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We considered the nonequilibrium spin dipoles induced around spin-independent elastic scatterers by the
intrinsic spin-Hall effect associated with the Rashba spin-orbit coupling. The spin polarization normal to the
two-dimensional electron gas �2DEG� has been calculated in the diffusion range around the scatterer. Although
around each impurity this polarization is finite, we found that the corresponding macroscopic spin density
obtained via averaging of individual spin dipole distributions over impurity positions is zero in the bulk. At the
same time, the spin density is finite near the boundary of 2DEG, except for a special case of a hard wall
boundary, that is, when it turns to 0. The boundary value of the spin polarization can be associated with the
interface spin-Hall resistance determining the additional energy dissipation due to spin accumulation.
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I. INTRODUCTION

Most of the theoretical studies on the spin-Hall effect
�SHE� have been devoted to the calculation of the spin cur-
rent �for a review, see Ref. 1�. Such a current is a linear
response to the external electric field E, which induces a spin
flux of electrons or holes flowing in the direction perpendicu-
lar to E. This spin flux can be due either to the intrinsic
spin-orbit interaction �SOI� inherent to a crystalline solid2 or
to the spin-dependent scattering from impurities.3 The spin-
Hall current, as a response to the electric field, is character-
ized by the spin-Hall conductivity. On the other hand, similar
to the conventional Hall effect, one can introduce the spin-
Hall resistivity to the calculation of the local chemical po-
tential difference �s=�↑−�↓ as a response to the dc electric
current. For the two-dimensional electron gas �2DEG� in a
local equilibrium, this potential difference can be related to
the z-component �perpendicular to 2DEG� of the spin polar-
ization according to Sz=NF�s, where NF is the density of
states near the Fermi level. Therefore, the spin-Hall resistiv-
ity is closely associated with spin accumulation near the in-
terfaces. It should be noted that measuring spin polarization
is thus far the only realistic way to detect SHE.4,5 For inter-
faces of various types, such an accumulation has been calcu-
lated in a number of works.6–12 A typical example to study
spin accumulation is an infinite 2D strip along the x-direction
with a width w along the y-direction. In this geometry, the dc
flows in the x-direction while the spin-Hall current flows in
the y-direction, with the spin density accumulating near the
boundaries. An analog of the Hall voltage could be a differ-
ence of �s on both sides of the strip. There is, however, a
fundamental distinction from the charge Hall effect. In the
latter case, due to the long-range nature of the electric poten-
tial created by conserving electric charges, the Hall voltage is
proportional to the width of the strip. In contrast, the spin-
Hall electrochemical potential at the interface does not de-
pend on w as w→� because spin relaxation essentially sup-
presses the long-range contribution to spin-polarization
buildup near the interfaces. Hence, it is sensible to introduce
an interface spin-Hall resistance, which is the proportionality
coefficient between the interface value of �s and the electric
current density.

Below, we will consider the spin-Hall resistance from the
microscopic point of view. This approach is based on

Landauer’s13 idea that at a given electric current, each impu-
rity is surrounded by a nonequilibrium charge cloud forming
a dipole. Combined together, these dipoles create a voltage
drop across the sample. Therefore, each impurity plays a role
of an elementary resistor. In a similar way, nonequilibrium
spin dipoles could be induced subsequent to the spin-Hall
current. One may expect that the spin cloud will appear
around a spin-orbit scatterer in the case of an extrinsic SHE,
as well as around a spin-independent scatterer in the case of
the intrinsic effect. The latter possibility for a 2D electron
gas with Rashba interaction has been considered in Ref. 14.
The polarization perpendicular to 2DEG was calculated
within the ballistic range around a scatterer. On the other
hand, in order to study spin accumulation and the spin-Hall
resistance on a macroscopic scale, one needs to calculate the
spin-density distribution at distances much larger than the
mean free path l of electrons. Below, we will extend the
Green’s function method of Ref. 14 to the diffusive range. In
Sec. II, the spin-density distribution around an individual
target impurity will be calculated. In Sec. III, we will con-
sider the interface spin accumulation created by spin dipoles
randomly but homogeneously distributed in space. A relation
between spin-Hall resistance and energy dissipation will be
discussed in Sec. IV. A summary and discussion of results
will be presented in Sec. V.

