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Estimation of Two-Dimensional Frequencies Using
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Abstract—The problem of multiple two-dimensional (2-D) sinusoidal
frequency estimation is considered. A modified matrix pencil method is
proposed to simultaneously estimate the frequency pairs in the signal,
thereby bypassing the computationally expensive pairing operation as
seen in the literature. Simulation results show that the accuracy of the
estimates for each frequency from our technique is better than or com-
parable to that of existing methods and the variance of the estimates are
close to the Cramér–Rao bound. Simulation results also show that our
method provides accurate and consistent frequency estimation results that
other methods cannot provide with less or comparable computational
complexity.

Index Terms—ESPRIT, frequency estimation, matrix pencil.

I. INTRODUCTION

Two-dimensional (2-D) frequency estimation of multiple superim-
posed complex sinusoidal signals has applications in many areas such
as wireless communications [1], radio astronomy, ultrasound imaging,
sonar, and radar. The matrix enhancement and matrix pencil (MEMP)
method [2] has been proposed to solve such an estimation problem. It
estimates the 2-D sinusoidal signals separately in each dimension and
then combines the frequency pairs using a pairing algorithm. Unfortu-
nately, this method is computationally expensive. Furthermore, it does
not always provide the correct pairing results when there are repeated
frequencies. In this correspondence, we propose a modification of the
MEMP method that alleviates the pairing problem. We call our algo-
rithm the modified MEMP (MMEMP) method. Simulation results will
show that the estimation accuracy of the individual frequencies from
the MMEMP method is comparable to those in [2] and [3] with correct
pairing, and it is better than the recently proposed 2-D ESPRIT method
[4] in the case of low SNR, e.g., SNR = 10 dB. We also show that
the variance of the estimates from our proposed method is close to the
Cramér–Rao bound. Simulation results also show that our pairing tech-
nique provides more accurate pairing results than the MEMP method
and requires less computational complexity than the MEMP method.
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II. METHODOLOGY

The 2-D complex-valued sinusoidal signal under consideration is of
the form

s(m; n) =

N

k=1

�k exp fj�k + j2�f1km+ j2�f2kng (1)

where m = 0; 1; . . . ;M � 1, n = 0; 1; . . . ; N � 1. Ns is the number
of sinusoidal components we have. �k , �k , and ff1k; f2kg are the am-
plitude, phase, and frequency pair for the kth signal, respectively. The
observed signal x(m;n) can be written as

x(m;n) = s(m;n) + �(m;n) (2)

where �(m;n) is a 2-D white Gaussian distributed noise. To simplify
the notations, we shall rewrite (2) as x(m;n) = N

k=1
aky

m

k z
n

k +
�(m;n), where ak = �k exp fj�kg, yk = exp fj2�f1kg, and zk =
exp fj2�f2kg. The estimation of the amplitude �k and phase �k are
regarded as separate problems and are not considered in this correspon-
dence. Since part of the proposed method is similar to [2], we shall use
the notations defined in [2] throughout the paper.

The MEMP method [2] considered an enhanced matrixXe that con-
tains a moving average of the signal x(m;n). The frequency estimation
problem is solved by investigating the eigenstructure of

Xe =

J

k=1

�kukv
H

k = [Us Un]
�s 0

0 �n

V
H

s

V
H

n

with J = min (KL; (M �K + 1)(N � L+ 1)), and without loss
of generality, we assume �1 � �2 � � � � � �J . K and L are free
adjustable parameters which are used to improve estimation perfor-
mance. As a result, Us and Un span the signal and noise subspace,
respectively. The MEMP method makes use of the singular vectorUs

to construct a set of matrices that result in two pairs of matrix pencils
such that the rank reducing number, or the generalized eigenvalues, are
yk and zk for k = 1; 2; . . . ; Ns. Using this approach, the frequency
f1k can be estimated by computing the generalized eigenvalues of its
corresponding pair of matrix pencil. In this correspondence, we shall
show that the second frequency f2k can be obtained by using the gen-
eralized eigenvector from the matrix pencil corresponding to f1k . As
a result, the proposed method will guarantee the estimated frequencies
are paired up correctly.

