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Abstract—A novel 1000 ◦C-stable IrxSi gate on HfSiON is
shown for the first time with full process compatibility to current
very-large-scale-integration fabrication lines and proper effective
work function of 4.95 eV at 1.6-nm equivalent-oxide thickness.
In addition, small threshold voltages and good hole mobilities
are measured in IrxSi/HfSiON transistors. The 1000 ◦C thermal
stability above pure metal (900 ◦C only) is due to the inserted
5-nm amorphous Si, which also gives less Fermi-level pinning by
the accumulated metallic full silicidation at the interface.

Index Terms—Full silicidation (FUSI), HfSiON, IrxSi.

I. INTRODUCTION

TO CONTINUE down-scaling very-large-scale-integration
(VLSI) technology and increase the integration density,

high-κ gate dielectrics are needed for MOSFETs to reduce
the large dc power consumption from gate leakage current
[1]–[10]. In addition, metal gates are required to eliminate poly
gate depletion. However, metal-gate/high-κ CMOSFETs show
undesired high threshold voltages (Vt), which is opposite to
the VLSI scaling trend. This phenomenon is known as “Fermi-
level pinning” [1], although the background physics may be
attributed to interface dipole and/or charged defects [1], [8]. To
compensate this Fermi-level pinning effect, high-work-function
metal electrodes larger than the 5.2 eV of p+ poly-Si are
needed. However, only Ir (5.27 eV) and Pt (5.65 eV) in the
Periodic Table [11] can meet this requirement, which make the
metal-gate/high-κ p-MOSFETs especially challenging [1], [2].
Ir is more preferable than Pt due to a simpler etching process
by reactive ion etching [12], [13]. Unfortunately, large metal
diffusion through high-κ dielectrics was found in pure Ir gates
after 1000 ◦C rapid thermal annealing (RTA), which caused
p-MOS device failures [7], [8]. Previous attempts by using Ir–N
to improve the thermal stability also failed due to weak Ir–N
bonding strengths, where Ir–N decomposition and penetrating
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high-κ dielectrics were found after high-temperature RTA [8].
Another possibility is using low-temperature full silicidation
(FUSI) gates [3]–[9]. However, the p-MOS devices incorporat-
ing high work function PtxSi or IrxSi still failed to integrate
into the CMOS SALICIDE process due to the lack of required
selective wet etching of Pt or Ir during SALICIDE.

To overcome this problem, we have proposed and demon-
strated a new high-temperature stable IrxSi FUSI gate on
high-κ HfSiON. This is different from the low-temperature
FUSI process [3]–[6] since it is formed first before ion im-
plantation and undergoes 1000 ◦C RTA thermal cycle for
implant activation. To achieve this high-temperature stability
goal, additional Si was inserted between Ir and high-κ HfSiON,
where less Fermi-level pinning was obtained by forming
Ir-rich IrxSi gates. High-κ HfSiON also has good metal-
diffusion barrier property [14], [15], which is similar to our
previous HfAlON [7], [8], but it has the important advan-
tage of better compatibility with currently used SiON gate
dielectric with added Hf for higher κ value. After 1000 ◦C
RTA, IrxSi/HfSiON p-MOSFETs show good device integrity
of a high effective work function (φm-eff) of 4.95 eV, a small
Vt of −0.15 V, and a peak hole mobility of 84 cm2/V · s.
These results are compatible with and even better than the best
reported metal-gate/high-κ p-MOSFETs [5]–[9].