II. SPIN CLOUD INDUCED BY A SINGLE IMPURITY

It is known that the electric field applied to a homoge-
neous 2DEG with the Rashba SOI induces a component of
the nonequilibrium spin polarization parallel to 2DEG.15 The
spin-Hall effect produces, however, a zero-spin polarization
in its z-component. This understanding about such a homo-
geneous gas has implied an averaging over impurity posi-
tions. An impure system, on the other hand, cannot be uni-
form on a microscopic scale. The effect of each impurity on
the spin polarization could be singled out by considering an
impurity �a target impurity� at a fixed position while taking at
the same time the average over positions of other impurities.
In such a way, the Landauer electric dipole has been
calculated.16,17 The electron density around a target impurity
represented by the elastic scatterer was found from the
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asymptotic expansion of the scattered wave functions of the
electrons. At the same time, the wave vectors of incident
particles were weighted with the nonequilibrium part of the
Boltzmann distribution function. We will employ another
method based on the Green’s function formalism.14 Within
this method, the spin-density response to the electric field E
is given by the standard Kubo formula, with the scattering
potential of the target impurity incorporated into the retarded
and advanced Green’s functions Gr/a�r ,r� ,�� denoted by the
superscripts r and a, respectively. As such, the n-component
of the stationary spin polarization is given by

Sn�r� = −
e

m* � d2r�� d�

2�

dnF���
d�

� Tr��nGr�r,r�,���vE�Ga�r�,r,��� , �1�

where the overbar denotes averaging over impurity positions,
the trace runs through the spin variables, and nF��� is the
Fermi distribution function. To avoid further confusion, we
note that the angular moment is obtained by multiplying
Sn�r� by � /2 and e is the particle charge, which is negative
for electrons. At low temperatures, only � in close vicinity
around EF contributes to the integral in Eq. �1�. Therefore,
below we set �=EF and omit the frequency argument in
Green’s functions. Further, v is the particle velocity operator
containing a spin-dependent part associated with SOI. Writ-
ing SOI in the form

Hso = hk · � , �2�

one obtains the velocity operator

v j =
kj

m* +
�hk · �

�kj , �3�

where ����x ,�y ,�z� is the Pauli matrix vector. In the case
of the Rashba interaction, the spin-orbit field hk is given by

hx = �ky, hy = − �kx. �4�

We assume that the target impurity, located at ri, is repre-
sented by a scattering potential U�r−ri�. The Green’s func-
tions in Eq. �1� have to be expanded in terms of this poten-
tial. Up to the second order in U, one obtains

Gr/a�r,r�� = Gr/a�0��r,r�� +� ds2Gr/a�0��r,s�U�s − ri�

�Gr/a�0��s,r�� +� ds2ds�2Gr/a�0��r,s�U�s − ri�

�Gr/a�0��s,s��U�s� − ri�Gr/a�0��s�,r�� . �5�

The unperturbed functions Gr/a�0� depend, nevertheless, on
the scattering from background random impurities. The latter
create the random potential Vsc�r�, which is assumed to be
delta correlated, so that the pair correlator �Vsc�r�Vsc�r���
=	
�r−r�� /�NF, where 	=1/2� is expressed via the mean
elastic scattering time �. The delta correlation means that the
corresponding impurity potential is the short-range one. In
fact, the potential of the target impurity could be different
from that of the random impurities. It might be a special sort

of impurities added to the system. On the other hand, the
target and the random impurities would be identical if one
would try to employ the spin dipoles for the interpretation of
spin accumulation near interfaces.