We shall now develop the first pair of matrix pencils to estimate the
first set of frequencies f1k. As shown in [2], the matrix pencils are
constructed by the matricesU1,U2,E1, andYd. Readers who are in-
terested in the development and definition of the above matrices should
refer to [2]. The matrices U1 and U2 are related to the matrix E1 as

U1 = E1T and U2 = E1YdT (3)

where T is an unique Ns �Ns nonsingular matrix. From (3), we can
write the matrix pencil U2 � �U1 as

U2 � �U1 =E1(Yd � �I)T;

or (U2 � �U1)wk = [E1(Yd � �I)T]wk = 0 (4)
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where I is the identity matrix of size Ns � Ns, and � and wk are
the generalized eigenvalue and eigenvector of the matrix pencilsU2�

�U1 andE1(Yd��I)T, respectively. From [5], yk is the generalized
eigenvalue of the two matrix pencils in (4).

A. Distinct f1k’s

Theorem 1: If (U2 � �U1)wk = [E1(Yd � �I)T]wk = 0, then
the generalized eigenvector matrixW for the matrix pencilsU2��U1

and E1(Yd � �I)T is linearly related to the inverse of the matrix T,
that is

WG = T�1 (5)

whereW = [w1 w2 . . . wN ], andG is a full rank diagonal matrix
which represents the scalar ambiguity betweenW and T.

Proof: The matrix pencil, (U2 � �U1)wk , can be written in
matrix form as

U2W = U1WY (6)

where Y = diag(y01; y
0

2; . . . ; y
0

N ) is the generalized eigenvalue ma-
trix of the matrix pencilU2��U1. Note that the order of the diagonal
elements in Y does not necessarily corresponds to those in Yd even
though both matrices contain the same diagonal elements, which ex-
plains the use of the notation y0k for the elements ofY. Without loss of
generality, we can assumeY = Yd so that (6) can be rewritten as

U2W = U1WYd: (7)

Using (7), we can estimate the frequency f1k from yk by computing
the eigenvalue matrix Yd.

If we multiply the pseudoinverseUy
1
= UH

1 U1

�1

UH
1 on the left

side of (7), we can rewrite (7) as

U
y
1
U2 =WYdW

�1 =) Yd =W�1
U
y
1
U2W: (8)

Using (8), we can solve for the frequency f1k by computing the eigen-

value of Uy
1
U2. If f1k for all k are distinct, then the eigenvalue de-

composition ofUy
1
U2 will be unique. We shall discuss the case where

some of the frequencies are repeated in the sequel.
From (4), we also have E1Yd Twk = �E1Twk . To express the

generalized eigenvalue and eigenvector in matrix form in terms of the
matrix pencil, we have E1Yd TW = E1TWYd. Similar to (8), we

left-multiply both sides by the pseudoinverse of E1, denoted as Ey
1

, to
obtain

YdTW = TWYd =) T
�1
YdT =WYdW

�1
: (9)

From (8) and (9), we have

U
y
1
U2 = T�1

YdT =WYdW
�1

: (10)

From (10), we can conclude that W and T�1 contain the eigenvec-

tors ofUy
1
U2 and their corresponding columns correspond to the same

eigenvalues and therefore are proportional, which leads to (5).
We shall use the relationship in (5) to simultaneously estimate the

second frequency f2k with the estimated f1k .
Similar to the matrix pencil derivation forYd, we can derive similar

matrix pencil relations to determine the second frequency, f2k , as

U2P � �U1P =E1P (Zd � �I)T;

or (U2P � �U1P )rk = [E1P (Zd � �I)T]rk = 0 (11)

where rk is the generalized eigenvector of the matrix pencils U2P �

�U1P and E1P (Zd � �I)T. The matrix Zd is the (diagonal) gen-
eralized eigenvalue matrix for the matrix pencils U2P � �U1P and
E1P (Zd � �I)T [2]. We can rewrite (11) as

U
y
1PU2P = RZdR

�1 (12)

where Uy
1P = (UH

1PU1P )
�1UH

1P and R = [r1 r2 . . . rN ]. If
f2k’s are distinct, following the same argument as above, we can also

conclude that the matrix T�1 contains the eigenvectors of Uy
1PU2P ,

and it is related toR byRĜ = T�1 where Ĝ is a full-rank diagonal

matrix so that (12) becomes Uy
1PU2P = ĜT

�1

ZdĜT. Using
(5), the above equation can be rewritten as

U
y
1PU2P =WZdW

�1 =) Zd =W�1
U
y
1PU2PW: (13)

