCAN 154.44 261.64 191.98 13.84
SCAN-EDF 173.73 283.82 222.82 �0

Table 4
Given 20 real-time tasks, the minimum, maximum, average schedule fulfill-time, and the obtained data throughput improvement of different disk
scheduling approaches

Algorithms Schedule fulfill-time (ms)

Minimum (ms) Maximum (ms) Average (ms) Improvement (%)

GSR 180.75 277.47 221.31 23.91
RG-SCAN 195.15 318.54 248.90 14.43
DM-SCAN 195.15 318.54 254.88 12.37
SCAN-EDF 236.52 338.36 290.86 �0

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 211
Furthermore, we present the data throughput improvement under a mixed workload. In RG-SCAN, they also extend
their algorithm to serve fairly non-real-time tasks. Thus, we compare our performance result with that obtained by RG-
SCAN scheme. Assume that the mean inter-arrival time of non-real-time tasks is 10.1 ms. Fig. 10 shows the data through-
put improvement under different scheduling schemes while each input problem size consists of a number of real-time tasks
and three non-real-time tasks. For example, the bar under 10 real-time tasks actually consists of 10 real-time tasks and
three non-real-time tasks. As stated before, lots of systems may consist of a mixed workload that has both real-time
and non-real-time traffics. Thus, the applied disk-scheduling scheme should maximize the disk throughput under guar-
anteed real-time constraints while minimizing the response time to non-real-time tasks. As seen in Fig. 10, the data
throughput improvement of GSR still outperforms the conventional schemes in a mixed environment. For example, given
15 real-time tasks and three non-real-time tasks, our data throughput is 1.1 times that of RG-SCAN’s. Note that, we will
show the effectiveness of our scheme concerning the performance of non-real-time tasks in Section 6.3. Fig. 11 shows the
same performance metrics but each problem size consists of five non-real-time disk tasks.
0

2

4

6

8

10

12

14

16

18

20

10 11 12 13 14 15 16 17 18 19 20
Number of Real-Time Tasks

Im
pr

ov
em

en
t (

%
)

RG_SCAN GSR

Fig. 10. Given three non-real-time tasks, the data throughput improvement of GSR and RG-SCAN under different number of input real-time tasks.

0

2

4

6

8

10

12

14

10 11 12 13 14 15 16 17 18 19 20

Number of Real-Time Tasks

Im
pr

ov
em

en
t (

%
)

DM_SCAN RG_SCAN GSR

Fig. 11. Given five non-real-time tasks, the data throughput improvement of GSR and RG-SCAN under different number of input real-time tasks.

212 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
6.3. Response time of non-real-time task

A real system would consist of a mixed workload and require serving both real-time and non-real-time tasks. As a result,
given a real-time schedule and a number of non-real-time tasks, the original real-time schedule should be adjusted to serve
fairly the non-real-time tasks but without violating timing constraints. For a non-real-time task, the response time that
counts the difference between its fulfill-time and its ready-time plays an important factor for measuring the effectiveness
of a disk-scheduling algorithm. Given 10 real-time tasks, Fig. 12 shows the average response time obtained by GSR
and RG-SCAN under different number of non-real-time tasks. The mean inter-arrival time of non-real-time tasks is
assumed to be 10.1 ms, which saturates the queue of non-real-time task to avoid the occurrence of an empty queue. To
show the effectiveness of our scheme in supporting the non-real-time tasks under different non-real-time task workload,
Figs. 13 and 14 show the same performance metric but the mean inter-arrival time of each non-real-time task is set to
5.1 and 20.1 ms, respectively. Figs. 15–17 also show the experimental results but the problem size consists of 20 real-time
tasks.

As stated in Section 2, RG-SCAN partitions the input tasks into a set of R-Groups. After rescheduling tasks by the seek-
optimizing SCAN scheme within an R-Group, the finish-time of the R-Group is improved. As a result, a slack is derived
between the advanced finish-time and the original one. RG-SCAN thus uses this slack to serve non-real-time tasks. If the
slack derived in an R-Group is not large enough to sustain the execution of a non-real-time task, RG-SCAN continue to
identify the next R-Group and the derived slack is added to the previous one and so on, until the non-real-time task can be
served. In other words, in RG-SCAN, a non-real-time task is served after the real-time tasks until an enough slack is
encountered. In contrast, the GSR treats non-real-time tasks with the same manner of the real-time task but uses the
best-fit selection scheme and without real-time requirements. Thus, a non-real-time task in GSR is served in its earliest pos-
sible point as long as the schedule result is feasible. In addition, as shown in Section 6.1, owing to the superiority of our
0