II. EXPERIMENTAL PROCEDURE

The gate-first IrxSi/HfSiON p-MOSFETs were fabricated
on 12-in N-type Si wafers with resistivity of 1–10 Ω · cm.
After RCA cleaning, 4-nm HfSiO dielectric (Hf/(Hf + Si) =
50%) was deposited by atomic-layer deposition. HfSiON gate
dielectric was formed by applying NH3 plasma surface nitrida-
tion on HfSiO [16]. After postdeposition annealing, 5–30-nm
amorphous Si and 20–30-nm Ir were deposited by physical
vapor deposition (PVD) [7]. For Ir/Si/HfSiON capacitors, a
1000 ◦C RTA was applied for 10 s to form IrxSi gates. For
MOSFETs, additional 400-nm Si was deposited on top of Ir/Si
to avoid ion implantation penetrating through the thin Ir/Si.
After gate definition, Boron was implanted at 25-KeV energy
and 5 × 1015 cm−2 dose, and activated at 1000 ◦C RTA for
10 s. Meanwhile, IrxSi was also formed during RTA, where
the x = 3 was determined by X-ray diffraction measurements.
Note that this process is different from the low-temperature
FUSI process [3]–[6], and such a simple self-aligned process
is fully compatible to current VLSI lines. Secondary ion-mass
spectroscopy (SIMS) was measured to study the Ir distribution
profile. The fabricated p-MOSFETs were further characterized
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Fig. 1. C–V characteristics of HfSiON/n-Si with IrxSi-, Ir-, and Al-gate
capacitors. The device areas are 100 × 100 µm.

by capacitance–voltage (C–V ) and current–voltage (I–V ) mea-
surements. For comparison, Al and Ir-gated MOS capacitors on
HfSiON were also fabricated. To prevent the different oxide
charge from causing error in φm-eff extraction, HfSiON was
subjected to the same thermal cycle (1000 ◦C RTA for 10 s)
before Al gate deposition.

III. RESULTS AND DISCUSSION

Fig. 1 shows the measured C–V characteristics of IrxSi,
Ir, and Al gates on HfSiON MOS devices. Low-temperature
Al-gated HfSiON capacitors were used as a reference because
pure metal deposited at low temperature has little interface
reaction with high-κ dielectrics to cause Fermi-level pinning
[10]. In addition, the flatband voltage (Vfb) is expressed as

Vfb =φms − Qf/Cox

=(φm − φs) − (Qf/εokox)tox
=(φm − φs) − (Qf/εokSiO2)EOT (1)

where φm and φs are the work functions for metal gates and
Si, respectively. Qf , Cox, tox, and equivalent-oxide thickness
(EOT) are the oxide charge, capacitance, physical thickness,
and EOT for high-κ dielectrics, respectively. Since HfSiON
has the same thermal cycle (1000 ◦C RTA for 10 s) before Al
gate formation, the Qf effect should be similar to FUSI gates.
Therefore, the principal effect of Vfb shift might be due to the
difference of effective φm. In comparing with the conventional
φm-eff extraction from Vfb-tox or Vfb-EOT plot, this method
uses a simple process without fabricating MOS devices with
various tox and measuring the thickness carefully by transmis-
sion electron microscopy (TEM). Since the capacitance value
or EOT of ∼1.6 nm is the same for various gated HfSiON ca-
pacitors, the shifts of C–V curves with different gate electrodes
are attributed to the different work functions. Ir/HfSiON after
900 ◦C RTA has a large Vfb shift of 1.15 V to control low-
temperature Al gates (4.1 eV φm-eff ), which gives the required
high φm-eff of 5.25 eV. This work-function value is also close
to the reported 5.27 eV for Ir [11], indicating no pinning effect
in pure metal Ir gates. This is due to weak bonding strengths
of Ir–O or Ir–N that reduce the Fermi-level-pinning-related
interface reaction [8]. However, Ir/HfSiON capacitors failed
after 1000 ◦C RTA. To improve thermal stability, additional

Fig. 2. J–V characteristics of HfSiON/n-Si with IrxSi-, Ir-, and Al-gate
capacitors.

amorphous Si of 5–30 nm was inserted between Ir and HfSiON.
Good C–V characteristics were measured for IrxSi/HfSiON
devices after the required 1000 ◦C RTA for implant activation,
although thermal stability was traded off at the Fermi-level
pinning caused by the Si/HfSiON interface reaction. However,
the continuously increasing Vfb toward the value of pure Ir gates
was observed by decreasing the inserted amorphous Si layer,
and a high φm-eff of 4.95 eV was obtained for IrxSi/HfSiON
devices with the inserted 5-nm amorphous Si. This 4.95 eV
φm-eff is significantly larger than Ni3Si/HfSiON [6]. This result
is also slightly better than previous IrxSi/HfAlON [7] due to
thinner amorphous Si on high-κ dielectrics. Slow depletion for
IrxSi/HfSiON devices with 30-nm amorphous Si may be due
to nonuniform silicidation as examined by TEM, where locally
unreacted Si was found to cause voltage drop in gate electrodes.
The formation of FUSI gates is evident from the same inversion
and accumulation capacitances measured in MOSFETs.

