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Abstract

Acceptance sampling plans are practical tools for quality assurance applications involving quality contract on product orders.
The sampling plans provide the vendor and buyer decision rules for product acceptance to meet the preset product quality
requirement. As the rapid advancement of manufacturing technology, suppliers require their products to be of high quality with
very low fraction of defectives often measured in parts per million. Unfortunately, traditional methods for calculating fraction
of defectives no longer work since any sample of reasonable size probably contains no defective product items. In this paper,
we introduce an effective sampling plan based on process capability index Cpk to deal with product acceptance determination
for low fraction of defectives. The proposed new sampling plan is developed based on the exact sampling distribution rather
than approximation. Practitioners can use the proposed method to determine the number of required inspection units, the
critical acceptance value, and make reliable decisions in product acceptance.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Acceptance sampling plans are practical tools for quality
assurance applications. Sampling plans provide the vendor
and buyer general decision rules for product acceptance
while meeting their needs for product quality. A well-
designed sampling plan can effectively reduce the difference
between the actual supply quantity and order quantity. Ac-
ceptance sampling plans state the required sample size for
product inspection and the decision making rule for product
sentencing. The criteria used for measuring the performance
of an acceptance sampling plan is usually based on the op-
erating characteristic (OC) curve quantifying the risk. The
OC curve plots the probability of accepting the lot against
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actual lot fraction defective, which displays the discrimina-
tory power of the sampling plan. That is, it shows the prob-
ability that a lot submitted with a certain fraction defective
will be either accepted or rejected.

The vendors or suppliers usually look at a specific level
of product quality, which would yield a high probability of
acceptance. For example, the vendor might be interested
in the 0.95 probability of acceptance for a certain product
quality level. This indicates the level of process fallout that
could be experienced with 95% chances that the lots are ac-
cepted. The consumer, on the other hand, would look at the
product with the acceptable quality level (AQL). The AQL
presents the poorest level of quality for the vendor’s process
that the consumer would consider acceptable as a process
average. The consumer would seek a sampling procedure
with OC curve providing a high probability of acceptance
at the AQL. The consumer would also look at the other end
of the OC curve for products with quality worse than AQL.
Thus, the consumer may establish a lot tolerance percent
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defective (LTPD). The LTPD is the poorest quality level that
the consumer is willing to accept. The consumer demands
the sampling plan to have a low probability of accepting the
product with a defect level as high as the LTPD.

Acceptance sampling plans basically consist of a re-
quired sample size for inspection and an acceptance cri-
terion. Clearly, such sampling scheme involves risks that
the sample will not adequately reflect the product quality
conditions. Type I error (�) is the probability, for a given
sampling plan, of rejecting the product that has a defect
level equal to the AQL. The producer suffers when this oc-
curs because a product with acceptable quality is rejected.
Thus, � is called the producer’s risk with values commonly
ranging from 0.01 to 0.10. Type II error (�) is the probabil-
ity, for a given sampling plan, of accepting the product with
defect level equal to the LTPD. The consumer suffers when
this occurs, because product with unacceptable quality is
accepted. Thus, � is called the consumer’s risk with values
typically ranging from 0.01 to 0.10. While any two points
on the OC curve could be used to construct the sampling
plan, it is customary in the industry to use the AQL and
LTPD for this purpose.

There are a number of different ways to classify ac-
ceptance sampling plans. One major classification is by
attributes and variables. When a quality characteristic is
measurable on a continuous scale and is known to have a
ution of a specified type, it may be appropriate to use vari-
ables sampling plans rather than attributes sampling plans
for product acceptance applications. The primary advantage
of variables sampling plans is that the same operating char-
acteristic curve can be obtained with a smaller sample size
than would be required using an attributes sampling plan.
That is, a variables sampling plan that has the same protec-
tion as an attributes acceptance sampling plan would require
less sampling. The precise measurements required by a vari-
ables plan would probably cost more than the simple clas-
sification of items required by an attributes plan. However,
the reduction in sample size may be more than offset this
exact expense. Such savings may be especially marked if
the inspection is destructive and item is expensive (see, e.g.,
[1–3]). The basic concepts and models of statistically based
on variables sampling plans were introduced by Jennett and
Welch [4]. Lieberman and Resnikoff [5] developed exten-
sive tables and OC curves for various AQLs for MIL-STD-
414 sampling plan. Owen [6] considered variables sampling
plans based on the normal distribution, and developed sam-
pling plans for various levels of probabilities of type I error
when the standard deviation is unknown. Das and Mitra [7]
have investigated the effect of non-normality on the perfor-
mance of the sampling plans. Bender [8] considered sam-
pling plans for assuring the percent defective in the case of
the product quality characteristics obeying a normal distri-
bution with unknown standard deviation, and presented a
procedure using iterative computer program calculating the
non-central t-distribution. Govindaraju and Soundararajan
[9] developed variables sampling plans that match the OC

