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Abstract

A new immersed boundary (IB) technique for the simulation of flow interacting with solid boundary is presented. The present for-
mulation employs a mixture of Eulerian and Lagrangian variables, where the solid boundary is represented by discrete Lagrangian mark-
ers embedding in and exerting forces to the Eulerian fluid domain. The interactions between the Lagrangian markers and the fluid
variables are linked by a simple discretized delta function. The numerical integration is based on a second-order fractional step method
under the staggered grid spatial framework. Based on the direct momentum forcing on the Eulerian grids, a new force formulation on the
Lagrangian marker is proposed, which ensures the satisfaction of the no-slip boundary condition on the immersed boundary in the inter-
mediate time step. This forcing procedure involves solving a banded linear system of equations whose unknowns consist of the boundary
forces on the Lagrangian markers; thus, the order of the unknowns is one-dimensional lower than the fluid variables. Numerical exper-
iments show that the stability limit is not altered by the proposed force formulation, though the second-order accuracy of the adopted
numerical scheme is degraded to 1.5 order. Four different test problems are simulated using the present technique (rotating ring flow,
lid-driven cavity and flows over a stationary cylinder and an in-line oscillating cylinder), and the results are compared with previous
experimental and numerical results. The numerical evidences show the accuracy and the capability of the proposed method for solving
complex geometry flow problems both with stationary and moving boundaries.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The fluid–solid interaction problems are frequently
encountered in many engineering applications. When the
immersed object is complex and moving, the problem poses
two difficulties; namely, the accuracy of the fluid computa-
tion and the treatment of complex boundary. This accuracy
of fluid calculations can be improved by employing high
resolution schemes [1–3] or using adaptive or moving mesh
techniques such as in [4–7] to resolve the small scale struc-
tures. The other difficulty arises from the handling of the
interaction between the fluid and the immersed body which
is the major issue of this work. Traditionally, the body-
fitted or unstructured grid methods are adopted to simulate
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the flow with complex rigid boundary. However, the
computational cost and memory requirements of these
methods are generally high. Also, the modeling of complex
time evolving moving boundary flows requiring transient
re-meshing strategies increases further the computational
overhead of these methods.

Another simple alternative to tackle the complex fluid–
structure problem is to use the Cartesian grid instead of
body-fitted grid. Since the boundary now does not conform
with the Cartesian grid, the main difficulties are to model
the complex immersed boundary accurately and at the
same time maintain the solution efficiency discretized on
the Cartesian grids. One approach, the so-called Cartesian
grid method [8], tracks the boundary by identifying the
control volumes (cut cell) in the Cartesian grid that are
cut by the immersed boundary and determines the intersec-
tion of the boundary with the faces of these cut cells. More

mailto:calin@pme.nthu.edu.tw


314 S.-W. Su et al. / Computers & Fluids 36 (2007) 313–324
specifically, a control volume containing the boundary is
reshaped by discarding the region that lies within the solid
and this results in the trapezoidal shape control volume.
Due to the irregular shapes of the cut cells, complex inter-
polating procedures to approximate the fluxes must be
introduced and this unavoidably affects the computational
efficiency of the Cartesian solvers.

Instead of using the cut cell approach, one approach
also within the Cartesian grid framework, the immersed
interface method (IIM) has attracted attention recently
for the simulation of fluid flows in irregular regions. This
method was originally developed by LeVeque and Li [9]
for solving elliptic equations with discontinuous coeffi-
cients and singular sources along an arbitrary interface.
A derived jump conditions are employed near the bound-
ary, so that the sharp solutions can be achieved. The imple-
mentation of the IIM has been applied within the vorticity
and stream function formulation [10,11]. Also, based on
the work of Li and Lai [12] for the Navier–Stokes equa-
tions with singular forces, the immersed interface method
using the Navier Stokes equation with primitive variables
[13,14] has also been explored. A recent review on the
immersed interface method can be found in [15] by Li.

The complex geometry within the Cartesian grid can be
simulated by generating external force field to mimic the
immersed boundary. The immersed boundary (IB) method
proposed by Peskin [16,17], has been applied successfully to
blood–valve interaction and other biological problems. The
proposed immersed boundary formulation employs a
mixture of Eulerian and Lagrangian variables, where the
immersed boundary is represented by a set of discrete
Lagrangian markers embedding in the Eulerian fluid
domain. Those markers can be treated as force generators
to the fluid, and meanwhile move along with the fluid.
The interaction between the Lagrangian markers and the
fluid variables defined on the fixed Eulerian grid is linked
by a well-chosen discretized delta function. Although the
IB method is developed to handle mostly the fluid problem
with elastic structures, it has also been used to simulate the
flow with rigid boundaries or structures. Lai and Peskin [18]
proposed a new formally second-order accurate immersed
boundary method to simulate flows past a rigid cylinder.
The rigid boundary is simply mimicked by a stiff spring con-
necting the boundary points to their target positions and the
boundary force is generated by the deviation of the markers
from their target positions. Since this feedback force is com-
puted and distributed into the fluid at the beginning of each
time step, the problem becomes very stiff which has the con-
sequence of the small time step. Besides, the force generates
oscillations along the surface of the boundary.

