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Abstract

Using porous anodic aluminum oxide as template and petroleum pitch as precursor, a massive amount of uniform carbon nanofibers
was obtained after thermal treatment. The diameter and length were 300 nm and 60 lm, respectively. The difference between these and
the classic herringbone structure is that the angle between the graphenes and the fiber axis increases regularly along the axis instead of
being fixed. TEM observations show that the nanofiber consists of stacked conical graphenes with cone angles that steadily increase from
60� to 180� along the fiber axis. This structure is the first to be produced without using catalytic CVD, and has not been reported using
template procedures. The large deformation of the graphene planes at the tip of the nanofiber may produce interesting electronic
applications.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoscale carbon materials have attracted great inter-
disciplinary attention for the development of novel applica-
tions [1–7], due to their unique anisotropic properties. By
conventional catalytic CVD, diverse one-dimensional car-
bon nanoforms have been successfully synthesized, but
avoiding encapsulating the metal catalyst into the product
is a major obstacle [8–12]. Recently, the technique of using
porous oxide as the template in the synthesis of carbon
nanomaterials has progressed rapidly. The template
method has many significant advantages such as its non-
residual catalysts, morphological controllability, micro-
structure, and the electrically conducting behavior of the
product can even be manipulated by utilizing the anchoring
effect [18,19,26,27]. Recent works indicate that when using
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polycyclic aromatic hydrocarbons (PAHs) as precursor,
relatively highly graphitized carbon nanomaterials can be
obtained [13–16], whereas an amorphous microstructure
will be formed by choosing an olefin as the carbon source
[4,20,21]. There are two types of anchoring, edge-on and
face-on, which influence the arrangement of graphenes
inside the product. All reported products from various
PAHs precursors have the same characteristic, with the ori-
entation of graphenes tending to be perpendicular to the
long axis [14–17]. The results are fully consistent with the
edge-on anchoring effect.

Here we report a herringbone-type carbon nanofiber,
built from a stack of conical graphenes which is obtained
by this template method. The current herringbone-type
carbon nanoforms are always synthesized by the catalytic
CVD method, with the orientation of the graphenes incline
to the long axis at approximately fixed angle [10]. The dif-
ference between the classical herringbone structure and our
nanofiber is that the orientation of the graphenes with
respect to the fiber axis changes constantly in our product.
Usually this type of carbon form has a tapered end, and in
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theory this end possesses localized states at the Fermi level
which may exhibit unusual electronic properties. Herring-
bone-type nanomaterials have the potential to develop
novel electronic devices, field emission sources and elec-
trode materials [6,7,22–27].
2. Experimental

The precursor is isotropic petroleum pitch (A-240, Ashland Inc.) com-
posed of hetero-polycyclic aromatic hydrocarbons units. The template is
the commercial porous anodic alumina (from Whatman Ltd.). A holder
with four cylindrical concavities is used to support the template and the
powdered pitch. The powdered precursor is placed on the template. After
inserting the holder into a tube furnace, the temperature was held at
300 �C for a half hour in flowing Ar to soften the precursor. The liquid
phase pitch was pulled into the channels by capillary attraction. Afterward
it was gradually raised to 700 �C in 2 h for the pyrolysis process, and then
the system was cooled down naturally. The template was removed by
immersing in 48% hydrofluoric acid for 12 h. The residual sample was
washed and then oven-dried at 120 �C. The high-temperature treatment
was performed by a graphitization furnace with a maximal temperature
of 2500 �C. The experimental process is illustrated in Fig. S3. The prod-
ucts were characterized by scanning electron microscope (SEM, JEOL
JSM-6500F at 15 kV) and high-resolution transmission electron micro-
scope (HRTEM, JEOL JEM-2010 and Philips TECNAI 20 at 200 kV).
The qualitative analyses were performed by using X-ray diffractometry
(XRD, Shimadzu XRD-6000) and Raman spectroscopy (JOBIN YVON
T64000).
Fig. 1. (a) X-ray diffraction pattern and (b) Raman spectrum for
thermally treated samples. The inset in Fig. 1a is an expanded plot
showing fibers related to different pyrolysis temperatures.
3. Results and discussions