After the substitution of Eq. �5� into Eq. �1�, one must
calculate the background impurity configurational averages
containing the products of several Green’s functions G�0�.
Assuming that the semiclassical approximation EF��1 is
valid, the standard perturbation theory18,19 can be employed.
Its whose building blocks are the so-called ladder perturba-
tion series expressed in terms of the unperturbed average
Green’s functions

Gk
r/a =� d2�r − r��eik�r−r��Gr/a�0��r,r�� �6�

given by the 2�2 matrix,

Gk
r/a = �EF − Ek − hk · � ± i	�−1, �7�

where Ek=k2 / �2m*�. When averaging the Green’s function
products within the ladder approximation, only pairs of re-
tarded and advanced functions carrying close enough mo-
menta should be chosen to become elements of the ladder
series. After decoupling the mean products of Green’s func-
tions into the ladder series, the Fourier expansion of Eq. �1�
can be represented by the diagrams shown in Fig. 1. In these
diagrams, the diffusion ladder renormalizes both the left-
hand and right-hand vertices. The renormalized left-hand
vertex z�q� is associated with the qth Fourier component of
the induced spin density, and the corresponding diffusion
propagator enters with the wave vector q. In its turn, the
right-hand vertex T�p� related to the homogeneous electric
field is represented by the ladder at the zeroth wave vector.
The corresponding physical process is the
D’yakonov-Perel’20 spin relaxation of a uniform spin distri-
bution. This left-hand vertex alone contributed to the ballistic
case result,14 while z�q� has been taken unrenormalized due
to large values of q�1/ �vF��1 in the ballistic regime. Fig-
ures 1�e� and 1�f� represent some diagrams where the diffu-

FIG. 1. Examples of diagrams for the spin density. Scattering of
electrons by a target impurity is shown by the solid circles. Dashed
lines denote the ladder series of particle scattering by the random
potential. p,k, and k� are the electron momenta.
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sion process separates two scattering events. As will be
shown below, such diagrams give rise to small corrections to
the spin density and can be neglected. Hence, the main con-
tribution comes from the diagrams similar to those in Figs.
1�a�–1�d�. The corresponding spin polarization has the form

Sz�q� =
1

2�
	
p,k

Tr�Gpk
a z�q�Gk+q,p

r T�p�� . �8�

The functions Gk�k
r/a are formally represented by the Fourier

expansion of Eq. �5� with respect to r and r�, provided that
the respective average values G�0��r ,r��, instead of
G�0��r ,r��, are substituted. Evaluating the pair products of
such functions in Eq. �8�, one should take into account only
the terms up to the second order with respect to the scattering
potential U.

The vertices z�q� and T�p� can be easily calculated. As
was discussed in Ref. 14, due to considerable cancellation of
the diagrams which is known from literature on the spin-Hall
effect, T�p� acquires a quite simple form in a special case of
the Rashba SOI. Namely,

T�p� =
e

m*p · E . �9�

In its turn, z�q� is expressed in terms of the diffusion propa-
gator. Indeed, let us represent this vertex using a basis of four
2�2 matrices �0=1 and �i=�i, with i=x ,y ,z. Then, z�q�
can be written as

z�q� = 	
b

Dzb�q��b, b = 0,x,y,z , �10�

where Dzb�q� are the matrix elements of the diffusion propa-
gator satisfying the spin-diffusion equation, as it was de-
scribed in Ref. 6 and references therein. The nondiagonal
element Dz0�q� appears due to the spin-charge mixing and it
is zero for SOI of a quite general form, including the Rashba
interaction.21–24 Finally, from Eq. �8�, using Eqs. �9� and
�10�, we express Sz�q� in the form

Sz�q� = 	
n=x,y,z

Dzn�q�In�q� , �11�

where

In�q� =
e

2�m*	
p,k

�p · E�Tr�Gpk
a �nGk+q,p

r � . �12�

The function In�q� has a simple physical meaning. For n
=x ,y ,z, it represents a source of spin-polarized particles
emitting from the target impurity. Their further diffusion and
spin relaxation result in the observable polarization. This
source term feature is conceptually similar, though different
in its context, to the original charge cloud consideration
when SOI is not present and the Boltzmann equation is used
to describe the subsequent background scattering.13,16 For q
� l−1�kF, the source can be expanded in powers of q.
Therefore, the wave-vector-independent terms represent the
delta source located at ri, while the terms linear in q are
associated with the gradient of the delta function. Below, we
will keep only the constant and linear terms for each nth

component In�q� and assume, for simplicity, the short-range
scattering potential U�r�, so that its kth Fourier transform is
simply U exp�−ik ·ri�, where U is a constant. Further, In�q�
can be written as

