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Abstract

Two parameters, C and o, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. There-
fore, the purpose of this study is to develop a genetic-based SVM (GA-SVM) model that can automatically determine the optimal param-
eters, C and o, of SVM with the highest predictive accuracy and generalization ability simultaneously. This paper pioneered on
employing a real-valued genetic algorithm (GA) to optimize the parameters of SVM for predicting bankruptcy. Additionally, the pro-
posed GA-SVM model was tested on the prediction of financial crisis in Taiwan to compare the accuracy of the proposed GA-SVM
model with that of other models in multivariate statistics (DA, logit, and probit) and artificial intelligence (NN and SVM). Experimental
results show that the GA-SVM model performs the best predictive accuracy, implying that integrating the RGA with traditional SVM

model is very successful.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Predicting corporate failure has been an important
research topic in accounting and finance for the last three
decades (Lee, Han, & Kwon, 1996; Salcedo-Sanz, Fernan-
dez-Villacanas, Segovia-Vargas, & Bousono-Calzon, 2005).
The financial crisis in East Asia provoked particularly
extensive studies of the financial distress of institutions
with various financial and ownership structures that arose
across countries with very diverse institutional setups in
East Asia in 1997 and 1998 (Claessens, Djankov, & Klap-
per, 2003). Classical studies on ratio analysis and the clas-
sification of bankruptcy was performed by Beaver’s
dichotomous classification test in 1967. Altman (1968) pro-
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posed the Z-score model, which applied multivariate dis-
criminant analysis (MDA) and employed financial ratios
as input variables to predict financial distress. Subsequent
studies have developed more precise model to predict bank-
ruptcy. Deakin (1972) revised Altman and Beaver’s studies,
using a quadratic function to construct a more precise clas-
sification model of financial distress and thus increase the
accuracy for predicting financial distress. After that, logit
regression (Ohlson, 1980; Platt & Platt, 1990; Tseng &
Lin, 2005; Zavgren, 1985) or probit regression (Zmijewski,
1984) have widely adopted in subsequent work. Neverthe-
less, empirical results have shown that most of financial
ratios violate the assumptions of the multivariate statistical
model used in these previous studies. In recently studies,
several revised financial distress models such as the revised
the Z score and ZETA models and the hybrid system (Lee
et al., 1996; Tam & Kiang, 1992) have been demonstrated
the results of highly adaptable and outperformed in
predicting bankruptcy. In addition, statistical learning
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approaches such as neural networks or support vector
machines (SVM) has been successfully applied to this kind
of problems (Min & Lee, 2005; Salcedo-Sanz et al., 2005;
Tam, 1991; Tam & Kiang, 1992; Wu, 2004).

Previous application of neural networks in finance and
accounting, notably in bankruptcy prediction, are limited
to back-propagation neural networks (Yang, Platt, & Platt,
1999). Recently, new algorithms in machine learning, Sup-
port vector machines (SVMs), were developed by Boster,
Guyon, and Vapnik (1992) to provide better solutions to
decision boundary than could be obtained using the tradi-
tional neural network. Since the new model was proposed
(Boster et al., 1992; Cortes & Vapnik, 1995), SVM has been
successfully applied to numerous applications, including
the handwriting recognition, particle identification (e.g.,
muons), digital images identification (e.g., face identifica-
tion), text categorization, bioinformatics (e.g., gene expres-
sion), function approximation and regression, time series
forecasting (Cao, 2003; Kim, 2003; Mukherjee, Osuna, &
Girosi, 1997; Miiller, Smola, Rétsch, & Scholkopf, 1999;
Tay & Cao, 2001, 2002), chaotic system (Mattera & Hay-
kin, 1999) and bankruptcy prediction (Min & Lee, 2005;
Salcedo-Sanz et al., 2005). This study examines the possi-
bility of enhancing the accuracy of predicting bankruptcy
by adopting the SVM model.