If there are repeated f2k’s, from (11), we still have Uy
1PU2P =

T�1ZdT, which implies Uy
1PU2P has Ns linearly independent

eigenvectors (the columns of T�1) and therefore its eigenvalue
decomposition (EVD), as indicated by (12), exists. However, R may
not be equal to T�1. Assuming there are � distinct eigenvalues,
the corresponding columns in R and T�1 are proportional if the
columns correspond to eigenvalues with multiplicity 1. In the case of
repeated eigenvalues, the corresponding columns in T�1 are linear
combination of those inR [7]. This relationship can be described by

RQ = T�1 (14)

whereQ is a block diagonal matrix of the form

Q =

Q1 0 0 0

0 Q2 0 0

0 0
. . . 0

0 0 0 Q�

: (15)

The submatrix Q� , for � = 1; 2; . . . ;�, corresponds to each distinct
eigenvalue. For the eigenvalues with multiplicity 1,Q� is a 1� 1 iden-
tity matrix. For the eigenvalues with multiplicity q > 1, and Q� is a
q�q nonsingular matrix. From (5) and (14), we haveW = RQG�1.

Applying it to (12), we haveW�1U
y
1PU2PW = GQ�1ZdQG

�1.
For the case where all f2k’s are distinct, Q is a full rank diagonal

matrix; thus, W�1U
y
1PU2PW = GZdG

�1 = Zd. For the re-
peated f2k case, Zd is a diagonal matrix with repeated diagonal ele-
ments, where the repeated diagonal elements with multiplicity q cor-
respond directly with the q � q nonsingular submatrix Q�; thus, Zd
is commutative with respect to Q, Q�1, G, and G�1. As a result,

W�1U
y
1PU2PW = Zd.

This shows that no matter whether there are repeated f2k’s or not,

Zd can be computed by premultiplyingUy
1PU2P withW�1, and then

postmultiplying withW. From (8), since the same eigenvector matrix
is also used to compute Yd, the diagonal elements of Zd must corre-
spond directly to those inYd. From Zd, we can extract the frequency
f2k. As a result, we can estimate f1k and f2k simultaneously.

B. Repeated f1k’s

Assume that there are 	 distinct eigenvalues inYd. Similar to (14),
we have

WQ = T�1 (16)
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whereQ is also a block diagonal matrix of the form

Q =

Q1 0 0 0

0 Q2 0 0

0 0
. . . 0

0 0 0 Q	

: (17)

The square matrixQ , for = 1; 2; . . . ;	, is a q�q nonsingular ma-
trix that corresponds to each distinct eigenvalue of multiplicity q. From

(14) and (16), we haveW = RQQ
�1

. Applying it toUy1PU2P , we

have W�1U
y
1PU2PW = QQ�1ZdQQ

�1
= QZdQ

�1
. Decom-

posing Zd according to the eigenvalues inYd as

Zd =

Z1 0 0 0

0 Z2 0 0

0 0
. . . 0

0 0 0 Z	

whereQ and Z have the same size; then we have

QZdQ
�1

=

Q1Z1Q
�1

1 0 0 0

0 Q2Z2Q
�1

2 0 0

0 0
. . . 0

0 0 0 Q	Z	Q
�1

	

:

(18)

In the case where the eigenvalues in Yd have multiplicity 1, Q is

an identity matrix of size 1� 1; therefore, Q Z Q
�1

 = Z . The
eigenvalues inYd andZd form a pair of estimated frequencies. In other
cases where the eigenvalues inYd have multiplicity q > 1,Q andZ 
are matrices of size q � q. DefiningA = Q Z Q

�1

 , we conclude
that the corresponding z can be estimated as the eigenvalues of A .
Our conclusion is based on the fact that 1) the diagonal elements inZ 
are distinct and they are the eigenvalues ofA and 2) the q� q matrix
A cannot have more than q eigenvalues.

We use a simple example to illustrate how the algorithm is imple-
mented. Assuming there are three distinct eigenvalues in Yd and one
of them is repeated, that isYd = diag(y1; y2; y3; y3). As a result, (18)
becomes

Q ZdQ
�1

=

z1 0 0

0 z2 0

0 0 A3

where

A3 = Q3

z3 0

0 z4
Q
�1

3 :

.z3 and z4 can be obtained by computing the EVD of A3 where the
eigenvalues are z3 and z4. Therefore, (y1; z1) and (y2; z2) form two
frequency pairs and (y3; z3) and (y3; z4) form the other two.