curves of MIL-STD-105D. Suresh and Ramanathan [10] de-
veloped a sampling plan based on a more general symmetric
family of distributions. As for the attributes sampling plans,
Guenther [11] developed a systematic search procedure,
which can be used with published tables of binomial, hyper-
geometric, and Poisson distributions to obtain the desired
acceptance sampling plans. Stephens [12] provided a closed
form solution for single sample acceptance sampling plans
using a normal approximation to the binomial distribution.
Hailey [13] presented a computer program to obtain single
sampling plans with a minimum sample size based on either
the Poisson or binomial distribution. Hald [14] gave a sys-
tematic exposition of the existing statistical theory of lot-by-
lot sampling inspection by attributes and provided some ta-
bles for the sampling plans. Comparisons between variables
sampling plans and attributes sampling plans were investi-
gated by Kao [15] and Hamaker [16], who concluded that
the expected sample size required by variables sampling is
smaller than those for comparable attributes sampling plans.

As the rapid advancement of manufacturing technology,
suppliers require their products to be of high quality with a
very low fraction of defectives. The required fraction of de-
fectives is often lower than 0.01%, and is measured in parts
per million (PPM). Unfortunately, traditional methods for
calculating the fraction nonconforming no longer work since
any sample of reasonable size will probably contain no de-
fective product items. An alternative method of measuring
the fraction of defectives is to use process capability indices,
which are functions of manufacturing specification and ac-
tual process mean and standard deviation. In this paper, we
introduce an effective acceptance sampling plan for lot sen-
tencing based on the most popular index Cpk as a quality
benchmark for product acceptance, specifically for normally
distributed processes with low fraction of defectives.

2. Process capability indices and product quality

In recent years, process capability indices (PCIs) in-
cluding Cp , Cpu, Cpl , and Cpk have received substantial
research attention in quality assurance and statistical lit-
eratures (see [17–21] for more details). The indices have
become popular unitless measures on whether a process is
capable of reproducing items meeting the quality require-
ment preset by the product designer. Based on analyzing
the PCIs, a production department can identify and improve
a poor process so that the product quality can be enhanced
and the requirements of the customers can be satisfied.
Those indices are defined in the following:

Cp = USL − LSL

6�
,

Cpu = USL − �

3�
, Cpl = � − LSL

3�
,

Cpk = min

{
USL − �

3�
,
� − LSL

3�

}
,
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Fig. 1. The bounds on nonconforming units in PPM versus Cpk .

where USL is the upper specification limit, LSL is the
lower specification limit, � is the process mean, and � is
the process standard deviation (overall process variation).
While Cp and Cpk are appropriate measures for processes
with two-sided specifications (which require both USL and
LSL), Cpu and Cpl have been designed specifically for
processes with one-sided specification limit (which require
only USL or LSL). The Cpu index measures the capability
of a smaller-the-better process with an upper specification
limit USL, whereas the Cpl index measures the capability
of a larger-the-better process with a lower specification
limit LSL.