Min and Lee (2005) stated that the optimal parameter
search on SVM plays a crucial role to build a bankruptcy
prediction model with high prediction accuracy and stabil-
ity. To make an efficient SVM model, two extra parame-
ters: C and o® (sigma squared) have to be carefully
predetermined. The first parameter, C, determines the
trade-offs between the minimization of the fitting error
and the minimization of the model complexity. The second
parameter, o2, is the bandwidth of the radial basis function
(RBF) kernel. Consequently, the purpose of this study is to
propose a model that can determine the optimal parame-
ters (C and o) of SVMs to yield the highest predictive
accuracy and generalization ability for predicting bank-
ruptcy. The model was tested on the prediction of financial
crisis of Taiwan to compare its accuracy with that of other
models that based on multivariate statistics and Al
approaches.

The remainder of this paper is organized as follows. The
basic ideas of methods for bankruptcy prediction is
reviewed and discussed in Section 2. Research design for
modeling genetic based SVM is proposed in Section 3 to
describe its ideas and procedures. An example of empirical
analysis for predicting bankruptcy is used to demonstrate
the proposed method in Section 4. Discussions are pre-
sented in Section 5 and conclusions are in the last section.

2. Basic ideas of methods for bankruptcy prediction

In this section, the basic ideas of methods for bank-
ruptcy prediction from the perspective of the non-linear
SVM are provides. Then, the real-valued genetic algorithm
is briefly introduced. Parameters optimization approaches

are discussed in the following section. Finally, statistical
approaches for predicting bankruptcy are overviewed in
the final section.

2.1. The non-linear support vector machine

The basic idea in designing a non-linear SVM model is
to map the input vector x € R" into vectors z of a
higher-dimensional feature space F (z = ¢(x), where @
denotes the mapping R" — R’ ), and to solve a linear clas-
sification problem in this feature space
x € R — z(x) = [m,(X), &20,(x), . .., a,0,(x)]" € K.

(1)

Namely, the basic idea in non-linear SVM is to map the
data x into a high-dimensional feature space via a mapping
function @(x) (also called kernel function), which is selected
by the user in advance. By replacing the inner product for
non-linear pattern problem, the kernel function can per-
form a non-linear mapping to a high-dimensional feature
space (Vapnik, 1995). Kernel functions perform the non-
linear mapping between input space and a feature space.

The approximating feature map for the Mercer kernel is
K(x,y) = ¢(x)"¢(y), which performs the non-linear map-
ping. Currently, popular kernel functions in machine learn-

ing theories are as follows (Campbell, 2002; Kecman,
2001).

2
Gaussian (RBF) kernel : K(x;,Xx;) = exp (— M),

2072
(2)
Polynomial kernel: K(x;,x;) = (1 +x'x,)"; 3)
Linear kernel: K(x;,X;) = X, X;; (4)

Multilayer perceptron: K(x;,X;) = tanh[(x"x;) +b].  (5)

In Eq. (2), o denotes the variance of the Gaussian ker-
nel. A certain value of b is used only in the multilayer
perceptron.

The learning algorithm for a non-linear classifier SVM
follows the design of an optimal separating hyperplane in
a feature space. The procedure the same as associated with
hard and soft margin classifier SVMs in x-space. Accord-
ingly, the dual Lagrangian in z-space is

! !
1
Ly(a) = Z %5 Zyz‘yj‘aio‘jszzja (6)
=1 ij=1

i=

and using the chosen kernels, the Lagrangian is maximized
as follows.

/ i
_ 1
Maximize: Lg(or) = Z %= Zyiy;aiO(/K(Xth) (7)
i=1 ij=1
i=1,...,1, (8)

1
Z oy, = 0. (9)
i=1

Subject to  o; = 0, i=1

)
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Note the constraints must be revised for using in a non-
linear soft margin classifier SVM. The only difference these
constraints and those of the separable non-linear classifier
are in the upper bound C on the Lagrange multipliers o,.
Consequently, the constraints of the optimization problem
become

Subjectto C = o, =20, i=1,...,1, (10)

!
fol—yi =0. (11)
=1

In this way, the influence of the training data point will
be limited and remained on the wrong side of a separating
non-linear hypersurface. The decision hypersurface d(x)
and the indicator function, which were determined by the
non-linear SVM classifier, are as follows:

d(x) = i:y,-oc,-K (xi,X;) + b, (12)

ir(x) = sign(d(x)) = sign (iyioc,K(x,-, X;) + b). (13)