C. Summary of Algorithm

1) Form the enhanced matrix, Xe using the observed data. Perform
singular value decomposition (SVD) onXe to obtain the matrices
Us, U1, U2, U1P , and U2P .

2) Perform an EVD on the matrix Uy1U2 to obtain the (diagonal)
eigenvalue and eigenvector matrix Yd and W, respectively.
diag(Yd) corresponds to the frequency f1k .

3) Check if there is any repeated frequencies, f1k . The following
detection test can be used: if (yk+1 � yk)=yk < 
, then yk+1
and yk are identical, where 
 is a predefined threshold.

Fig. 1. MEMP: Two hundred independent estimates of three 2-D frequencies
forK = L = 6, SNR = 20 dB when none of the incorrect pairs were thrown
away.

4) Apply the eigenvector matrix, W, to Uy1PU2P to obtain Zd =

W�1U
y
1PU2PW. diag(Zd) corresponds to the frequency f2k if

there are no repeated f1k’s. If there are repeated f1k’s, then for
each repeated eigenvalue yk , extract the corresponding blockAk
in Zd. Perform an EVD on Ak . Each eigenvalue of Ak and yk
corresponds to a pair of estimated frequencies.

III. RESULTS

The observed signal in the following simulations is of the form

x(m;n) =

3

k=1

exp fj2�f1km+ j2�f2kng+ �(m;n); (19)

for 0 � m � 19 and 0 � n � 19. The noise signal �(m;n) is white
Gaussian distributed. We shall use the frequency pairs (f11; f21) =
(0:26; 0:24), (f12; f22) = (0:24; 0:24), and (f13; f23) = (0:24; 0:26)
to illustrate the pairing problem that exists in the MEMP method and
to show the estimation accuracy of our technique compared to that of
the MEMP method and the 2-D ESPRIT method. Computational com-
plexity between the MMEMP, the MEMP method and the 2-D ESPRIT
method will also be compared. The signal-to-noise ratio (SNR) is de-
fined as SNR = 10 log(1=�2�). Note that the definition of SNR here
is different from [4] where the authors in [4] assumed that the signal
power is equal to Ns rather than 1, as it is the case here.

In order to directly compare with the MEMP results in [2], [3], the
modified enhanced matrix Xee [Xee PeX

�

e ] ([2, eq. (5.7)]) is
used in place of Xe for the MMEMP and 2-D ESPRIT methods to
compute the frequencies f1k and f2k .

A. Pairing Problem With MEMP

The pairing operation in the MEMP method does not always render
the correct pairing result because it is a correlation maximization algo-
rithm. Fig. 1 shows the result for the MEMP method whenK = L = 6
with SNR = 20 dB. As illustrated from the figure, the wrong pair (0.26,
0.26) was obtained using the MEMP method. The MMEMP method
never experienced such a problem since the frequency pairs were esti-
mated simultaneously using the same eigenvector matrix.

Next, we will compare the frequency estimation results using our
MMEMP method developed in Section II with the MEMP method
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Fig. 2. Two hundred independent estimates of three 2-D frequencies forK =

L = 3, SNR = 20 dB. From top to bottom: MMEMP, MEMP, and 2-D ESPRIT.

from [2] and the 2-D ESPRIT method in [4]. To obtain a fair compar-
ison, only correct pairing results from the MEMP method were used.
For the 2-D ESPRIT method, the parameter � is set to 0.8 as sug-
gested in [4]. For other frequency pairs, however, another value for �

Fig. 3. Two hundred independent estimates of three 2-D frequencies forK =

L = 8, SNR = 20 dB. From top to bottom: MMEMP, MEMP, and 2-D ESPRIT.

might be needed to ensure that the combined matrices do not have re-
peated eigenvalues such that accurate frequency estimates can be ob-
tained. As a result, the selection of a correct � value will either compli-
cate the algorithm or reduce the estimation accuracy. The variance of
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TABLE I
BIAS, DEVIATION AND CRB FOR THE MMEMP, MEMP, AND 2-D ESPRIT METHODS FOR 200 INDEPENDENT ESTIMATES FORK = L = 6, 8, SNR = 20 dB

the estimates from the MMEMP method will also be compared to the
Cramér–Rao bound (CRB) derived in [2].