Also adopting the mixture of Eulerian and Lagrangian
variables, Goldstein et al. [19,20] proposed the virtual
boundary method to simulate the flow with solid boundary
within the spectral method framework. The solid boundary
is treated as a force generator where the force field is calcu-
lated by a feedback method based on the difference
between the predicted velocity and the actual velocity of
the boundary. However, in order to prevent the generation
of the spurious oscillations in simulating the start-up flow
around a cylinder, the magnitude of the CFL number has
been kept below O(10�2). The feedback force of Goldstein
et al. was also adopted by Saiki and Biringen [21] using
the finite difference formulation. The distribution of the
boundary force to the grid points was achieved by the
area-weighted average function. This same function is used
to interpolate the fluid velocity to the boundary points. A
very good agreement has been found between their numer-
ical computations and experimental results for the simula-
tion of flow around a cylinder. However, the time step
restriction of the method is similar to the scheme proposed
by Goldstein et al. [19] and an excessive number of surface
points O(1000) were used to model the immersed boundary
even for two-dimensional flows.

In [23], Silva et al. calculated the momentum forcing
along the immersed boundary using the pressure and veloc-
ity derivatives interpolated by a second-order Lagrange
polynomial approximation. Once the momentum forcing
at the boundary points has been calculated, they are dis-
tributed over the Eulerian grid by the discrete delta func-
tion. The whole numerical scheme is very similar to the
immersed boundary method of Lai and Peskin except the
evaluation of the forcing term. While Silva et al.’s
approach is ideally simple, the calculations of momentum
forcing at the boundary points are quite complex.

Without adopting the Lagrangian markers, Mohd-
Yusof [24] proposed a direct forcing method within the
spectral framework, where direct momentum forcing is
applied to a set of points adjacent to the surface and inte-
rior to the body, which is equivalent to the direct imposi-
tion of the velocity boundary conditions on the Eulerian
grids to ensure the no-slip condition at the immersed
boundary. Therefore, information regarding the locations
of the Eulerian grids either external or internal to the
immersed boundary must be determined. The major
advantage of the method is that since the force field is
directly computed from the momentum equations, so that
the time step can be larger than the previous methods.
Fadlun et al. [25] further extended the Mohd-Yusof
approach to a finite-difference formulation on a stagger
gird system, where direct forcing or velocity boundary con-
dition is applied along the first Eulerian grid external to the
immersed boundary. Although this velocity boundary con-
dition is obtained by linear interpolation procedure, the
choice of interpolation direction is arbitrary.

Based on the concept of direct forcing, Kim et al. [26]
introduced both the momentum forcing and mass source/
sink to properly represent the immersed body. The momen-
tum forcing and the mass source/sink are applied only on
the body surface or inside the body so that the no-slip
boundary condition on the immersed boundary and the
continuity for the cell containing the boundary are both sat-
isfied. Since the immersed boundary in general does not
coincide with the grid points, an interpolation scheme for
computing the momentum forcing must be employed.
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Fig. 1. Flow domain (X) with an immersed boundary (C).
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Tseng and Ferziger [27] extended the idea of Fadlun et al.
via a ghost cell approach. The immersed boundary is repre-
sented by piecewise linear segments and the ghost cells are
defined to lie just inside the body but adjacent to computa-
tional grids of the fluid domain. The values of fluid variables
at those ghost cells are obtained by extrapolation using a
local quadratic scheme which involves the neighboring flow
nodes and the associated velocity boundary condition.

It can be summarized that the major drawback of the
existing Eulerian Lagrangian based IB techniques to
simulate solid boundary flows is the restriction of small
CFL number due to the spring or feedback force formula-
tions employed, despite the simple interpolation procedure
used to link the Lagrangian marker and the Eulerian grids.
On the other hand, though the existing direct forcing
approaches can compute flows using a larger time step,
the determinations of the forcing locations and their mag-
nitudes may not be straightforward on the Eulerian grids,
especially for time evolving moving boundary flows. Com-
bining the merits of the above two approaches, a new
immersed boundary (IB) technique for the simulation of
flows interacting with solid boundary is proposed.