In�q� = I1
n�q� + I2

n�q� , �13�

where I1 and I2 are of the first and the second order with
respect to the scattering potential U, respectively. Accord-
ingly, I1 and I2 are represented by Figs. 1�a� and 1�b� and
Figs. 1�c� and 1�d�, respectively. Using Eq. �5� to express
Green’s functions Gk�k

r/a in Eq. �12�, we obtain

I1
n�q� =

eU

2�m*eiq·ri	
p

�p · E�Tr�Gp
r Gp

a��nGp+q
r + Gp−q

a �n��

�14�

and

I2
n�q� =

eU2

2�m*eiq·ri	
pk

�p · E�Tr�Gp
r Gp

a�Gk
a�nGk+q

r − ��nGp+q
r

+ �Gp−q
a �n�� , �15�

where

� = i Im
	
k

Gk
a� = i�NF. �16�

In our following consideration, we let the x-axis be parallel
with the electric field and the z-axis be perpendicular to the
2DEG. The system Hamiltonian is symmetric under a sym-
metry operation combining a reflection from the plane per-
pendicular to the y-axis, that is, py→−py, and a unitary
transformation �i→�y�

i�y. Applying this transformation to
Eq. �12�, one can easily see that Ix�qx ,qy�=−Ix�qx ,−qy�,
Iz�qx ,qy�=−Iz�qx ,−qy�, and Iy�qx ,qy�= Iy�qx ,−qy�. Making
use of another symmetry operation px→−px, py→−py, and
�i→�z�

i�z, we obtain Ix�qx ,qy�= Ix�−qx ,−qy�, Iz�qx ,qy�=
−Iz�−qx ,−qy�, and Iy�qx ,qy�= Iy�−qx ,−qy�. From these rela-
tions, it is easy to see that the expansion of Iz into a power
series starts from linear in q terms, while the leading term in
Iy is constant and the next one is quadratic in q. Because of
this reason, only the constant will be taken into account in Iy.
The expansion of Ix starts from qxqy, and this source compo-
nent will be neglected.

The calculation of I1 and I2 given by Eqs. �14� and �15� is
based on the standard linearization near the Fermi level, thus
ignoring band effects giving rise to small corrections
�hkF

/EF and 	 /EF. Further, the diffusion approximation is
valid at q�1/ l. At the same time, the characteristic length
scale is determined by the spin-relaxation length lso, which is
the distance a particle diffuses during the D’yakonov-Perel’
spin-relaxation time �so=4�hkF

2 ��−1. The corresponding diffu-
sion length lso=D�so, where D=vF

2� /2 is the diffusion con-
stant. Hence, lso=vF /hkF

. Taking q�1/ lso, one finds that the
diffusion approximation is valid if hkF

/	�1. Therefore,
within this approximation, we will retain only the leading
powers of hkF

/	�1. In such a way, direct calculation of I1
n
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with Green’s functions and SOI given by Eqs. �7� and �4�,
respectively, shows that both I1

y and I1
z are small by a factor

of 	 /EF. For example, using the relation

�Gk
r/a�2 = −

�

�EF
Gk

r/a, �17�

which follows from Eq. �7�, evaluating I1
y at q=0, one can

represent the corresponding sum in Eq. �14� as

−
�

�EF
	
p

pxTr�Gp
r Gp

a�y� = −
�

�EF

2�

	
NFm*�hp

y

�px
� . �18�

In the case of the Rashba SOI with the constant coupling
strength � and energy-independent parameters 	 ,m*, and
NF, the sum �18� is equal to 0. Otherwise, it is finite, but
small due to the smooth energy dependence of these param-
eters. A similar analysis, although not so straightforward, can
be applied to I1

z , which is linear in q. The smallness of I1
z can

also be seen from Ref. 14, where the contribution to the spin
density linear in U was associated with fast Friedel oscilla-
tions. It is clear that their Fourier transform will be small in
the range of q�kF