The sample used for studying the structure details was
synthesized at 700 �C and graphitized at 2500 �C. The
degree of graphitization was identified by XRD, as shown
in Fig. 1a. When the treatment temperature was under
1000 �C, the major peaks of the products at around
2h = 26�, 42� and 44� were assigned to the (00 2), (100)
and (101) planes of bulk graphite. After treating at 1500
or 2500 �C, the intensity of the peak at 26� became notably
stronger. Compared with the intensity of the (002) plane,
the diffraction due to the (10 0) and (101) planes are almost
invisible. Simultaneously two more peaks developed at 54�
and 77�, which are assigned to the (004) and (110) planes,
respectively. The graphitization can also be quantified by
the ID/IG ratio from Raman spectroscopy, as shown in
Fig. 1b [13]. The ID/IG ratio of the graphitized product is
0.251, which is lower than that of conventional multi-
walled CNTs (ID/IG = 0.86).

The treated product was examined by electron micro-
scope. After pyrolysis at 700 �C, the products were com-
posed of bundles of fibers, as shown in Fig. 2a. The
diameter and length of these bundles were around
300 ± 50 nm and 60 lm, respectively. The inset in Fig. 2a
demonstrates that some fibers could be bent to 180�,
suggesting flexibility. The dimensions of the product corre-
spond to the channel size of the template, implying that
the liquid phase pitch was completely pulled into the chan-
nels by capillarity. From Fig. 2b, the top-view image of the
inset, the product seems to be tubular. But it actually has a
solid interior with a concave end indicated by the arrow;
thus the product should be regarded as a fiber. The carbon
yield of the pitch pyrolysis reaction is about 46%. The for-
mation mechanism of the concave end is ascribed to the
higher capillary affinity between the surface of the template
and the liquid phase pitch. After treating at 2500 �C, the
structure became fragile and easily fragmented (Fig. 2c),
therefore nanofibers with full length up to 60 lm were
difficult to find in the graphitized sample. The EDS analysis
revealed that the precursor contained small amount of sul-
fur which could be driven out by heating above 2000 �C.

Recent work reports that the surface anchoring states
between liquid-crystalline PAHs and substrates dominate
the microstructure of the resultant carbon materials. When
examining the as-pyrolyzed products by HRTEM, the
graphenes of the nanofiber could be observed to incline
to the fiber axis (Fig. 2d). Even after graphitization this
tendency remained unchanged (Fig. 2e). The orientational
pattern agrees with the description of the edge-on anchor-



Fig. 2. Morphologies and microstructural studies of the products: (a) SEM (b) TEM image of fibers treated at 700 �C. The inset is the top-view SEM
image. (c) SEM image of the sample after 2500 �C treatment. (d) Lattice image of the nanofiber treated at 700 �C. (e) treated at 2500 �C showing that the
graphene planes are inclined to the fiber axis (arrow). The diffraction pattern represents the (002) planes of bulk graphite and (f) Cross-sectional image of
the sample treated at 2500 �C showing that it is amorphous. The inset shows the selected area viewed from a transverse plane.
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ing effect [17–19]. Following graphitization treatment at
2500 �C, some closed loops constructed of 4 � 5 curled gra-
phitic layers on the very edge of the nanofiber appeared, as
shown in Fig. 2e. The surface energy of the graphenes tends
to be reduced by forming loops, which are more stable than
open edges at high-temperature. These closed ends are dis-
advantageous for developing applications utilizing active
sites, but these can be created by oxidizing the samples in
air flow at 600 �C for 2 h (see Fig. S2b). The interlayer
spacing between each graphene sheet is 0.342 nm, which
is slightly larger than in graphite owing to the imperfect
stacking of turbostratic graphenes. The diffraction patterns
are shown in the insert. Fig. 2f presents an oblique cross-
sectional view which implies that the nanofiber was amor-
phous, which agrees with the observation mentioned
above. In contrast, the cross-section of conventional crys-
talline CNT-like structures reveals manifest concentric cir-
cles (see Fig. S1).