Fig. 2 shows the J–V characteristics of IrxSi, Ir, and Al gates
on high-κ HfSiON devices. After 1000 ◦C RTA, Ir/HfSiON
devices failed due to large leakage current. In sharp contrast,
IrxSi gates on HfSiON showed successfully improved thermal
stability to 1000 ◦C RTA, which is evident from low leakage
current comparable with p+ poly-Si gates [17]. Here, high-
temperature thermal cycle is required for dopant activation after
ion implantation.

The measured large Vfb shift of IrxSi is supported by SIMS
profile, as shown in Fig. 3. Here, Ir segregation toward amor-
phous Si was measured to form IrxSi on HfSiON surface.
Such FUSI formation directly on high-κ dielectrics is known
to reduce Fermi-level pinning [6]–[8]. Therefore, good thermal
stability of 1000 ◦C RTA, a reasonable high φm-eff of 4.95 eV,
and a low gate dielectric leakage current can be simultaneously
achieved in IrxSi/HfSiON MOS capacitors. To the best of our
knowledge, this is the highest reported φm-eff in high-κ Hf-
based oxide [5]–[8]. These are the few methods to achieve
a high φm-eff in Hf-based oxide p-MOS devices. Although
the Vfb tuning can be reached by impurity segregation in
FUSI/SiON, this method becomes less useful in high-κ metal
oxide due to the stronger interface reaction. In the following,
we will study IrxSi/HfSiON devices with the thinnest 5-nm
amorphous Si. This is because the Vfb of thicker Si layer is too
low for p-MOSFET application.
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Fig. 3. SIMS profile of Ir3Si gates on HfSiON at different RTA temperatures.
The Ir3Si that accumulated toward HfSiON interface is found to unpin the
Fermi level.

Fig. 4. Id–Vd characteristics of Ir3Si/HfSiON p-MOSFETs.

Fig. 4 shows the transistor Id–Vd characteristics as a function
of Vg-Vt for 1000 ◦C RTA IrxSi/HfSiON p-MOSFETs. The
well-behaved Id–Vd curves of IrxSi/HfSiON transistors show
little device performance degradation.

Fig. 5 shows the Id–Vg characteristics of IrxSi-gated
p-MOSFETs with HfSiON as the gate dielectric. A small Vt as
low as −0.15 V is obtained from the linear Id–Vg plot, which
is consistent with the large φm-eff of 4.95 eV from C–V curves
and the Ir accumulation on HfSiON from SIMS.

Fig. 6 shows the extracted hole mobilities versus gate elec-
tric fields from the measured Id–Vg data of IrxSi/HfSiON
p-MOSFETs. High hole mobilities of 84 and 53 cm2/V · s
are obtained at peak value and 1 MV/cm effective field for
IrxSi/HfSiON p-MOSFETs, respectively, which is compatible
with the published data in the literature [5]–[8]. Good hole
mobilities also indicate low Ir diffusion through HfSiON to
inversion channel, even though excess Ir is necessary to pre-
vent unreacted amorphous Si from causing gate depletion or
increased Fermi-level pinning. Therefore, a high φm-eff , a small
Vt, and good hole mobilities are simultaneously achieved in
IrxSi/HfSiON p-MOSFETs with additional merit of process
compatible to current VLSI lines.

Fig. 5. Id–Vg characteristics of Ir3Si/HfSiON p-MOSFETs.

Fig. 6. Extracted hole mobilities from Id–Vg characteristics of Ir3Si/HfSiON
p-MOSFETs.

IV. CONCLUSION

Good device performance of IrxSi/HfSiON p-MOSFETs is
shown by a high φm-eff of 4.95 eV, a small Vt of −0.15 V,
a peak hole mobility of 84 cm2/V · s, and 1000 ◦C RTA
thermal stability with the advantage of full process compatible
to current VLSI lines.
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