−1.
At the same time, I2

y and I2
z are not zero. They are given by

Iy = vdNFm*�hkF

2 	�

	3 ,

Iz = − iqyvdNFhkF

2 	�

2	3 ,

Ix = 0, �19�

where 	�=�NFU2 and vd=eE� /m* is the electron drift ve-
locity. If the target impurity is represented by one of the
random scatterers, we get 	�=	 /ni, where ni is the density
of impurities.

In the above calculation, we did not take into account the
diagrams shown in Figs. 1�e� and 1�f� and those similar to
them. It can be easily seen that such diagrams contain I1

n as a
factor. For example, the sum of the diagrams in Figs. 1�e�
and 1�f� contains as a multiplier the sum of the diagrams
shown in Figs. 1�a� and 1�b�. Therefore, such diagrams are
small by the same reason as I1

n are, at least, in the most
important range of f � l−1. Particularly, in this range of small
f , the diffusion propagator between the two scattering events
in Figs. 1�e� and 1�f� becomes large.

Now, one can combine the source In with the diffusion
propagator to find from Eq. �11� the shape of the spin cloud
around a single scatterer. Taking into account Eq. �19�, Eq.
�11� is transformed into

Sz�q� = − vdNFhkF

2 	�

2	3 �iqyD
zz�q� − 2m*�Dzy�q�� . �20�

The matrix elements Dij�q� satisfy the spin-diffusion
equation6,25

	
l

− 
ilDq2 − 	il + i	

m

Rilmqm�Dlj�q� = − 2	
ij , �21�

where the matrix 	il determining the D’yakonov-Perel’ spin-
relaxation rates is given by

	il = 4��
ilhkF

2 − hkF

i hkF

l � , �22�

with the angular brackets denoting averaging over the Fermi
surface. In the case of the Rashba SOI �Eq. �4�� one gets
	zz=4�hkF

2 and 	xx=	yy =2�hkF

2 . The last term in the left-hand
side of Eq. �21� is associated with spin precession in the SOI
field. It has the form

Rilm = 4�	
p

�ilp�hk
pvF

m� . �23�

For the Rashba SOI, the nonzero components are

i	
m

Rizmqm = − i	
m

Rzimqm = 4iDm*�qi. �24�

We ignored in Eq. �21� a small term which gives rise to the
spin-charge mixing.6,23,24 This mixing is already taken into
account in the source term because In for n=x ,y ,z describes
the source of the spin polarization in response to the electric
field. From Eqs. �21�–�24�, one finds

Dzz =
1

2hkF

2 �2

q̃2 + 1

�q̃2 + 2��q̃2 + 1� − 4q̃2 ,

− Dzy = Dyz =
1

2hkF

2 �2

2iq̃y

�q̃2 + 2��q̃2 + 1� − 4q̃2 ,

Dyy =
1

2hkF

2 �2

q̃2 + 2

�q̃2 + 2��q̃2 + 1� − 4q̃2 , �25�

where 2q̃= lsoq denotes the dimensionless wave vector. Sub-
stituting Eq. �25� into Eq. �20�, we finally find

Sz = − 2ivd
m*�

�
NF

	�

	

q̃y�q̃2 + 3�
�q̃2 + 2��q̃2 + 1� − 4q̃2 �26�

and

Sy = 2vd
m*�

�
NF

	�

	