Depending upon the chosen kernel, the bias term b may
implicitly be a part of the kernel function. For example,
the bias term b is not required when Gaussian RBFs are used
as kernels. When the bias term b is included within other ker-
nel functions, the non-linear SVM classifier is as follows:

ir(x) = sign(d(x)) = sign <iyioc,-K(x,-7 X;) + b)

i=1

number of SVs
= sign< > ysocsK(X,xs)) (14)

s=1

2.2. Real-valued genetic algorithm (RGA)

Recently, genetic algorithms (GAs) have been widely and
successfully applied to various optimization problems
(Fogel, 1994; Goldberg, 1989; Grefenstette, 1986). GAs
are well suited to the concurrent manipulating of models
with varying resolutions and structures since they can
search non-linear solution spaces without requiring gradi-
ent information or a priori knowledge about model charac-
teristics (McCall & Petrovski, 1999). The problem existing
in the binary coding lies in the fact that a long string always
occupies the computer memory even though only a few bits
are actually involved in the crossover and mutation opera-
tions. This is particularly the case when a lot of parameters
are needed to be adjusted in the same problem and a higher
precision is required for the final result. To overcome the
inefficient occupation of the computer memory, the under-
lying real-valued crossover and mutation algorithms are
employed (Huang & Huang, 1997). In contrast to the binary
genetic algorithm (BGA), the real-valued genetic algorithm
(RGA) uses a real value as a parameter of the chromosome
in populations without performing coding and encoding
process before calculates the fitness values of individuals

(Haupt & Haupt, 1998). Namely, RGA is more straightfor-
ward, faster and more efficient than BGA. Since this study is
concerned with finding optimal values of SVM parameters
whose precise values are unknown, the aforementioned
properties of RGA are highly advantageous.

2.3. Parameter optimization

To design an effective SVM model, values of parameters
in SVM have to be chosen carefully in advance (Duan,
Keerthi, & Poo, 2003; Lin, 2001; Min & Lee, 2005). These
parameters include the following: (1) regularization param-
eter C, which determines the tradeoff cost between mini-
mizing the training error and minimizing the complexity
of the model; (2) parameter sigma (¢ or d) of the kernel
function which defines the non-linear mapping from the
input space to some high-dimensional feature space. This
investigation only considers only the Gaussian kernel, the
variance of whose function is sigma squared ¢°; (3) a kernel
function used in SVM, which constructs a non-linear deci-
sion hypersurface in an input space.

Cristianini, Shawe-Taylor, and Campell (1998) pro-
posed the Kernel-Adatron Algorithm which can automati-
cally select models without testing on a validation data.
Unfortunately, this algorithm is ineffective if the data have
a flat ellipsoid distribution (Campbell, 2002). Therefore,
one possible way to solve the problem is to consider the dis-
tribution of the data. Interestingly, various specific func-
tions in SVM, after the learning stage, can create the
decision hypersurfaces of the same type (Kecman, 2001).

To solve the problem, Lin (2001) provided a systematic
method for selecting SVM parameters. His systematic
design for selecting parameters of support vector regression
was adopted the concept of the sampling theory into
Gaussian Filter. Min and Lee (2005) proposed a grid-
search technique using 5-fold crossvalidation to find out
the optimal parameters values of kernel function of SVM.

In contrast to abovementioned methods of parameter
optimization on SVM, this study develops a new method,
named GA-SVM, for optimizing the two SVM parameters
(C and ¢%) simultaneously. The first parameter, C, deter-
mines the trade-off between the fitting error minimization
and model complexity. The second parameter, ¢°, is the
bandwidth of the radial basis function (RBF) kernel.

2.4. Overview of statistical approaches for predicting
bankruptcy

The corporate distress literature includes several diverse
methodologies for discriminating between failed and non-
failed firms, following Beaver’s univariate comparison of
financial ratios in 1966. Extensive studies in this area have
applied statistical and Al approaches over the last three
decades. The well-known multivariate models used in
this area include multiple discriminate analysis (MDA)
(Altman, 1968; Altman, Haldeman, & Narayanan, 1977),
logit analysis (Ohlson, 1980; Platt & Platt, 1990; Tseng &
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Lin, 2005; Zavgren, 1985), and probit analysis (Zmijewski,
1984). Most recently, Al approaches, such as neural net-
work approaches (Lee et al., 1996; Lee, Booth, & Alam,
2005; Odom & Sharda, 1990; Tam, 1991; Yang et al,
1999) or SVM (Min & Lee, 2005; Salcedo-Sanz et al.,
2005) have shown promise as classification tools.