The present formulation employs a mixture of Eulerian
and Lagrangian variables, where the solid boundary is
represented by discrete Lagrangian markers embedding in
and exerting forces to the Eulerian fluid domain. Based
on the direct momentum forcing on the Eulerian grids, a
new force formulation on the Lagrangian marker is pro-
posed, which ensures the satisfaction of the no-slip bound-
ary condition on the immersed boundary. The interactions
between the Lagrangian markers and the fluid variables on
the fixed Eulerian grid are linked by a simple discrete delta
function. The boundary forces are first computed on the
Lagrangian markers and then distributed to the Eulerian
grids using discrete delta function. As will be shown in
the next section that the present formulation does not need
to employ any modifications due to the jump conditions
such as in the immersed interface method, so the present
implementation is simpler but can be potentially less
accurate.

Four different test problems are simulated using the
present technique (rotating ring flow, lid-driven cavity
and flows over a stationary cylinder and an in-line oscillat-
ing cylinder). These cases are used to examine the numeri-
cal accuracy of the method and its capability to model
complex flows including the time evolving moving bound-
ary. The results are compared with previous experimental
and numerical results to assess the accuracy and the capa-
bility of the proposed method for solving complex geome-
try flow problems.

2. The methodology of immersed boundary technique

2.1. Mathematical formulation

Here, consider a problem of a viscous incompressible
fluid in a two-dimensional square domain X = [0, L] ·
[0,L] containing an immersed massless boundary in the
form of a simple closed curve C, as shown in Fig. 1. The
lowercase and uppercase letters are used to represent the
variables defined on the Cartesian grid and the Lagrangian
markers, respectively. The immersed boundary is tracked
by the parametric form, X(s), 0 6 s 6 Lb, where s is the
parameter of the reference configuration of the boundary.
(For simplicity, the boundary configuration is assumed to
be fixed in time.) As mentioned before, the influence of
the immersed boundary to the fluid is represented by forces
that exert to the fluid so that the fluid will move by the pre-
scribed velocity U(X(s), t) (no-slip condition) at the
immersed boundary. Thus, the governing equations of this
fluid–structure interaction system are

ou

ot
þrðuuÞ ¼ �rp þ 1

Re
r2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

fðx; tÞ ¼
Z Lb

0

FðXðsÞ; tÞdðx� XðsÞÞds; ð3Þ

UðXðsÞ; tÞ ¼
Z

X
uðx; tÞdðx� XðsÞÞdx. ð4Þ

Here, x = (x,y), U(x, t) is the fluid velocity, p(x, t) is the
fluid pressure, and the number Re is the non-dimensional
Reynolds number. Note that, the Eulerian force field
f(x, t) is defined on the whole fluid domain X while the
Lagrangian force F(X(s), t) is on the immersed boundary C.

Eqs. (1) and (2) are the familiar Navier–Stokes equa-
tions of a viscous incompressible fluid. Eqs. (3) and (4) rep-
resent the interaction between the immersed boundary and
the fluid. In particular, Eq. (3) describes that the force act-
ing on the fluid f is due to the boundary force F alone, and
Eq. (4) represents the fluid moves with the same prescribed
velocity of the immersed boundary. One can easily see that
the present formulation employs a mixture of Eulerian
(x) and Lagrangian (X) variables which are linked by the
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two-dimensional Dirac delta function d(x) = d(x)d(y). To
close the system, the initial and the physical boundary
(oX) conditions of velocity should be given as well.

The main difficulty of the above mathematical formula-
tion is that the forcing term f is not known a priori (since
the boundary force F is unknown).The force field F, how-
ever, can be determined by enforcing the no-slip boundary
condition of the immersed boundary.

2.2. Numerical scheme

The present numerical scheme is a mixed Eulerian–
Lagrangian finite difference method for simulating the
complex fluid flows interacting with an immersed bound-
ary. Therefore, two distinct discretized grids are intro-
duced; the regular lattice points to cover the whole fluid
domain, and the marker points to discretize the immersed
boundary. Throughout this work, the spatial discretization
makes use of the staggered marker-and-cell (MAC) mesh
introduced by Harlow and Welsh [28]. Thus, the fluid vari-
ables are defined at different locations of the lattice grids.
For instance, the pressure is defined on the grid points
labeled as x = (xi,yj) = ((i � 1/2)h, (j � 1/2)h) for i, j =
1,2, . . . ,N, the velocity components u and v are defined at
(xi�1/2,yj) = ((i � 1)h, (j � 1/2)h) and (xi,yj�1/2) = ((i � 1/
2)h, (j � 1)h), respectively, where the spacing h = Dx =
Dy = L/N. On the other hand, the immersed boundary is
discretized by the M discrete Lagrangian markers
Xk = (Xk,Yk), where the marker spacing is Ds = Lb/M.