Process yield has long been the most common and
standard criteria used in the manufacturing industries for
judging process performance. Process yield is currently
defined as the percentage of the processed product units
passing the inspections. For normally distributed processes
with one-sided specification limit USL or LSL, the process
yield is

P(X < USL) = P

(
X − �

�
<

USL − �

�

)

= P(Z < 3Cpu) = �(3Cpu), (1)

Table 1
Index values and the corresponding PPM of nonconformities

Cpk Lower bound Upper bound Cpk Lower bound Upper bound

0.60 35930 71861 1.33 33 66
0.70 17864 35729 1.40 13 27
0.80 8198 16395 1.45 6.807 13.614
0.90 3467 6934 1.50 3.398 6.795
1.00 1350 2700 1.60 0.793 1.587
1.10 483 967 1.67 0.272 0.544
1.20 159 318 1.70 0.170 0.340
1.24 100 200 1.80 0.033 0.067
1.25 88 177 1.90 0.006 0.012
1.30 48 96 2.00 0.001 0.002

Table 2
Some minimum capability requirements of Cpk for existing, new,
and special processes

Cpk Index value Production process types

1.33 Existing processes
1.50 New processes, or existing processes on

safety,strength, or critical parameters
1.67 New processes on safety, strength, or critical

parameters

P(X > LSL) = P

(
X − �

�
>

LSL − �

�

)
= 1 − �(−3Cpl) = �(3Cpl), (2)

where Z follows the standard normal distribution
N(0, 1) with the cumulative distribution function �(x) =
(2�)−1/2 ∫ x

−∞ exp(−t2/2) dt . It follows from (1) and (2)
that bounds on process yield for a fixed value of Cpk are
given by Boyles [22] and Kotz and Lovelace [18]

2�(3Cpk) − 1�p��(3Cpk). (3)

The upper and lower bounds of nonconforming units in PPM
are plotted in Fig. 1 as a function of Cpk . Table 1 displays
some values of Cpk index along with the corresponding
upper and lower bounds on nonconforming units in PPM.
In a purchasing contract, a minimum Cpk value is usually
specified. If the prescribed minimum Cpk fails to be met,
the process is determined to be incapable. Otherwise, the
process is determined to be capable.

Montgomery [3] recommended some minimum capabil-
ity requirements for processes runs under some designated
quality conditions, as summarized in Table 2. In particular,
Cpk �1.33 for existing processes, and Cpk �1.50 for new
processes; Cpk �1.50 also for existing processes on safety,
strength, or critical parameter, and Cpk �1.67 for new pro-
cesses on safety, strength, or critical parameter. Finley [23]
also found that required Cpk values on all critical supplier
processes are 1.33 or higher, with Cpk equals 1.67 or higher
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preferred. Many companies have recently adopted criteria
for evaluating their processes that include process capability
objectives more stringent than those in Table 2. Motorola’s
“Six Sigma” program essentially requires the process capa-
bility at least 2.0 to accommodate the possible 1.5� process
shift, with no more than 3.4 PPM of nonconformities (see
[24]).

On the other hand, in current practice a process is called
“Inadequate” if Cpk < 1.00; it indicates that the process is
not adequate with respect to the production tolerances (spec-
ifications), either process variation (�2) needs to be reduced
or process mean (�) needs to be shifted closer to the target
value T. A process is called “Capable” if 1.00�Cpk < 1.33;
it indicates that caution needs to be taken regarding process
distribution, some process control is required. A process is
called “Satisfactory” if 1.33�Cpk < 1.50; it indicates that
process quality is satisfactory, material substitution may be
allowed, and no stringent quality control is required. A pro-
cess is called “Excellent” if 1.50�Cpk < 2.00; it indicates
that process quality exceeds “Satisfactory”. Finally, a pro-
cess is called “Super” if Cpk �2.00 (see also [25]).

3. Sampling distribution of the estimated Cpk

Utilizing the identity min{a, b} = (a + b)/2 − |a − b|/2,
the definition of Cpk index can be alternatively written as

Cpk = d − |� − M|
3�

,

where d =(USL−LSL)/2 is half length of the specification
interval, M = (USL + LSL)/2 is the mid-point between
the lower and the upper specification limits. In practice, the
process mean � and the process variance �2 are unknown.
The natural estimator Ĉpk defined below can be obtained
by replacing the process mean � and the process standard
deviation � by their sample estimators X̄ =∑n

i=1Xi/n and
S = [∑n

i=1(Xi −X̄)2/(n−1)]1/2. We note that the process
must be demonstrably stable (under statistical control) in
order to produce a reliable estimate of process capability.