�3q̃2 + 2�
�q̃2 + 2��q̃2 + 1� − 4q̃2 . �27�

To restore the conventional units, we added � into Eqs. �26�
and �27�. The z-component of the spin density in real space
is shown in Fig. 2. According to expectations, it has the
shape of a dipole oriented perpendicular to the electric field.
Its spatial behavior is determined by the single parameter lso,
which gives the range of exponential decay of the spin po-
larization with increasing distance from an impurity. The Sy
component averaged over impurity positions gives the uni-
form bulk polarization. It is interesting to note that when the
target impurities are identical to the background ones �	�
=	�, the so obtained uniform polarization Sy�q→0 coincides
with the electric spin orientation15 Sy =2vdm*�NF /�.
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III. SPIN ACCUMULATION IN A SEMI-INFINITE
SYSTEM

In this section, we will consider a semi-infinite electron
gas y�0 bounded at y=0 by a boundary parallel to the elec-
tric field. Our goal is to calculate a combined effect of spin
clouds from random impurities. It is important to note that
the summation of spin dipoles from many scatterers does not
result in a magnetic potential gradient in the bulk of the
sample. This is principally different from the Landauer
charge dipoles, which are associated with the macroscopic
electric field. The origin of such a distinction can be imme-
diately seen from Eq. �26�. The magnetic potential, as it was
defined in Sec. I, is proportional to Sz. By taking its gradient,
one gets qySz. After averaging over impurity positions q
→0, qySz→0. It happens due to spin relaxation, which pro-
vides at q=0 a finite value of the denominator in Eq. �26�. At
the same time, in the case of the charge cloud, the denomi-
nator of the particle diffusion propagator is proportional to
q2. Hence, the corresponding gradient of the electrochemical
potential �electric field� is finite at q=0. Although the bulk
magnetic potential is zero, one cannot expect that it will also
be zero near an interface. In order to calculate the spin po-
larization near the boundary, Eq. �21�, with q=−i� and

2	
�r�
̄ij in the right-hand side, has to be solved using ap-
propriate boundary conditions. With the so obtained Dij�r�,
the resultant spin density induced by impurities placed at
points ri is given by Eq. �11�,

Sj�r� = 	
n=x,y,z

� d2r�Djn�r − r��Itot
n �r�� , �28�

where the source term is obtained by the inverse Fourier
transform of Eq. �19�:

Itot
y �r� = vdNfm

*�hkF

2 1

	2ni
	

i


�r − ri� ,

Itot
z �r� = − vdNFhkF

2 1

2	2ni
	

i

�

�y

�r − ri� ,

Itot
x �r� = 0. �29�

where the relation 	�=	 /ni is used because we assumed that
the target impurities are identical to the random ones. The
macroscopic polarization is obtained by averaging of Eqs.
�28� and �29� over impurity positions. After averaging over xi
and the semi-infinite region yi�0, the spin-polarization
source �29� transforms to Iav

n �y�:

Iav
y �y� = vdNFm*�hkF

* 1

	2 ,

Iav
z �y� = − vdNFhkF

2 
�y − 0+�
1

2	2 . �30�

It follows from Eq. �28� that the corresponding mean
value of the spin polarization, Sav�y�, satisfies the diffusion
equation �21� with the source 2	Iav

n �y� in its right-hand side.
The so obtained diffusion equation, however, is not com-
plete. One should take into account that the boundary itself
can create the interface spin polarization. Most easily, it can
be done in the framework of the Boltzmann approach. In
terms of the Boltzmann function, the spin density is defined
as Sav�y�=	kgk, and the charge density as 	kgk. The equa-
tion for the Boltzmann function can be written in the form
�see, e.g., Ref. 26�

vg�ygk + 2�gk � hk� + eEx

�gk
�0�

�kx
=

1

�
�SE�y� − gk� , �31�

where SE�y�=
�E−EF�Sav�y� /NF and gk
�0�=−hk
�E−EF� is

the equilibrium Boltzmann function. The terms proportional
to the charge component of the Boltzmann function have
been omitted in Eq. �31� due to the system local electroneu-
trality, at least in the scale of the mean free path, which is the
smallest characteristic scale of gk spatial variations. The scat-
tering part of Eq. �31� is written in the simple relaxation time
approximation. Such a scattering term follows26 from the
Keldysh formalism assuming isotropic scattering from impu-
rities, as has been adopted in this work. For angular depen-
dent scattering, however, a structure of the scattering term is
more complicated.27