In general, the markers Xk do not coincide with
the Eulerian grid points x, so a discrete delta function
linkage between those two grids must be employed. Here,
the following discrete version of Dirac delta function is
used:

dhðx� XkÞ ¼ dhðxi � X kÞdhðyj � Y kÞ; ð5Þ

where dh is the hat function [22] defined by

dhðrÞ ¼
ð1� jrj=hÞ=h; for jrj � h

0; otherwise.

�
ð6Þ

The adopted delta function is equivalent to the bilinear
interpolation scheme, which is consistent with the interpo-
lation procedure employed in the Navier–Stokes solver.

Based on the adopted grid arrangement, the governing
equations (1)–(4) can be discretized directly. The integrals
in Eqs. (3) and (4) are approximated by their Riemann
sums and the Dirac delta function d is replaced by its dis-
crete version dh in 5. On the other hand, Eqs. (1) and (2)
are integrated using the fractional-step method proposed
by Choi and Moin [29], and the non-linear convection term
and the diffusion term are treated by the Adams–Bashforth
and the Crank–Nicholson methods, respectively. All the
spatial derivatives are approximated by the second-order
central difference method. At the beginning of the time
step, the solutions un�1, un must be given in order to march
to un+1.
The time advancement and spatial discretization can be
done in the following steps:

~u� un

Dt
¼ � 3

2
rhðuuÞn þ 1

2
rhðuuÞn�1

�rhpn þ 1

2Re
r2

hðun þ ~uÞ; ð7Þ

f�ðxÞ ¼
XM

k¼1

F�ðXkÞdhðx� XkÞDs; for all x ¼ ðxi; yjÞ ð8Þ

u� � ~u

Dt
¼ f� ð9Þ

U�ðXkÞ ¼
X

x

u�ðxÞdhðx� XkÞh2; k ¼ 1; 2; . . . ;M . ð10Þ

u�� � u�

Dt
¼ rhpn; ð11Þ

r2
hpnþ1 ¼ rh � u��

Dt
; ð12Þ

unþ1 � u��

Dt
¼ �rhpnþ1; ð13Þ

where ~u, u*, and u** are the intermediate velocity compo-
nents between the time step n and n + 1. The discrete oper-
ators $h and r2

h represent the regular centered difference
approximations for the gradient and Laplace operators.

Eq. (8) describes that the Eulerian forces are obtained
from distributing the boundary forces at those Lagrangian
markers to their neighboring Cartesian grids. Eq. (9) repre-
sents the direct momentum forcing to modify the velocities
on the Eulerian grids using the forces obtained from Eq.
(8). Eq. (10) says that the velocity at the markers can be
interpolated from the neighboring grids and should equal
to the prescribed boundary velocity. Note that, the summa-
tion

P
x in (10) is only over four neighboring grid points of

Xk, since the support of the discrete delta function is as
wide as the mesh width h. Also, the above approximation
in (10) is nothing but the bi-linear interpolation of the
velocity. The continuity condition is satisfied by solving
the pressure Poisson equation (12).

It should be noted the discrete momentum forcing in the
present algorithm seems to be calculated by the formula
f� � Dtr2

hf�=ð2ReÞ rather than f*. This is due to the implicit
treatment of the intermediate velocity in the prediction step
(7). This confusion can be avoided by simply using the
explicit Adams–Bashforth discretization for the diffusion
term but it will lead to a restrictive time step constraint
when Reynolds number is small. Despite the above
momentum forcing discrepancy, the physical quantities
such as the drag and lift coefficients (as shown in the
numerical results) will not be affected. This is because, in
the present formulation, the lift and drag are calculated
by the discrete sum of momentum forces over the whole
fluid grid points and the discrete Laplacian term makes
no contribution in the summation. This can be derived eas-
ily as follows. (Note that, f* is non-zero only in the neigh-
borhood of the immersed boundary.)
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X
i

X
j

r2
hf�

¼
X

j

X
i

f �iþ1;j � f �i;j
h2

�
f �i;j � f �i�1;j

h2

� �
þ
X

i

X
j

f �i;jþ1 � f �i;j
h2

�
f �i;j � f �i;j�1

h2

� �
¼ 0.

The above is verified numerically by computing flows over
a cylinder employing the Adams–Bashforth and Crank–
Nicholson schemes, respectively, and identical lift and drag
coefficients are obtained.

In the present numerical setting, the support of f* is only
in the neighborhood of the immersed boundary C. Also,
the force field is computed in the intermediate step, so that
the solutions of coupling linear systems can be avoided.
The most time-consuming part of the above scheme is to
solve three Helmholtz-type equations (two for velocity in
(7) and one for the pressure in (12)) which can be solved
by the efficient Bi-CGSTAB method [30].