3. Designing a genetic-based SVM model for predicting
bankruptcy

In this section, we describe the design of our proposed
model, a genetic-based SVM model, for predicting bank-
ruptcy. The approach of combining real-valued genetic
algorithm with SVM is introduced in the first section.
Research data and description of samples are described
in the next section. Modeling and the parameter settings
of BPN and SVM are presented in Section 3. Chromosome
representations, the design of fitness function and genetic
operators in this study are discussed in the final sections.

3.1. Our proposed approach

In the proposed GA-SVM model, the SVM parameters
are dynamically optimized by implementing the RGA evo-
lutionary process and the SVM model then performs the
prediction task using these optimal values. Namely, the
RGA tries to search the optimal values to enable SVM to
fit various datasets. The process of GA-SVM was illus-
trated in Fig. 1. The optimal values of SVM’s parameters
are searching by GAs with a randomly generated initial
populations consisting of chromosomes. The values of
the two parameters, C and ¢°, are directly coded in the
chromosomes with real-valued data. The proposed model
can implement either the roulette-wheel method or the
tournament method for selecting chromosomes. Ade-
wuya’s crossover method and boundary mutation method
were used to modify the chromosome. The single best chro-
mosome in each generation is survives to the succeeding
generation. The proposed model was developed and imple-
mented in the MATLAB v6.5 environment. The major tool
for training and validating the SVM were those developed
by Pelckmans et al. (2002). The proposed model is able to
handle huge data sets and easily be combined with the real-
valued genetic algorithm in the MATLAB environment.

Predicting bankruptcy (or financial distress) has been a
major research issue in accounting and finance over in
the last three decades (Lee et al., 1996). Therefore, the
genetic-based SVM (GA-SVM) model was applied to the
problem of financial distress in Taiwan to verify its accu-
racy and generalization ability, must be shown to be more
accurate than the traditional multivariate statistical models
and neural network technique.

3.2. Research data

Financial-statement data of the failed and non-failed
firms were obtained from the database of the Taiwan Eco-

nomic Journal (TEJ), covering in cases of 3 years prior to
failure and 1 year after failing. “Failure” is defined as the
inability of a firm to pay its financial obligations as they
mature. A firm is specifically said to have failed when
any of the following events have occurred: bankruptcy,
default on bonds, the overdrawing of a bank account, or
non-payment of a preferred stock dividend (Beaver,
1966). This study defined the firms in financial distress as
those whose listed securities have been classified as the cat-
egory of alter-trading-method.! When any of the events
exists in aforementioned events occurs in the operating
rules, this Corporation may place the listed securities under
the category of altered-trading-method.

According to the definition of Beaver (1966), the “first
year before failure” is defined as that year included in the
most recent financial statement prior to the year in which
the firm is reported to have failed. The data sample consists
of firms in Taiwan that failed in the period from 1998 to
2002. The failed firms were selected from the lists of bank-
rupt companies by the Taiwan stock exchange (TSE) and
the database of TEJ. A failed firm was paired with a non-
failed firm by (1) industry, (2) products, (3) capitalization,
and (4) values of assets. Table 1 presents the description
of samples. Failed companies were paired with non-failed
firms in a similar industry, dealing in similar products,
with similar capitalization, and with similar values of
assets.

The size of matched sample was 88 firms, including 22
failed firms and 66 non-failed firms. In the simulated sam-
ple, the total sample size was 44 companies, including 22
failed firms and 22 non-failed firms. The holdout sample
comprises of all corporations listed on the TSE and OTC
market from 2001 to 2002. The sample size for 2001 was
538 firms, including 373 firms on the TSE and OTC market
in 2001. The sample size for 2002 was 534 firms, including
356 firms on the TSE and OTC market.