B. Estimation Results

Figs. 2 and 3 show the estimation results for 200 independent esti-
mates when the SNR = 20 dB with K = L = 3 and 8. From the fig-
ures, asK andL increase, the estimates become more accurate. Table I
tabulates the bias and deviation (square root of the estimate’s variance)
of the estimates for the MMEMP, MEMP and 2-D ESPRIT methods
and compare the deviation with the CRB when the SNR = 20 dB with
K = L = 6 and K = L = 8. The results shown are averaged over
200 independent estimates. Note that the results for the MEMP method
from Table I are comparable to those of [3], which are the corrected
results of [2]. The results from the table reaffirm the results from the
figures that as K and L increase, the estimates from all techniques be-
come more accurate. As described in [2], this phenomenon can be in-
tuitively explained by the inflating noise subspace concept because the
noise subspace is expanded by increasing K and L so that more noise
components are absorbed inside the noise subspace which result in in-
creasing accuracy.

Figs. 4 and 5 show similar results for 200 independent estimates
when the SNR = 10 dB with K = L = 3 and 8. As seen from the
figures, the estimates are not as good as those in Figs. 2 and 3 when
the SNR is 20 dB. When K = L = 3, none of the three methods can
accurately estimate the frequencies. When K and L are increased to
8, both the MMEMP and MEMP are able to estimate the frequencies,
albeit having a larger variance than that of the SNR = 20 dB case.
However, the 2-D ESPRIT method fails to estimate all the frequency
pairs accurately. This can be seen clearly from part (c) of Figs. 4 and
5 which is a zoom in picture of the estimates using the 2-D ESPRIT
method.

As seen from Figs. 2–5, the estimation performance of the proposed
MMEMP algorithm is comparable to that of the MEMP and it out-
performs the 2-D ESPRIT method for low SNRs. This is shown more
clearly by observing Table II where the performance for MMEMP,
MEMP and 2-D ESPRIT are compared for the case of K = L = 8

with the SNR = 10 dB with � = 0:8 for the 2-D ESPRIT algorithm.
From the table, not only is the estimation performance better for the
MMEMP algorithm when compared to the 2-D ESPRIT algorithm, the
estimates from the MMEMP also have less bias than that of the 2-D
ESPRIT algorithm. Similar estimation performance between MMEMP
and MEMP is expected because both algorithms extract the frequency
information from the eigenvalue matrix of the matrix pencil. However,
as we shall show below, the computational complexity of the MMEMP
method is lower than that of the MEMP because the pairing procedure
is eliminated. The 2-D ESPRIT method alleviates the pairing problem
by linearly combining two matrices that have repeated frequencies in

order to obtain a unique EVD for the repeated frequencies. As a re-
sult, the 2-D ESPRIT method does not require any pairing algorithm.
However, the combined matrix in the 2-D ESPRIT method does not
always have a unique EVD in the case of repeated frequencies and it
requires the parameter � to be set to the correct value in order to obtain
the correct decomposition. The criteria for choosing the right � was
never discussed in [4]. This factor mainly attributed to less accurate
estimates from the 2-D ESPRIT method as compared to the MMEMP
and MEMP methods.

C. Complexity Analysis

Despite the similarities between the MMEMP and MEMP method,
the MMEMP has an advantage in terms of computational complexity
because it does not require an additional EVD to obtain Zd. Also it
does not require a pairing operation because the components extracted
fromZd are already matched up with components fromYd. Therefore,
we expect the MMEMP method to have less computational complexity
than the MEMP method. The computational complexity of the 2-D ES-
PRIT method is similar to the MMEMP method since it requires the
construction of the Hankel matrix and similar EVDs. However, as we
shall illustrate below, the 2-D ESPRIT method requires an additional
eigenvector multiplication in one of its steps.