Ĉpk = d − |X̄ − M|
3S

=
{

1 − |X̄ − M|
d

}
Ĉp . (4)

Under normality assumption, Kotz et al. [26] obtained the
rth moment, and in particular the first two moments of Ĉpk .
Numerous methods for constructing approximate confidence
intervals of Cpk have been proposed in the literature. Ex-
amples include [27–33]. Kotz and Johnson [20] presented a
thorough review for the development of process capability
indices for the period of 1992–2000. For the estimated Ĉpk

defined in (4), Ĉp is distributed as (n − 1)1/2Cp(�−1
n−1),

n1/2|X̄ −M|/� is distributed as the folded normal distribu-
tion with parameter n1/2|�−M|/�. Therefore, the distribu-
tion of Ĉpk is a mixture of �−1

n−1 and folded normal distri-

butions [34]. The probability density function of Ĉpk can be

obtained as the following [35], where D = (n − 1)1/2d/�,
a = [(n − 1)/n]1/2.

f
Ĉpk

(y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4An

∞∑
�=0

P�(�)B� × Dn+2�

a2�+1

∫∞
0 (1 − yz)2�zn−1

× exp
{
− D2

18a2 (a2z2 + 9(1 − yz)2)
}

dz, y �0,

4An

∞∑
�=0

P�(�)B� × Dn+2�

a2�+1

∫ 1/y
0 (1 − yz)2�zn−1

× exp
{
− D2

18a2 (a2z2 + 9(1 − yz)2)
}

dz, y > 0,

P�(�) = e−(�/2)(�/2)�

�! , An = 1

3n−12n/2	((n − 1)/2)
,

B� = 1

2�	((2� + 1)/2)
.

Using the integration technique similar to that presented
in [36], we obtained an exact form of the cumulative distri-
bution function of the natural estimator Ĉpk , which can be
expressed in terms of a mixture of the chi-square and the
normal distributions

F
Ĉpk

(y) = 1 −
∫ b

√
n

0
G

(
(n − 1)(b

√
n − t)2

9ny2

)

× [
(t + �
√

n) + 
(t − �
√

n)] dt (5)

for y > 0, where b=d/�, �=(�−M)/�, G(·) is the cumula-
tive distribution function of the chi-square distribution with
degree of freedom n − 1, �2

n−1, and 
(·) is the probability
density function of the standard normal distribution N(0, 1).
It is noted that we would obtain an identical equation if we
substitute � by −� into Eq. (5) for fixed values of y and n.

4. Designing Cpk acceptance sampling plans

Consider a sampling plan to control the lot or process frac-
tion of defectives. Since the quality characteristic is variable,
the lower specification limit (LSL) and the upper specifica-
tion limit (USL) can be used to define the acceptable values
of this parameter. It is easy to design a sampling plan with
a specified OC curve. Let (AQL, 1 − �) and (LTPD, �) be
the two points on the OC curve of interest. Note that AQL
and LTPD are levels of the product fraction of defectives
that correspond to acceptable and rejectable quality levels.
To determine whether a given process is capable, we can
consider the testing hypothesis as

H0 : p = AQL (process is capable),

H1 : p = LTPD (process is not capable).

As indicated earlier, PCIs are a function of process param-
eters (� and �) and manufacturing specifications (USL, LSL
and M ). It measures the ability of the process to reproduce
product units that meet the prescribed specifications. The
Cpk index is an appropriate measure of progress for quality
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improvement paradigms in which reduction of variability is
the guiding principle and process yield is the primary mea-
sure of success. Therefore, the Cpk index can be used as a
quality benchmark for product acceptance. That is, the null
hypothesis with fraction of defectives, H0 : p = AQL, is
equivalent to test process capability with H0 : Cpk �CAQL,
where CAQL is the level of acceptable quality for Cpk index
correspond to the lot or process fraction of defectives AQL
(in PPM) as �−1(1 − (AQL/2) × 10−6)/3. For instance, if
the vender’s fraction of defectives p = AQL is less than 66
PPM, then the probability of accepting the product is desired
to be greater than 100(1 − �)%. On the other hand, if the
vender’s fraction of defectives p =LTPD is more than 2700
PPM, then the probability of accepting the product is set to
be no more than 100�%. From the relationship between the
index value and fraction of defectives, we could obtain the
equivalent CAQL=1.33 and the CLTPD=1.00 based on Cpk .
Therefore, the required inspection sample size n and critical
acceptance value c0 for the sampling plan are the solutions
to the following two nonlinear simultaneous equations:

Pr{Accepting the product | fraction of defectives

p = AQL}�1 − �, (6)

Pr{Accepting the product | fraction of defectives

p = LTPD}��. (7)

For processes with target value sett to the mid-point of the
specification limits (i.e. T =M), the index may be rewritten
as Cpk=(d/�−|�|)/3, where �=(�−M)/�. As noted earlier,

the sampling distribution of Ĉpk is expressed in terms of a
mixture of the chi-square and the normal distributions. Given
Cpk = C, b = d/� can be expressed as b = 3C + |�|. Thus,
the probability of accepting the product can be expressed as

�A(Cpk) = P(Ĉpk �c0|Cpk)

=
∫ b

√
n

0
G

(
(n − 1)(b

√
n − t)2

9nc2
0

)

× (
(t + �
√

n) + 
(t − �
√

n)) dt . (8)

Accordingly, from expression (8), Eqs. (9) and (10) can
be rewritten as

1 − ��
∫ b1

√
n

0
G

(
(n − 1)(b1

√
n − t)2

9nc2
0

)

× (
(t + �
√

n) + 
(t − �
√

n)) dt , (9)

��
∫ b2

√
n

0
G

(
(n − 1)(b2

√
n − t)2

9nc2
0

)

× (
(t + �
√

n) + 
(t − �
√

n)) dt , (10)

where b1 = 3CAQL + |�| and b2 = 3CLTPD + |�|,
CAQL > CLTPD. We note that the required sample size n
is the smallest possible value of n satisfying Eqs. (9) and
(10), and determining the �n� as sample size, where �n�
means the least integer greater than or equal to n.

4.1. Critical acceptance value c0 versus sample size n and
Parameter �

Since the process parameters � and � are unknown, then
the distribution characteristic parameter, � = (� − M)/� is
also unknown, which has to be estimated in real applica-
tions. Such an approach introduces additional sampling er-
rors from estimating � in finding the critical acceptance val-
ues and the required sample sizes. To eliminate the need
for estimating the distribution characteristic parameter �, we
perform extensive calculations to investigate the behavior of
the critical acceptance value c0 and sample size n for various
parameters. Fig. 2(a) plots the required sample size n against
� for CAQL = 1.33, 1.50, 1.67, 2.00 and CLTPD = 1.00 with
� = 0.05, � = 0.05. Fig. 2(b) plots the critical acceptance
value c0 against � value for CAQL = 1.33, 1.50, 1.67, 2.00
and CLTPD = 1.00 with � = 0.05, � = 0.05. The pattern of
the sample sizes and critical values are consistent for cases
with different � and � risks.

Note that parameter values we investigated, � =
0(0.05)3.00, cover a wide range of applications with pro-
cess capability Cpk �0 and the calculation results are
identical if � is replaced by −�. We find that the critical
value c0 (i) is increasing in �, (ii) reaches its maximum at
�=1.00 in all cases, and (iii) stays the same for ��1.00 for
all CAQL (with an accuracy up to 10−4). Further, we find
that the critical acceptance value c0 reaches its maximum
at � = 0.50 and stays the same for ��0.50 as the sample
size n�30 (and for n�100, � = 0.35 with accuracy up
to 10−3). Hence, we may solve Eqs. (9) and (10) with
�=1.00 to obtain the conservative critical acceptance value
and sample size without having to estimate the parameter
�. This approach ensures that the decisions made based on
those critical acceptance values are reliable.

4.2. Solving the nonlinear simultaneous equations

In order to illustrate how we solve the above two nonlinear
simultaneous Eqs. (9) and (10), let

S1(n, c0)

=
∫ b1

√
n

0
G

(
(n − 1)(b1

√
n − t)2

9nc2
0

)

× (
(t + �
√

n) + 
(t − �
√

n)) dt − (1 − �), (11)

S2(n, c0) =
∫ b2

√
n

0
G

(
(n − 1)(b2

√
n − t)2

9nc2
0

)

× (
(t + �
√

n) + 
(t − �
√

n)) dt − �. (12)

For CAQL = 1.33 and CLTPD = 1.00, Figs. 3(a)–(b) and
4(a)–(b) display the surface and contour plots of Eqs. (11)
and (12), respectively, with �-risk = 0.05 and �-risk = 0.10.