Table 1 also presents further details about the matched
sample in this study. The matched sample was paired
according to industry, primary product, capitalization
and values of assets. A lower matching ratio (e.g., 1:1 or
1:2) corresponds to higher bias in the selection in choice-
based, which leads to oversampling (Platt & Platt, 2002;
Zmijewski, 1984). Using the matching rule that has been
proposed by Su (2000), this study adopted one financially
distressed firm was paired to three non-failed firms (1:3
ratio) to avoid the problem of oversampling and bias in
the choice-based sample (Platt & Platt, 2002).

3.3. Modeling
The 19 financial variables are those which have been

found or actually used in previous research to be significant
in predicting bankruptcy. These ratios can be grouped into

! This method is according to Articles 49, 50, and 50-1 of the Operating
Rules of the Taiwan Stock Exchange Corporation.
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Fig. 1. The process of this approach.

Table 1
Description of samples
Samples Paired rate Number of observations Time period
(F vs. NF) F NF Total
Matched sample 1:3 22 66 88 (training and forecasting) 1998-2000
Simulated sample (random sampling by bootstrap) 1:1 15 15 30 (training) 1998-2000
7 14 (forecasting)
Holdout sample None 531 538 (forecasting for TSE in 2001) 2001-2002
14 520 534 (forecasting for TSE in 2002)
5 368 373 (forecasting for OTC in 2001)
5 351 356 (forecasting for OTC in 2002)

Note: F = failed firms; NF = non-failed firms.

four categories, including liquidity, profitability, asset man-
agement, and financial structure. Initially, financial vari-
ables are selected for used in the bankruptcy prediction
model. A list of tested financial ratios is summarized in
Table 2.

3.3.1. Neural network

The feed-forward back-propagation neural network
(BPN) applied to the experimental sample includes 19
input neurons in the input layer, seven neurons in the
hidden layer, and one in the output layer. This study
constructed a three-layer network and employed the

“TRAINLM algorithm”, “LEARNGDM”, and “MSE-
REG” as the training function, the adaptive learning func-
tion, and the performance function, respectively. The
transfer function was set to the “TANSIG function” and
the “PURELIN function” for hidden layer and output
layer, respectively. The number of epochs was set to 300
and the learning rate was set to 0.05 in each epoch. Table
3 presents the parameter settings.

3.3.2. The SVM model
When data sets are noisy and exhibit a large overlap
between data classes, error variables ¢ > 0 are introduced
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Table 2
List of tested financial ratios

Section Financial ratios
Liquidity Current ratio
Quick ratio
Cash flow ratio
Profitability Net income to sales

Gross profit to sales

Net income to total assets

Net income to stockholder’s equity
Operating income to sales

Earning per share (EPS)

Growth ratio of sales

Total asset turnover
Fixed assets turnover
Inventory turnover
Receivables turnover

Asset management

Debt ratio

Long-term liabilities to fixed assets
Degree of financial leverage (DFL)
Liabilities to stockholder’s equity
Interest coverage ratio

Financial structure

Table 3
Parameter settings used in BPN

Values

FEED-FORWARD
BACK-PROPAGATION

Parameters of NN

Network type

Training function TRAINLM
Adaptive learning function LEARNGDM
Performance function MSEREG
Number of layers 3

Neurons in hidden layer 7

Transfer function of hidden layer TANSIG
Transfer function of output layer PURELIN
Epochs 300

Learning rate 0.05

to allow the output of the outlier to be locally corrected,
constraining the range of the Lagrange multiplier o; from
0 to C. Cis a constant penalty function designed to prevent
outliers from affecting the optimal hyperplane. Hence, the
non-linear objective function is

W@=§:-—Zwmn

ij=1

Maximize:

Xi; X;))

Subjectto 0< o, <C, i=1,...,1 (16)

/
Z“iyi =0. (17)
i=1

The optimal weight w* and bias are determined by solv-
ing the quadratic programming problem.

!
= %y, (18)
i=1

b* — yi _ W*TXI‘ (19)

The optimal decision function is as follows:

= sign <Zy,oc K(x,x;) + b*) (20)

In machine learning theories, popular kernel functions,
such as the Gaussian kernel function, have been found to
provide good generalization capabilities (Campbell, 2002;
Kecman, 2001). Accordingly, the Gaussian kernel function
is employed as the kernel function in this work. The Gauss-
ian kernel function is given by

2
Gaussian (RBF) kernel:  K(x;,X;) = exp <_|x,24§,||>
o

(21)

A kernel function K(x,z), satisfying Mercer’s condition,
performs a high dimensional mapping ¢ : R"+—F and be
used as a substitute for (@(x)@(z)) which replaces (xz)
(Vapnik, 1995). Consequently, the optimal hyperplane
classification function is obtained by the SVM model to
fit an optimal hyperplane between two classes in a training
data set.