The spin-polarization source associated with the boundary
is given by a direct action of the electric field, without taking
into account secondary scattering from impurities. Hence,
the term with Sav�y� in the right-hand side of Eq. �31� can be
ignored. Also, the boundary independent bulk part of gk has
to be subtracted from the general solution of Eq. �31�. The so
obtained interface Boltzmann function will be denoted as
gkif. The corresponding spin density is Sif�y�=	kgkif. In or-
der to calculate gkif, Eq. �31� has to be supplemented with the
boundary condition. For a hard wall specularly reflecting
boundary, the condition is simply

FIG. 2. �Color online� Spatial distribution of Sz component of
the spin density around a single scatterer. The unit of length =lso.
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�gkx,ky
�z=0 = �gkx,−ky

�z=0. �32�

This condition means that the spin orientation does not
change after specular reflection from the interface. The solu-
tion of Eq. �31� satisfying Eq. �32� can be easily found. As a
result, up to o��2�, we obtain

Sif
y �y� = Sif

x �y� = 0,

Sif
z �y� = 8vd�2�m* 	

ky�0
ky
�Ek − EF�e−y�m*/ky��. �33�

Within the diffusion approximation, the second of these
equations represents a delta source of the spin polarization
with intensity

1

�
�

0

�

dySif
z �y� = vdNFhkF

2 1

	
. �34�

This source is exactly of the same magnitude, but opposite in
sign to the spin polarization emerging from impurities, which
is represented by the integral of 2	Iav

z �y�, with Iav
z �y� given

by Eq. �30�. Taking into account that both sources are located
at the interface, so that they cancel each other out, one sees
that only the y-component of the source originating from
impurity scattering retains in the diffusion equation which
acquires the form

�2Sav
z

�y2 − 4m*�
�Sav

y

�y
− 8m*2�2Sav

z = 0,

�2Sav
y

�y2 + 4m*�
�Sav

z

�y
− 4m*2�2Sav

y = −
2	

D
Iav

y . �35�

The bulk solutions of this equation are Sav
z =0 and Sav

y �Sb
=2�eENF�, which coincide with the polarization obtained
from Eqs. �26� and �27� at q→0.

In order to calculate the spin polarization near the inter-
face, we employ the hard wall boundary conditions6,8,9 for
Eq. �35�. Such boundary conditions can be easily obtained
from Eq. �31� by performing its summation over k and inte-
grating from y=0 to some point y0, placed at a distance
much larger than l but still small compared to lso. A simple
analysis of Eq. �31� shows that up to o��2�, the sum over k
of the vector product in the left-hand side of Eq. �31� can be
neglected, while the right-hand side and the term containing
the electric field turn to zero identically. As a result, we get

1

m*	
k

ky�gkx,ky
�y=y0

=
1

m*	
k

ky�gkx,ky
�y=0. �36�

According to Eq. �32�, the above sum is zero at y=0. Hence,
it is also zero at y=y0. The latter sum coincides with the spin
current within its conventional definition,26 where a contri-
bution associated with the charge density due to the second
term of the velocity operator �3� is ignored in an electroneu-
tral system. Using the gradient expansion of Eq. �31�, this
current can easily be expressed26 through Sav

j �y=0, its y de-
rivative, and the last term in the left-hand side of Eq. �31�. In
this way, one arrives at the boundary conditions from Refs.
6, 8, and 9. We generalize these conditions by adding pos-

sible effects of the surface spin relaxation �see also Ref. 10�.
These additional terms are characterized by the two phenom-
enological parameters �y and �z. Finally, we obtain

− D� �Sav
z �y�
�y

�
y=0

+ 2Dm*��Sav
y �0� − Sb� = − �zSav

z �0� ,

− D� �Sav
y �y�
�y

�
y=0

− 2Dm*�Sav
z �0� = − �ySav

y �0� . �37�

One can easily see from Eqs. �35� and �37� that at �x/y =0, the
homogeneous bulk solutions Sav

z =0 and Sav
y =Sb turn out to be

the solutions of the diffusion equation everywhere at y�0.
Therefore, in this particular, case, the z-components of spin
clouds from many impurities completely cancel each other
out and there is no spin accumulation near the interface. This
result, as well as boundary conditions �37� for the hard wall
case, agrees with Refs. 6–9. A different result has been ob-
tained, however, in Ref. 10, where a method similar to Ref. 8
has been employed. Such a distinction requires a special
analysis outside the goals of the present work.