The remaining question is how to find the boundary
force field F* properly in Eq. (8), so that the resulting veloc-
ity can be adjusted by the presence of the forces. More pre-
cisely, the present forcing field will bring the intermediate
velocity u* to the desired velocity U* at the immersed
boundary. It is important to mention that the present
scheme (7)–(13) is very similar to the direct momentum
forcing of Mohd-Yusof used in [24,25] except in Eq. (8).
Since the present formulation employs a mixture of Eule-
rian and Lagrangian variables, the boundary forces are
first computed on the Lagrangian markers and then are
distributed to the Eulerian grids using discrete delta func-
tion, which depends on the distances between the Eulerian
grids and the Lagrangian markers. Therefore, there is no
need to determine the relative locations of the Eulerian grid
either internal or external to the immersed boundary, and
this further simplifies the computational procedure.

2.3. The boundary force derivation

Here, description as how to find the marker forces F*

properly is introduced, so that the intermediate velocity
u* at Lagrangian markers will satisfy the desired boundary
values U*. Firstly, the velocity ~u calculated in Eq. (7) is
interpolated to the markers to obtain the marker velocityeUðXkÞ, aseUðXkÞ ¼

X
x

~uðxÞdhðx� XkÞh2. ð14Þ

If the above interpolation procedure is applied to Eq. (9)
(i.e. direct momentum forcing on Eulerian grids) directly,
thenX

x

f�ðxÞdhðx� XkÞh2 ¼ U�ðXkÞ � eUðXkÞ
Dt

; ð15Þ

where U*(Xk) is the interpolating velocity of u* at the mar-
ker Xk. By simply letting the marker velocity U*(Xk) =
Un+1(Xk), the force field f* will bring the velocity u* in
the intermediate step of the Navier–Stokes solver to the
prescribed values at the immersed boundary.

Note that, it is the intermediate velocity U* rather than
the final velocity Un+1 satisfying the prescribed boundary
velocity, so that the prediction step (Eq. 7) can be decou-
pled from the projection step (Eqs. (12) and (13)) com-
pletely in the Navier–Stokes integration. It is possible to
let the final velocity satisfy the prescribed boundary condi-
tion by doing a few iterations at each time step, but this will
complicate the present implementation.

Combining Eqs. (8) and (15), the Lagrangian boundary
force can be obtained asX

x

XM

j¼1
F�ðXjÞdhðx� XjÞDs|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f�ðxÞ

dhðx� XkÞh2

¼ Unþ1ðXkÞ � eUðXkÞ
Dt

. ð16Þ

ThereforeXM

j¼1

X
x

dhðx� XjÞdhðx� XkÞDsh2

 !
F�ðXjÞ

¼ Unþ1ðXkÞ � eUðXkÞ
Dt

. ð17Þ

There are M equations for the M Lagrangian marker forces
F*(Xk), k = 1,2, . . . ,M. Since the support of the discrete
delta function is the same as the grid spacing h, the above
coefficient matrix in (17) is banded. (For a closed bound-
ary, it is a periodic banded matrix.) The matrix can become
explicit if dh(x � Xj) = 0, when j 5 k. This only happens in
regions where the Eulerian grids influenced by Lagrangian
marker force F*(Xk) are not affected by Lagrangian marker
forces F*(Xj), where j = 1,M and j 5 k. For example, the
Lagrangian markers may collocate with the Eulerian grids
or reside on the edges of the Eulerian grids. While the latter
may seem plausible, the restriction is that the grid points
connected to the edge should not be affected by other mar-
ker forces, which may not be trivial and straightforward.

For simplicity, the markers are generally uniformly dis-
tributed along the immersed boundary. As will be shown
later, the optimum marker spacing (Ds) scales with the grid
spacing h. Therefore, the number of markers (M) required
is one dimensional lower than the fluid variables and is the
same order of magnitude to the Eulerian grid points sur-
rounding the immersed boundary either on the fluid or
the solid sides. Also, for two dimensional flows, the banded
matrix is tria- or penta-diagonal. Therefore, the cost of
solving Eq. 17 is O(M), which is negligibly small compared
to the cost of solving the momentum and the pressure pois-
son equations. It should also be noted that a singular
matrix may occur if the markers are too close to each other.
Numerical experiments show that if the ratio of the marker
spacing to the grid width Ds/h is greater than 0.5, no singu-
lar matrix will be found, and the optimum marker spacing
(Ds) scales with the grid spacing h. This further excludes the
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possibility of the singular matrix and reduces the sizes of
the banded force matrix.

2.4. The full solution procedure

A whole numerical procedure for each time step of the
present method is summarized as follows.

(1) Solve Eq. (7) in order to obtain the intermediate
velocity component ~uðxÞ.

(2) Calculate the Lagrangian boundary force F*(Xk) for
all markers using Eq. (17) and the prescribed marker
velocity Un+1(Xk).

(3) Distribute the Lagrangian force F*(Xk) to the Eule-
rian grid f*(x) using Eq. (8).