3.4. Chromosome representations

Unlike the traditional BGA, the RGA used to solve
optimization problems, directly codes all of the corre-
sponding parameters or variables in a chromosome. Hence,
the representation of the chromosome is straightforward in
the RGA. The two parameters, C and o, of SVM were
directly coded to form the chromosome in the proposed
method. The chromosome X is represented as
X ={p1,p2}, where p; and p, denote the regularization
parameter C and sigma o (the parameter of the kernel func-
tion), respectively.

3.5. The fitness function

A fitness function, assessing the performance of each
chromosome, must be designed before starts to search opti-
mal values of SVM parameters. Several measurement indi-
cators have been developed and applied to evaluate the
predictive accuracy of models; they include the hit ratio,
MAPE, RMSE, and the maximum error. The hit ratio is
used herein as the indicator of model performance to com-
pare the results achieved by the proposed model with those
obtained using other models (traditional SVM, discrimi-
nant analysis, logit analysis, probit regression, and NN).
The hit ratio denotes the value of the fitness function in
GA-SVM.

3.6. Genetic operators
The real-valued genetic algorithm uses selection, cross-

over, and mutation operators to generate the offspring of
the existing population.
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3.6.1. Selection

The proposed GA-SVM model incorporates two well-
known selection methods — the roulette wheel method
and the tournament method. The tournament selection
method is adopted here to decide whether a chromosome
can survive to the next generation. The chromosomes that
survive to the next generation are placed in a matting pool
for crossover and mutation operations.

3.6.2. Crossover

Once a pair of chromosomes has been selected for cross-
over, one or more randomly selected positions are assigned
to the to-be-crossed chromosomes. The newly crossed
chromosomes are then combined with the rest of the chro-
mosomes to generate a new population. However, over-
loading problem frequently occurs when the RGA is used
to optimize values. This study uses the method proposed
by Adewuya (1996) to prevent overload of post-crossover
when genetic algorithm with real-valued chromosomes
are applied.

XTld = {x117x12a e 7xln}7 Xgld = {x21>x22> e 7x2"} (22)
move closer:

XYW — yold | g(yold _ yoldy (23)
A5 = x5~ (34 - x) (24)
move away:

XYW — yold | g(xgd _ xoldy (25)
Xgew — Xgld _ O'(Xgld _X‘fld)' (26)

XS and X5 represent the pair of populations before
crossover operation; X|*and X3° represent the pair of
new populations after crossover operation. In addition, ¢
is a random micro number that controls the variance of
each crossover operations.

3.6.3. Mutation

The mutation operation follows the crossover operation
and determines whether a chromosome should be mutated
in the next generation. In this study, uniform mutation
method is applied and designed in the presented model.
Consequently, researchers can select the method of muta-
tion in GA-SVM best suited to their problems of interest.

Uniform mutation

XM = {x,x0,. 00,20, (27)
XY = LBy + *(UB, — LBy), (28)
XY = {x1,x0, .., XY, LX) (29)

where n denotes the number of parameters; r represents a
random number in the range (0,1), and k is the position
of the mutation. LB and UB are the low and upper bounds
on the parameters, respectively. LB, and UB, denote the
low and upper bound at location k. X°' represents the
population before mutation operation; X" represents
the new population following mutation operation.

4. Empirical analysis for predicting bankruptcy

Empirical analysis is divided into five sections: (1) data
analysis, (2) normality testing, (3) predictive accuracy of
matched samples, (4) predictive accuracy of holdout sam-
ple, and (5) predictive of simulated (bootstrap) sample.