Figs. 5(a)–(b) display the surface and contour plots of
Eqs. (11) and (12) simultaneously with �-risk = 0.05 and
�-risk = 0.10, respectively. From Fig. 5(b), we can see that
the interaction of S1(n, c0) and S2(n, c0) contour curves at
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Fig. 3. (a) Surface plot of S1(n, c0). (b) Contour plot of S1(n, c0).

level 0 is (n, c0) = (62, 1.1477), which is the solution to
nonlinear simultaneous equations (9) and (10). That is, in
this case, the minimum required sample size n = 62 and
critical acceptance value c0 = 1.1477 of the sampling plan
are based on the capability index Cpk .

For practical application purposes, we calculate and
tabulate the critical acceptance values (c0) and required
sample sizes (n) for the sampling plans, with commonly
used �, �, CAQL and CLTPD. Table 3 displays (n, c0) val-
ues for producer’s �-risk = 0.01, 0.025, 0.05, 0.075, 0.10
and buyer’s �-risk = 0.01, 0.025, 0.05, 0.075, 0.10, with
various benchmarking quality levels, (CAQL, CLPTD) =
(1.33, 1.00), (1.50, 1.33), (1.67, 1.33) and (2.00, 1.67). For
example, if the benchmarking quality level (CAQL, CLPTD)

is set to (1.33, 1.00) with producer’s �-risk = 0.01 and
buyer’s �-risk = 0.05, then the corresponding sample
size and critical acceptance value can be obtained as
(n, c0) = (112, 1.1372). The lot will be accepted if the
112 inspected product items yield measurements with
Ĉpk �1.1372.

From the results, we observe that the larger of the risks
which the producer or customer would suffer, the smaller
sample size n is required for inspection. This phenomenon
can be interpreted intuitively, as if we would want the chance
of wrongly concluding bad products as good, or good prod-
ucts as bad, to be smaller, we would need more sample
information to make the judgment. Further, for fixed �, �
risks and CLTPD, the required sample sizes become smaller
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Fig. 4. (a) Surface plot of S2(n, c0). (b) Contour plot of S2(n, c0).
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Fig. 5. (a) Surface plot of S1 and S2. (b) Contour plot of S1 and S2.

when the value of CAQL becomes larger. This can also be
explained by the same reasoning, as the judgment will be
more correct with a larger value of difference between the
CAQL and CLTPD.

5. Sampling procedure and decision making

Selection of a meaningful critical value for capability test
requires specification of an acceptable quality level (AQL)
and a lot tolerance percent defective (LTPD) for the Cpk

value. The AQL is simply a standard against which to judge
the product. It is hoped that the vendor’s process will oper-
ate at a fallout level that is considerably better than the AQL.
Both the producer and the consumer will lay down their re-
quirements in the contract: the former demands that not too
many “good” lots shall be rejected by the sampling inspec-

tion, while the latter demands that not too many “bad” lots
shall be accepted. A sampling plan attempt will be chosen
to meet these somewhat opposing requirements.

Thus, in order to judge whether a given process meets the
capability requirement, we can first determine the specified
value of the capability requirement CAQL and CLTPD (or
fraction of defectives AQL and LTPD), and the �-risk, �-
risk. That is, if product process capability is Cpk =CAQL (in
high quality), the probability of acceptance must be greater
than 1−�. If producer’s capability is only Cpk =CLTPD (in
low quality), consumer accept the product with probability
no more than �. By checking Table 3, we may obtain the
sample size n and the critical value c0 based on given val-
ues of �-risk, �-risk, AQL and LTPD. If the estimated Cpk

value is greater than the critical value c0, then the consumer
accepts the product. Otherwise, we do not have sufficient
information to conclude that the process meets the present
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Table 3
Required sample sizes (n) and critical acceptance values (c0) for various �- and �-risks with selected CAQL, CLPTD