10

20

30

40

50

60

70

80

90

100

3 4 5 6

Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 12. Mean inter arrival time = 10.1, given 10 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

0

10

20

30

40

50

60

70

80

90

3 4 5 6

Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 13. Mean inter arrival time = 5.1, given 10 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

0

10

20

30

40

50

60

70

80

3 4 5 6

Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 14. Mean inter arrival time = 20.1, given 10 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

0

20

40

60

80

100

120

3 4 5 6
Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 15. Mean inter arrival time = 10.1, given 20 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6

Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 16. Mean inter arrival time = 5.1, given 20 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 213
proposed GSR scheme in serving real-time tasks, real-time tasks are served more quickly than by the RG-SCAN scheme.
As a result, in a mixed workload, a non-real-time task can also be quickly served by the GSR scheme since real-time tasks
ahead of it are soon finished. Consequently, by adapting the best-fit selection scheme to the first-fit selection criterion for
non-real-time tasks and the superiority in serving real-time tasks, our proposed GSR scheme offers a shorter response time
than RG-SCAN for serving non-real-time tasks.

Table 5 summarizes the minimum, maximal, and the average schedule fulfill-time and the minimum, maximal, and the
average response time for non-real-time tasks for 10 real-time tasks and three non-real-time tasks with 10.1 ms mean

0

20

40

60

80

100

120

140

3 4 5 6
Number of Non-Real-Time Tasks

R
es

po
ns

e
T

im
e

(m
s)

RG_SCAN GSR

Fig. 17. Mean inter arrival time = 20.1, given 20 real-time tasks, the response time of GSR and RG-SCAN under different number of input non-real-time
tasks.

Table 5
Given 10 real-time tasks and three non-real-time tasks, the schedule fulfill-time and the response time of different real-time disk scheduling approaches

Algorithm Schedule fulfill time (ms) Response time (ms)

Minimum Maximum Average Improvement (%) Minimum Maximum Average

GSR 136.63 184.53 164.86 9.72 13.85 113.88 59.61
RG-SCAN 134.23 195.77 173.61 4.93 19.85 114.55 70.93
DM-SCAN 151.41 204.79 177.19 2.97 19.85 114.55 70.93
SCAN-EDF 160.18 249.34 199.75 �0 N.A. N.A. N.A.

Table 6
Given 20 real-time tasks and five non-real-time tasks, the schedule fulfill-time and the response time of different real-time disk scheduling approaches

Algorithm Schedule fulfill time (ms) Response time

Minimum Maximum Average Improvement Minimum Maximum Average

GSR 267.78 377.53 308.39 10.85 26.64 122.47 66.40
RG-SCAN 273.35 390.33 332.42 3.90 39.79 167.12 99.61
DM-SCAN 276.98 398.36 337.69 2.38 39.79 167.12 99.61
SCAN-EDF 285.41 408.92 345.92 �0% N.A. N.A. N.A.

214 H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215
inter-arrival time for detailed comparison. Note that, the average schedule fulfill-time includes both the execution of real-
time tasks and non-real-time tasks. Table 6 shows the same performance metric but with 20 real-time tasks and five non-
real-time tasks. As seen in Tables 5 and 6, our proposed GSR scheme not only offers shorter response time for non-real-
time tasks, but also provides a larger data throughput (i.e., shorter schedule fulfill-time) for the total schedule results. For
example, Table 6 shows that our GSR scheme achieves over 7% improvement compared with the RG-SCAN scheme in
obtained data throughput but offers 33% improvement compared with the RG-SCAN in terms of average response time
of non-real-time tasks. Notably, the extra non-real-time tasks supported by GSR and RG-SCAN, together with their real-
time tasks, still have a shorter schedule fulfill time than SCAN-EDF, which only counts the real-time tasks, i.e., the input
workload to the SCAN-EDF does not include the non-real-time tasks. This furthermore demonstrates the effectiveness of
our proposed GSR scheme.