(4) Correct the intermediate velocity u*(x) using the
newly obtained force f*(x) through Eq. (9).

(5) Obtain the intermediate velocity u**(x) using Eq. (11).
(6) Compute the pressure by solving the pressure Poisson

equation (12).
(7) Update the fluid velocity un+1(x) by Eq. (13).

3. Numerical results

3.1. Flow induced by a rotating ring

Here, the flow considered is a ring rotating at a constant
angular velocity locating at the center of a square domain
�1 6 x, y 6 1. The radius of the ring is 0.3, and the angular
velocity X of the ring is 2, where the corresponding Rey-
nolds number is 18. Since the square domain boundary is
stationary, the flow is induced by the rotating ring. The
velocity boundary conditions are imposed along the ring
using the immersed boundary method. Since the immersed
boundary does not coincide with the Cartesian grids, the
forcing interpolation procedure discussed in the previous
section is required to obtain the velocity correction near
the immersed boundary. At the steady state, the flow inside
the ring would undergo a solid body rotation, if the flow
remains laminar. Therefore, this can provide a means of
examining the numerical accuracy of the present scheme.

Simulations are conducted using four sets of grids, i.e.
40 · 40, 80 · 80, 160 · 160 and 320 · 320. The grid spacing
ratio Ds/h is 0.85, and the maximum CFL number is
approximately 0.5. Fig. 2 shows the velocity vector plots
of the flow, where the rotating ring is marked with the bold
line. The solid body rotation can be clearly observed inside
the rotating ring. The L1 and L2 error norms are shown in
Fig. 3. The spatial accuracy of the present scheme is around
1.5 order, though at higher grid density the order of accu-
racy does increase. Since this case is a discontinuous prob-
lem using the simple bi-linear interpolation procedure, the
order of accuracy achieved is rather encouraging.

The time of the immersed boundary calculation relative
to the overall cost is also examined here using the rotating
ring flow as the test bed. The immersed boundary method
includes four parts, namely the distribution of the markers,
the calculation of the interpolation function, the determi-
nation of the maker forces and the distributions of marker
forces to the Eulerian grids. The measurements based on
the 320 · 320 grid indicates that the immersed boundary
method occupies slightly less than 1% of the overall com-
putational cost, and this is rather small. Most of the com-
putational cost is on the solution of the pressure Poisson
equation, which is about 90% of the overall time. For
stationary cylinder, the distribution of the markers and
the calculation of the interpolation function are calculated
only once, and this further reduces the cost of the IBM
operation.
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3.2. Lid-driven cavity

The lid-driven cavity flow is widely used to verify the
accuracy of numerical method too. Fig. 4 shows the geo-
metric layout of the lid-driven cavity within a square
domain [�1,1] · [�1,1], where the cavity (jxj þ jyj ¼
1=

ffiffiffi
2
p

) is obliqued at 45� with respect to the Eulerian grid.
Thus, the width of the cavity is 1 and the lid locates along
the edge xþ y ¼ 1=

ffiffiffi
2
p

with constant driven velocity one.
This inclined lid-driven cavity is mimicked by the present
immersed boundary method, where the respective velocity
distributions are assigned at Lagrangian markers. No-slip
conditions are prescribed along the computational bound-
ary of the Eulerian grids.

Three different uniform grids (N · N,N = 40,80,160)
are used in the simulations with the associated number of
Lagrangian markers (M = 80,160,320), respectively. The
grid spacing ratio of marker points and the lattice points
Ds/h is 1. The Reynolds number is chosen as Re = 100
and the maximum CFL number is 0.4.

Fig. 5 shows the steady velocity component U inside the
cavity but along the line y = x. The coordinate Y = 0 rep-
resents the intersection of the lower left edge and y = x.
Fig. 6 shows the steady velocity component V inside the
cavity but along the line y = �x. The coordinate X = 0 rep-
resents the intersection of the upper left edge and y = �x.
One can see that present numerical results converge to
the result obtained by Ghia et al. [31] quite well.

To demonstrate the capability of the present scheme to
mimic flows with multiple objects, the simulation is applied
to flow within the lid-driven cavity with five circular obsta-
cles. The size of the computational domain is the same as
the previous one, and the Reynolds number is 100 based
on the lid-driven velocity and the height of the cavity.
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Fig. 4. The configuration of the lid-driven cavity in the computational
domain.
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Fig. 6. The velocity component V along the central line (y = �x) through
the center of cavity with different Eulerian grid sizes.
The grid spacing ratio Ds/h is 0.85 within a 160 · 160 grid.
Fig. 7 shows the vector plot of the simulation, where the
original lid-driven cavity flow structures have been modi-
fied by the presence of the obstacles.