� � CAQL = 1.33 CAQL = 1.50 CAQL = 1.67 CAQL = 2.00
CLTPD = 1.00 CLTPD = 1.33 CLTPD = 1.33 CLTPD = 1.67

n c0 n c0 n c0 n c0

0.01 0.01 158 1.1645 834 1.4149 232 1.4994 358 1.8345
0.025 132 1.1509 704 1.4077 195 1.4853 301 1.8207
0.05 112 1.1372 600 1.4005 166 1.4712 256 1.8069
0.075 100 1.1271 537 1.3952 148 1.4607 229 1.7967
0.10 91 1.1186 491 1.3907 135 1.4519 209 1.7881

0.025 0.01 136 1.1790 713 1.4222 200 1.5144 307 1.8489
0.025 113 1.1655 593 1.4151 165 1.5033 254 1.8352
0.05 94 1.1517 498 1.4078 139 1.4860 213 1.8212
0.075 83 1.1414 441 1.4024 122 1.4754 188 1.8108
0.10 75 1.1327 399 1.3977 110 1.4663 170 1.8019

0.05 0.01 119 1.1937 616 1.4297 174 1.5294 266 1.8635
0.025 97 1.1805 505 1.4227 142 1.5157 218 1.8501
0.05 80 1.1669 418 1.4154 117 1.5016 180 1.8362
0.075 70 1.1566 366 1.4099 102 1.4908 157 1.8257
0.10 62 1.1477 328 1.4052 91 1.4816 141 1.8167

0.075 0.01 108 1.2047 557 1.4352 158 1.5407 241 1.8743
0.025 87 1.1919 451 1.4284 128 1.5273 195 1.8613
0.05 71 1.1785 369 1.4123 104 1.5134 159 1.8476
0.075 62 1.1683 320 1.4158 90 1.5028 138 1.8372
0.10 55 1.1595 285 1.4110 80 1.4937 123 1.8282

0.10 0.01 100 1.2140 513 1.4399 146 1.5502 223 1.8836
0.025 80 1.2016 412 1.4333 117 1.5373 179 1.8709
0.05 65 1.1886 334 1.4263 95 1.5238 145 1.8576
0.075 56 1.1787 288 1.4209 81 1.5134 124 1.8473
0.10 49 1.1700 254 1.4161 72 1.5043 110 1.8384

capability requirement. In this case, the consumer will reject
the product. For the proposed sampling plan to be practical
and convenient to use, a step-by-step procedure is provided
below.

Step 1: Decide process capability requirements (i.e. CAQL
and CLTPD), �-risk, the chance of wrongly rejecting a capa-
ble process, and the �-risk, the chance of wrongly conclud-
ing a bad lot as good one.

Step 2: Check Table 3 to find the critical acceptance value
and the required number of product units for inspection,
(n, c0), based on given values of �-risk, �-risk, CAQL and
CLTPD.

Step 3: Calculate the value of Ĉpk (sample estimator)
from the n inspected sample data.

Step 4: Make a decision to accept the entire products if
the estimated Ĉpk value is greater than the critical value c0

(Ĉpk > c0). Otherwise, we reject the entire products.

5.1. Application example

To illustrate how the sampling plan can be applied to the
actual data collected from the process, we present a case
study on the liquid-crystal module (LCM) manufacturing
process. The LCM is one of the key components used in
many high-tech electronic commercial devices, such as the
cellular phone, the PDA (personal digital assistant), the dig-
ital watch, pocket calculator, automobile accessory visual
displays, and many others. Three key components make the
LCM functions properly. Those include the liquid crystal
display, the back lighting, and the peripheral (interface) sys-
tem. The mounting technology for the chip on glass (COG)
makes the exposed particle overturned, with the side of cir-
cuits facing downward. Then, the electricity conduction is
joined between the IC and panel of the liquid-crystal dis-
play through the mounting material. For the main bonding
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Table 4
Sample data of 80 observations (unit: �m)

1.28 −5.12 6.75 −7.34 9.50 5.70 9.40 1.09 1.32 −5.59
−4.73 3.14 0.38 8.36 −6.88 −7.06 3.47 −4.42 3.34 4.55

2.84 10.25 5.72 −0.11 6.59 −3.31 −8.18 3.71 4.38 3.25
−4.70 −3.45 1.07 −1.58 2.45 7.02 −7.28 4.48 1.28 −2.54

2.58 −5.98 4.50 4.66 −6.75 1.19 −2.11 −2.34 −7.46 5.92
2.93 −2.44 −5.51 2.63 2.04 −2.19 1.40 −2.53 −4.14 −1.93
4.93 −0.17 9.70 3.47 4.86 1.02 −2.06 2.90 5.50 1.06

−4.86 4.75 8.25 6.12 4.63 −5.15 4.11 4.90 −4.74 4.03

process, the bonding precision is an essential process pa-
rameter.