For the three methods, an SVD is performed on the enhanced matrix
Xe of dimensionKL�(M�K+1)(N�L+1) to extract the signal
space matrixUs. Assuming the fast method proposed in [2] is used, the
number of multiplications is [6] 2KL (M � (K=2)) (N � (L=2)) +
5K3L, for K � 1 and L� 1. As an engineering approximation, the
much larger notation � means at least ten times larger. This implies
that K and L should be at least 10 for the complexity estimation to be
valid. To simplify our simulation and keeping this assumption valid,
we have chosen K and L to have a maximum value of 8. In fact, as
stated in [2], the optimum value for K and L that maximize the noise
subspace are K = (M + 1)=2 and L = (N + 1)=2. Since M and N
are often very large, in order to keep the computational complexity to
be tolerable, [2] suggested to chooseK andL in the range ofNs+1 �
K � (M + 1)=2 and Ns + 1 � L � (N + 1)=2.

Instead of performing two EVDs as in the MEMP method, the

MMEMP performs only one for the Uy
1
U2 matrix plus two multipli-

cations between the eigenvector matrices of Uy
1
U2 and Uy

1P
U2P .

Obtaining the matrices Uy
1
U2 and Uy

1P
U2P requires 3N2

sKL
number of multiplications. Assuming the QZ algorithm [6] is also
used for the EVD, it requires 5N3

s number of multiplication. Finally,
the multiplications of the two eigenvectors require an additional 2N3

s

multiplications resulting in 3N2

sKL+7N3

s number of multiplications,
assuming that there are no repeated frequencies and K > Ns � 1
and L > Ns � 1. If there are repeated frequencies, depending on
how many different sets of repeated frequencies exist, each set will
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Fig. 4. Two hundred independent estimates of three 2-D frequencies forK =

L = 3, SNR = 10 dB. From top to bottom: MMEMP, MEMP, and 2-D ESPRIT
(zoomed in).

require an additional EVD, which will add an additional 5N3

s
number

of multiplications. In the 2-D ESPRIT method, an extra eigenvector
multiplication has to be carried out to decompose the two matrices, F1

Fig. 5. Two hundred independent estimates of three 2-D frequencies forK =

L = 8, SNR = 10 dB. From top to bottom: MMEMP, MEMP, and 2-D ESPRIT
(zoomed in).

and F0

2, which results in an additional 2N3

s
multiplications compared

to the MMEMP method, making the total number of multiplications
to be 3N2

s
KL + 9N

3

s
.
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TABLE II
BIAS, DEVIATION AND CRB FOR THE MMEMP, MEMP, AND 2-D ESPRIT METHODS FOR 200 INDEPENDENT ESTIMATES FORK = L = 8, SNR = 10 dB

TABLE III
NUMBER OF MULTIPLICATIONS FOR THE MMEMP, MEMP AND 2-D ESPRIT METHODS ASSUMING NO REPEATED FREQUENCIES

Table III summarizes the complexity of each of the operations for
the MMEMP, MEMP and 2-D ESPRIT methods whenK > Ns � 1,
L > Ns � 1,M , N � 1. According to the table, the computational
saving for our MMEMP method comes from performing one less EVD
(3rd column in the table) when compared to the MEMP method, in the
case when there are no repeated frequencies, and the elimination of
the pairing operation. Since the parameters K and L are greater than
the total number of components Ns, the computational complexity of
our algorithm is comparable to that of the 2-D ESPRIT. Depending
on how many sets of repeated frequencies there are, the complexity
of the MMEMP might become comparable or even exceeds that of the
MEMP and 2-D ESPRIT methods. However, for the MMEMP method,
only additional EVDs are needed. Since the MMEMP algorithm does
not require any search procedure, vector machine can be used in the
implementation to speed up the computation. While the pairing oper-
ation in MEMP is a searching algorithm, using a vector machine will
not provide any performance gain.

IV. CONCLUSION

We have proposed the modified matrix enhancement and matrix
pencil method to deal with the 2-D frequency estimation problem.
We have shown that our pairing technique always yields the correct
frequency pairs as opposed to the MEMP and 2-D ESPRIT methods
when there are repeated frequencies. For the 2-D ESPRIT method,
an appropriate parameter � is required to be initiated before accurate
results can be obtained. In the case of low SNR, e.g., SNR = 10 dB,
our results show that the MMEMP and MEMP methods outperform
the 2-D ESPRIT method in terms of estimation accuracy. Our results
also show that if there are no repeated frequencies, then the MMEMP
is computationally less complex than the MEMP method and of
comparable complexity to the 2-D ESPRIT method.
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