3.3. The flow past a cylinder

The flow past a stationary circular cylinder is a typical
problem and has been widely investigated experimentally
[32,33] and numerically [8,18,23,26,34–36]. For Reynolds
number below 47, the flow structure remains symmetric
with stationary recirculating vortices behind the cylinder.
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Fig. 7. The velocity vector plot of lid-driven cavity with multi-obstacles.
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As the Reynolds number is elevated, the symmetry breaks
down and the vortex starts to shed up and down alterna-
tively. This shedding frequency and the intensity of the vor-
tex also increase in tandem with the elevated level of the
Reynolds number.

In this test, flows with a broad range of Reynolds num-
ber, Re = 20, 40, 80, 100 and 150 are examined. The geo-
metric set up in the computational domain and the
associate physical boundary conditions are shown in
Fig. 8. Based on the diameter D of the cylinder, the range
of the computational domain chosen is (�13.4D 6 x 6

16.5D,�8.35D 6 y 6 8.35D). A non-uniform grid (250 ·
160) is adopted to discretize the computational domain,
within which a uniform grid 60 · 60 is employed in the
region �D 6 x, y 6 D. Here, the maximum CFL number
employed is 0.37. In the simulation, the boundary of the
stationary cylinder is modeled by the present immersed
boundary methods, where the Lagrangian markers are
assigned the no-slip boundary conditions.

There are three different quantities that are often used to
make a comparison of the performance of numerical meth-
ods; namely, the drag and lift coefficients, and the Strouhal
u=1
v=0

∂p
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∂p ∂u
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Fig. 8. The boundary condition and computational domain of flow over
cylinder.
number. The definitions and computing of these quantities
are briefly described below.

The drag coefficient is defined as

CD ¼
F D

U 2
1D=2

ð18Þ

where FD is the drag force. As in [18], the drag force can be
obtained easily from

F D ¼ �
Z

X
f1ðxÞdx ¼ �

X
x

f1ðxÞh2 ð19Þ

where f1(x) is the x component of the Eulerian force f(x).
Similarly, the lift coefficient is defined as

CL ¼
F L

U 2
1D=2

ð20Þ

where FL is the lift force and it can be obtained by the Eule-
rian force as

F L ¼ �
Z

X
f2ðxÞdx ¼ �

X
x

f2ðxÞh2 ð21Þ

where f2(x) is the y component of the Eulerian force f(x).
The other interesting quantity called the Strouhal num-

ber (St) is the dimensionless frequency of vortex shedding.
When the flow field becomes unstable, the originally sta-
tionary vortices behind the cylinder start moving down-
stream and shedding alternatively with frequency fq. The
Strouhal number is defined as St = fqD/U1.

The influences of Ds/h on the predicted lift and drag
coefficients and Strouhal number are shown in Table 1,
where the Reynolds number is 100. It can be seen that
the differences of CD and St resulting from the variations
of Ds/h ratios are within 3%. It is also observed that Ds/
h = 0.94 and 0.78 produce the similar results. Therefore,
in subsequent computations for flows past a cylinder, the
Ds/h is chosen as 0.94.

Table 2 shows the comparison of drag coefficient with
previous numerical predictions [8,18,23,26,34,35] and
experimental measurements [33] at different Reynolds num-
bers. In [34,35], the flows were assumed to be steady and
symmetric, therefore only the results of Re = 20 and 40
are shown here. The present drag predictions at lower Rey-
nolds numbers are slightly higher than others, but at higher
Reynolds numbers they are comparable with other results.
Table 3 shows the comparison of lift coefficient for
Re = 100. Here, CL is defined as the maximum amplitude
Table 1
Influences of the marker spacing to grid width on the lift and drag
coefficients and Strouhal number for the case of Re = 100

Ds/h 0.94 0.78 0.67 0.58 0.52
CL 0.34 0.34 0.30 0.31 0.32
CD 1.40 1.41 1.38 1.42 1.42
St 0.168 0.168 0.168 0.165 0.165



Table 4
The comparison of Strouhal number for different Reynolds numbers

Re Present Lai and
Peskin [18]

Silva et al. [23] Ye et al. [8] Williamson
(exp) [32]

80 0.153 – 0.15 0.15 0.15
100 0.168 0.165 0.16 – 0.166
150 0.187 0.184 0.18 – 0.183

Table 2
The comparison of drag coefficients for different Reynolds numbers

Re Present Lai and Peskin [18] Kim et al. [26] Silva et al. [23] Ye et al. [8] Fornberg [34] Ingham and Tang [35] Tritton (exp) [33]

20 2.20 – – 2.04 2.03 2.000 1.995 2.22
40 1.63 – 1.51 1.54 1.52 1.498 – 1.48
80 1.43 – – 1.40 1.37 – – 1.29

100 1.40 1.44 1.33 1.39 – – – –
150 1.39 1.44 – 1.37 – – – –

Table 3
The comparison of maximum lift coefficient at Re = 100

Re = 100 Present Lai and Peskin [18] Kim et al. [26]

CL 0.34 0.33 0.32
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of the lift coefficient. Table 4 shows the comparison of
Strouhal number with the previous numerical and experi-
mental results for different Reynolds numbers. One can
see that we obtained the close results with those methods
as mentioned in the introduction.