Because the nanofibers easily break into a mass of frag-
ments after graphitization treatment, the lattice images of
one fragment were investigated thoroughly. A typical frag-
ment had a tapered and a funnel-shaped end with differing
inclinations. The angle at the convex tip (labeled 1) was
always slightly larger than the angle in the concave end
(labeled2), as shown in Fig. 3c. According to Fig. 3, the
graphenes in the microstructure are not normal to the fiber
axis. Along the fiber axis, the inclinations are measured to
be 99� (labeled b), 112� (c) and 157� (d). Thus the orienta-
tion of inclined graphenes changes uniformly from one end
to the other. In Fig. 3a, mirror symmetry across the central
axis composed of two groups of inclined graphenes is obvi-
ous. Combining the studies of the contours and the micro-
structure of the fragment, we can reason that the angles of
the truncated ends are directly related to the inclination of
the graphenes. For example, the angle (labeled 1) measured
in TEM is similar to the angle (labeled a) measured in the
lattice image. Sometimes a thin amorphous carbon sheath
coating the fragments might be observed. It is attributed
to the adhesion of carbonaceous impurities during the
experimental process and can be removed by oxidization
in air flow at 500 �C for 2 h (see Fig. S2a).

The stacking can also be observed by electron diffraction
patterns in the TEM. According to Fig. 4a, where the
selected area is focused on the very edge of the nanofiber,
only one group of (002) diffraction spots appear, whereas
when focused on the center, two rows of (002) single crys-
tal spots can be seen. The cross angles between the two sets
of (00 2) diffraction spots relate to the arrangement of gra-
phitic laminations in the microstructure. This signifies that
the framework of the fragment is symmetrical about the
central axis, composed of two groups of single crystalline
graphitic laminations. Fig. 4b and c indicate that the incli-
nation of the diffraction patterns coincides with the shape
of the truncated end. After surveying many fragments with
their respective diffraction patterns, the range of the incli-
nations was determined to be between 60� and 180�. Thus
the logical conclusion is that the carbon nanofiber consists
of two groups of inclined graphitic laminations of angles
between 60� and 180�.

So the microstructure of the carbon nanofiber can be
identified as herringbone-type graphite. To consider the
three-dimensionally cylindrical contour, the conventional
herringbone structured fibers can be regarded as assembled
from stacking conical graphenes with fixed cone angles.
But our nanofiber has the unique characteristic that the
angle between the graphenes and fiber axis increases regu-
larly. In other words, the nanofiber is assembled from
stacking conical graphenes with progressively varied cone



Fig. 3. Lattice images a of single carbon fragment: (a) A convex end exhibits the mirror symmetry of both sets of graphenes planes. (b) Lattice image of an
edge. (c) TEM image of a fragment. (d) Image of a shoulder and (e) Image of the concave end. The arrow with a star indicates the direction of the fiber
axis.

Fig. 4. Studies of the correlation between the microstructures and diffraction patterns: (a) Pattern focused on the centre of the fiber (left) showing a pair of
(002) planes and one series of (002) spots as focused on the edge side (right). (b) TEM image of the nanofiber. The angle of concave end (labeled 3) is
similar to the angle (labeled a) in the diffraction pattern (inset). (c) And the angle of convex end (labeled 4) is similar to the angle (labeled b) in the
diffraction pattern (inset) and (d) Scheme illustrating the microstructure of the nanofiber.
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angles. The different angles were attributed to the different
aromatic rings added on the tip of the cone. The varying
morphology is attributed to both the edge-on anchoring
effect and the capillary affinity. At the ends, the angles
between the graphene and the axis are created by the
meniscus of the liquid phase pitch in the channels due to
surface tension as injecting water into a capillary tube,
whereas in the middle of the channel the edge-on effect will
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dominate resulting in the graphene becoming normal to the
axis. After thermal treatment the conical stacking was
formed for minimizing the total energy because the conical
shape has maximum sp2 bonding which is more stable in
high-temperature. Fig. 4d illustrates the stacking form.

4. Conclusions

A novel type of herringbone-type carbon nanofiber con-
structed by stacking graphitic nanocones with different
cone angles has been successfully synthesized. The average
diameter is 300 nm, the full length 60 lm and the range of
cone angle varies continuously from 60� to 180� along the
fiber. The morphology implies that the spacing between
graphitic planes gradually becomes narrower from peri-
phery to the centre. The morphology and microstructure
of the nanofiber can be controlled based on the surface
affinity between template and the precursor. The nanofiber
might be developed for applications such as storage media,
anodes in lithium-ion cells and novel electronic devices.
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