When �i�0, the out-of-plane component of the spin den-
sity is not zero. In the case of weak surface relaxation, �i
�D / lso, one obtains the following from Eqs. �37� and �35�:

Sav
z �0� = 0.35�y�eE

1

2��D
, �38�

where we inserted � to restore conventional units. It is inter-
esting to note that in such a regime of small enough �i, the
surface polarization does not depend on the spin-orbit con-
stant.

IV. SPIN-HALL RESISTANCE AND ENERGY DISSIPATION

As it was defined in the Introduction, the interface spin-
Hall resistance is given by

RsH =
Sav

z �0�
NFj

, �39�

where j is the dc density, j=�E, with the Drude conductivity
�=ne2� /m*. The so defined spin-Hall resistance is closely
related to the additional energy dissipation which takes place
due to spin accumulation and relaxation near the interfaces
of a sample. Indeed, as was shown in Ref. 6, the spin accu-
mulation is associated with a correction to the electric con-
ductivity of the dc flowing in the x-direction. For the Rashba
SOI, the correction to the current density has the form

�j�y� = −
e

4m*

�2kf
2

	2

�Sav
z

�y
. �40�

This expression is finite within the distance of �lso from the
interface. After integration over y, one obtains a correction to
the electric current,

�I =
e

4m*

�2kF
2

	2 Sav
z �0� . �41�

The corresponding interface energy dissipation �per unit of
the interface length� can be expressed from Eqs. �39� and
�41� as
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�W = �IE =
m*

e�3�2�RsHj2. �42�

In its turn, RsH can be determined from Eq. �38�. It can be
easily seen that �W�0 if �y �0.

V. RESULTS AND DISCUSSION

Summarizing the above results within the drift diffusion
theory, we found out that the intrinsic spin-Hall effect in-
duces in 2DEG a nonequilibrium spin density around a spin-
independent isotropic elastic scatterer. The z-component of
this density has the shape of a dipole directed perpendicular
to the external electric field, while the polarization parallel to
2DEG is isotropic. Due to the D’yakonov-Perel’ spin relax-
ation, the spin density decays exponentially at a distance
larger than the spin-orbit precession length. It is noteworthy
that such a cloud exists even in the case of the Rashba spin-
orbit interaction when the macroscopic spin current is absent.
We also calculated the macroscopic spin density near an in-
terface by taking the sum of clouds due to many scatterers
and independently averaging over their positions. Surpris-
ingly, in the case of the hard wall boundary, the so calculated
spin polarization exactly coincides with that found from the
drift diffusion or Boltzmann equations.6–9 In this case, the

out-of-plane component of the spin polarization is zero,
while the parallel polarization is a constant determined by
the electric spin orientation.15 Besides the hard wall bound-
ary, we also considered a more general boundary condition
containing the interface spin relaxation, or the spin leaking
term. For such a general case, Sz�0. This polarization can
be associated with the local magnetic potential because the
system attains its local equilibrium within the Sz spatial
variation scale, which is much larger than l. The magnetic
potential, in its turn, is related to the dc electric current den-
sity via the interface spin-Hall resistance. The latter was
shown to determine the additional energy dissipation due to
the relaxation of the spin polarization near the interface.

Besides conventional semiconductor quantum wells, the
results of this work can be applied to metal adsorbate sys-
tems with strong Rashba-type spin splitting in the surface
states.28 In this case, the spin cloud can be measured by a
scanning-tunneling microscope with a magnetic tip.
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