For the flow of Re = 40, the drag coefficient remains
constant and the lift is zero. The vorticity contour lines
of the flow is shown in Fig. 9. It has confirmed the exper-
imental observation that at this Reynolds number, there
are two vortices attached behind the cylinder and the lift
force is constantly zero. However, if the Reynolds number
becomes larger, the symmetry breaks down and the two
vortices shed alternatively. Fig. 10(a)–(b) shows the evolu-
tion of the drag and lift coefficients, and the vorticity con-
tour lines for Re = 100.
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Fig. 9. The instantaneous vorticity contours near the cylinder; dotted and
solid lines denote negative and positive contours.
4. The flow past an in-line oscillating cylinder

In order to explore the capability of the present tech-
nique in computing moving boundary flows, simulations
are further applied to the in-line oscillating cylinder in uni-
form flow at Reynolds number 100. The present flow lay-
out and numerical details are exactly the same as the flow
past a stationary cylinder in the previous section, except
the cylinder is now oscillating parallel to the free stream
at a frequency fc = 2fq, i.e. two times the vortex shedding
frequency (fq) of the fixed cylinder flow. The motion of
the cylinder is prescribed by setting the horizontal velocities
on the Lagrangian markers to U(Xk) = 0.14Dcos(2pfct),
where the amplitude of the oscillation is 0.14 of the cylinder
diameter D. This flow has been examined numerically by
Hurlbut et al. [37] using the non-inertia coordinate trans-
formation technique, and the results are used to examine
the accuracy of the present predictions using the immersed
boundary method.

According to Tanida et al. [38] and Griffin, Ramberg
[39] and Hurlbut et al. [37], the in-line oscillation of the cyl-
inder at a range of frequencies near twice the Strouhal
shedding frequency for the stationary cylinder causes the
synchronization, i.e. the phase-locking of the vortex shed-
ding with the cylinder motion. Both the drag and lift coef-
ficients increase. Table 5 shows the comparisons of the
present predictions with the numerical results by Hurlbut
et al. [37]. It can be seen that the present results are com-
patible with their results. Further examination of the vor-
tex patterns is referred to the instantaneous vorticity
contours over two oscillating periods of the cylinder as
shown in Fig. 11.
5. Conclusion

In this paper, a new immersed boundary technique is
proposed for the simulation of two-dimensional viscous
incompressible flow interacting with complex solid bound-
ary. A mixture of Eulerian and Lagrangian variables is
adopted, where the solid boundary is represented by dis-
crete Lagrangian markers embedding in and exerting forces
to the Eulerian fluid domain. The interactions between the
Lagrangian markers and the fluid variables are linked by a
simple discretized delta function. The numerical integra-
tion is based on a second-order fractional step method
under the staggered grid spatial framework. Based on the
direct momentum forcing on the Eulerian grids, a new
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Fig. 10. (a) The time evolution of drag and lift coefficients of Re = 100 and (b) the instantaneous vorticity contours near the cylinder; dotted and solid
lines denote negative and positive contours.

Table 5
The comparisons of lift and drag coefficients of in-line oscillating cylinder
at Reynolds number 100

Present Hurlbut et al. [37]

fc/fq 0 2 0 2
CD 1.4 1.70 1.41 1.68
CL-max 0.34 0.97 0.31 0.95
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force formulation on the Lagrangian marker is proposed,
where the boundary forces are first computed on the
Lagrangian markers and then distributed to the Eulerian
grids using discrete delta function to ensure the satisfaction
of the no-slip boundary condition on the immersed bound-
ary in the intermediate step. This forcing procedure
involves solving a banded linear system of equations whose
unknowns consist of the boundary force on the Lagrangian
markers; thus, the order of the unknowns is one-dimen-
sional lower than the fluid variables. Four different test
problems are simulated using the present technique (rotat-
ing ring flow, lid-driven cavity and flows over a stationary
cylinder and an in-line oscillating cylinder). Numerical
experiments show that the stability limit is not altered by
the proposed force formulation, though the second-order
accuracy of the adopted numerical scheme is degraded to
1.5 order. Influences of the marker spacing on the solutions
are also examined numerically, and the optimal value is
found to scale with the grid width. The numerical evidences
show the accuracy and the capability of the proposed
method for solving complex geometry flow problems both
with stationary and moving boundary.
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