We investigated a particular model of the LCM product,
with the upper and the lower specification limits on the
bonding precision are set to USL = 15 �m, LSL = −15 �m,
and the target value is set to T = M = 0. If the character-
istic data do not fall within the tolerance (LSL, USL), the
lifetime or reliability of the LCM will be discounted. In the
contract, the CAQL and CLTPD are set to 1.33 and 1.00 with
�-risk=0.05 and �-risk=0.05. Therefore, the problem is the
determination of critical acceptance values and the inspected
sample sizes that provide the desired levels of protection for
both producer and consumer. The sampling plan must pro-
vide a probability of at least 1 − � of accepting the lot if
the lot proportion defective is at the CAQL = 1.33 (which
is equivalent to no more than 66 PPM fraction of defectives
for the product), and also provide a probability of no more
than � accepting the lot if the lot proportion defective is at
the CLTPD =1.00 (which is equivalent to 2700 PPM fraction
of defectives for the product).

First, we find the acceptance critical values and inspected
sample sizes of sampling plan (n, c0) = (80, 1.1669) from
Table 4 The required sample of product items for inspec-
tion are taken from the process randomly, using microscope
visually for inspection, the observations measurement are
displayed in Table 4. Based on those data, the calculation
shows the following. Therefore, the consumer would “reject”
the entire products since the sample estimator from the in-
spection, 0.968, is smaller than the critical acceptance value
1.1669.

X̄ = 0.959, S = 4.835,

Ĉpk = d − |X̄ − M|
3S

= 0.968.

5.2. Comments on existing methods

We note that if existing sampling plans are applied here,
it is almost certain that any sample of 80 LCMs taken from
the process will contain zero defective items. All the prod-
ucts therefore will be accepted, which obviously provide no
protection to the buyer at all.

6. Conclusions

Process capability indices are useful management tools,
particularly in the manufacturing industry, which provide
common quantitative measures of manufacturing capability
and production quality. Most supplier certification manu-
als include a discussion of process capability analysis and
describe the recommended procedure for computing a pro-
cess capability index. In spite of the introductions of many
process capability indices, the Cpk index remains the most
popular one because it provides quantitative measures of
process yield and upper bound on product fraction of de-
fectives. Acceptance sampling plans are practical tools for
quality assurance applications. It provides the buyer and
the vendor a decision rule for product sentencing to meet
their needs. Since the sampling cannot guarantee that the
defective items in a lot will be sampled and inspected, then
the sampling involves risks of not adequately reflecting the
quality conditions of the lot. Such a risk is even more
significant as the rapid advancement of the manufacturing
technology and stringent customers demand is enforced.
Particularly, when the product fraction of defectives is very
low and measured in parts per million (PPM), the required
number of inspection items must be enormously large in
order to adequately reflect the actual lot quality. In this
paper, we developed an effective sampling plan based on
process capability index Cpk , to deal with product ac-
ceptance problem for processes with very low fraction of
defectives. The proposed sampling plan provides a feasible
inspection policy, which can be applied to products with
very low fraction of defectives where classical sampling
plans cannot be applied. The proposed new sampling plan
is developed based on the exact sampling distribution rather
than approximation. We developed a method to determine
the sample size required for inspection and the correspond-
ing acceptance criterion, to provide the desired levels of
protection to both producers and consumers. We tabulated
the required sample size n and the corresponding critical
acceptance value c0 for various �-risks, �-risks, and the ca-
pability requirements AQL, LTPD. The results obtained in
this paper are useful to the practitioners in making reliable
decisions. For illustrative purpose, we demonstrated the pro-
posed method by presenting a case study on liquid-crystal
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module (LCM) manufacturing process to evaluate the pro-
cess performance.
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