7. Conclusion

In order to improve data throughput, the seek-optimizing SCAN scheme should be employed to reschedule the input
tasks as much as possible. However, previous approaches limit their flexibility and efficiency in that a task can only be
seek-optimizing rescheduled with the tasks having the same deadline or within the same local group (a set of contiguous
tasks). In order words, in conventional schemes, a task can only be rescheduled by SCAN with a locally best position. In
this paper, we propose a globally seek-optimizing disk-scheduling scheme called GSR. In GSR, a task can be rescheduled
to the globally best position, i.e., position with the maximal data throughput while guaranteeing a feasible schedule.

H.-P. Chang et al. / The Journal of Systems and Software 80 (2007) 198–215 215
In addition, we extend the GSR scheme to serve mixed workloads that consist of both real-time and non-real-time traf-
fic. Instead of the best-fit rescheduling policy for real-time tasks, the GSR reschedules a non-real-time task to the first-fit

scan-group to minimize the response time. The experimental results show that our proposed GSR scheme is better than the
conventional methods not only in improving the data throughput, but also in shortening response time.

References

Anderson, D.P., Osawa, Y., Govindan, R., 1991. Real-time disk storage and retrieval of digital audio/video data. Technical Report 1991, Department of
Computer Science, University of California, Berkeley.

Anderson, D.P., Osawa, Y., Govindan, R., 1992. A file system for continuous media. ACM Trans. Computer Systems 10 (4), 311–337.
Chang, R.I., Chen, M.C., Ho, J.M., Ko, M.T., 1997. Designing the ON-OFF CBR transmission schedule for jitter-free VBR media playback in real-time

networks. Proc. IEEE RTCSA, 2–9.
Chang, R.I., Shih, W.K., Chang, R.C., 1998. Deadline-modification-scan with maximum scannable-groups for multimedia real-time disk scheduling. In:

Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 40–49.
Chang, H.P., Chang, R.I., Shih, W.K., Chang, R.C., 2002. Reschedulable-Group-SCAN Scheme for Mixed Real-Time/Non-Real-Time Disk Scheduling

in a Multimedia System. J. Syst. Software 59 (2), 143–152.
Chen, T.S., Yang, W.P., 1992. Amortized analysis of disk scheduling algorithm V(R)*. J. Inf. Sci. Eng. 8, 223–242.
Chen, T.S., Yang, W.P., Lee, R.C.T., 1992. Amortized analysis of some disk scheduling algorithms: SSTF, SCAN, and N-Step SCAN. BIT 32, 546–558.
Gemmell, D.J., Christodoulakis, S., 1992. Principles of delay sensitive multimedia data storage and retrieval. ACM Trans. Information Systems 10 (1),

51–90.
Gemmell, D.J., Vin, H.M., Kandlur, D.D., Rangan, P.V., Rowe, L.A., 1995. Multimedia storage servers: a tutorial. IEEE Comput., 40–49.
Lehoczky, J.P., 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proceedings of the Real-Time Systems Symposium, pp.

201–212.
Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM, 46–61.
Lougher, P., Shepherd, D., 1993. The design of a storage server for continuous media. Comput. J. 36 (1), 32–42.
Reddy, A.L.N., Wyllie, J., 1993. Disk scheduling in a multimedia I/O system. In: Proceedings of the ACM Multimedia Conference, pp. 225–233.
Reddy, A.L.N., Wyllie, J., 1994. I/O issues in a multimedia system. IEEE Comput., 69–74.
Ruemmler, C., Wilkes, J., 1994. An introduction to disk drive modeling. IEEE Comput., 16–28.
Stankovic, J.A., Buttazzo, G.C., 1995. Implications of classical scheduling results for real-time systems. IEEE Comput., 16–25.
Steinmetz, R., 1995. Multimedia file systems survey: approaches for continuous media disk scheduling. Comput. Commun. 18 (3), 133–144.
Wong, C.K., 1980. Minimizing expected head movement in one dimension and two dimension mass storage system. Comput. Survey 12 (2), 167–178.
Yee, J., Varaiya, P., 1991. Disk scheduling policies for real-time multimedia applications. Technical Report, Department of Computer Science, University

of California, Berkeley.

	GSR: A global seek-optimizing real-time disk-scheduling algorithm
	Introduction
	Problem descriptions and related work
	Real-time disk-scheduling problem
	Related work

	GSR: Globally seek-optimizing rescheduling scheme
	EDF-to-SCAN mapping
	GSR algorithm

	Speed-up method
	Schedulable-region
	A fast algorithm

	Supporting non-real-time tasks
	Experimental results
	Number of supported tasks
	Improvement of disk throughput
	Response time of non-real-time task

	Conclusion
	References