4.1. Data analysis

Experiments were performed to examine three kinds of
validation: (1) internal validation (matched sample), (2)
external validation (holdout sample prediction) and (3)
external validation (simulated sample prediction). Besides
the accuracy of the predictions of bankruptcy, Type I
and Type II errors were analyzed among these experiments.
Type I error was defined as the probability that a firm pre-
dicted not to fail will in fact fail, while the Type II error
was defined as the probability that a firm predicted to fail
will not in fact fail (Blum, 1974). The SVM model is
applied with fix values of parameters (Fig. 2).

The bankruptcy models in this investigation employed
19 financial variables (see Table 2), selected in previous
research on financial distress, as input variables. These
variables were organized into four groups, according to
whether they related to liquidity, profitability, asset man-
agement or financial structure. The input variables of all
the models are the same. The hit ratio of classification is
the indicator used to evaluate the predictive accuracy of
model. The bootstrap technique has been widely used in
financial research to evaluate the external validity of model
in prediction. Additional evidence of the stationary of the
models was obtained by other samples. Thus, this study
not only evaluates the within-sample predictive capacity
(internal validity) but also employs the bootstrap technique
to evaluate the predictive ability in simulated sample
(external validity). Table 4 describes the matched sample
in this study. A total of listed 88 firms were obtained from
the literature on financial distress in Taiwan.

4.2. Normality test

Most multivariate models assume that the data are nor-
mally distributed. Thus, the normality of the input vari-
ables must be tested before these models can be applied.
This study employed the Kolmogorov—Smirnov Z test
(KS Z) to test the data for 1 year prior to failure, 2 years
prior to failure, and 3 years prior to fail, to determine the
distribution of the experimental data. The result of normal-
ity test was illustrated in Table 5. As Table 5 shows, most
of financial ratios were not normally distributed as has
been stated in previous research.

4.3. Predictive accuracy of matched samples
The average predictive accuracy of the failing company

model is 92.61% in the first year before failure, 91.19% in
the second year, and 83.81% in the third. With reference
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Financial Ratios

4L

Comparison of Models

Performance
Discriminant Logit Probit Neural
A SVYM VM . . .
GA_S § Analysis Regression Regression Network
Hit Ratio (Matched sample, Holdout Sample, Simulated Sample)
Fig. 2. Analysis steps.
Table 4 Table 5
Description of the matched sample Normality test
Industry 1998 1999 2000 Total Ratio Year — Year — Year —
Number Number Number 1KS Z 2KS Z 3KSZ
of firms of firms of firms .
Liquidity
Foods 8 4 4 16 Current ratio 2.120™" 1816 1.546"
Plastics 0 12 0 12 Quick ratio 2.326™" 1.9417 1.803™
Fiber and textile 0 8 0 8 Cash flow ratio 1.155 1.003 1.899™
Elz:gi;l Zillilrrllzermg, 4 0 0 4 Profitability
.. Net income to sales 2.735™" 2.689"" 2.935™"
Electric wire and cable 0 4 0 4
. Gross profit to sales 0.579 1.046 1.046
Glass and ceramic 0 4 0 4 _ . . -
Steel 4 3 4 16 Net income to 1.976 2.494 2.747
total assets
Motor 4 0 0 4 Net income to 3.5207 1.074 2.466™
Electronics 0 8 0 8 s .
Construction 4 4 0 8 stockholder’s equity
Metal 4 0 0 4 Operating income 1.260 1.339 1.080
to sales
Total 28 52 8 88 Earning per 2477 1.344 3.822"
share (EPS)
Growth ratio of sales 1.824™" 1.835™" 1.147
to the first year before failure, the failed of firms predicted  Asset management .
to non-failure (Type I error) is rarer than the non-failed of ~ Total asset turnover 1190 1.387 1457 |
firms predicted to failure (Type II error). Artificial intelli- Fixed assets turnover 2157 2212 L78L
p yp : Inventory turnover 1.508 1.783 1.370
gence mOdf?ls (NN, SVM, and GA-SVM) are ?'ble to per- Receivables turnover 2252 2.096"" 2.190™"
fectly predict bankruptcy (100% accuracy), in the first, o
d and third years before failure. DA exhibited the Financial structure
second and third y ure. : Debt ratio 0.816 0.500 0.606
lowest predictive accuracy of all the models. DA and probit  [ong-term liabilities 2.285™* 2.840"* 2,353
model yielded the highest Type II and Type I errors, to fixed assets
respectively, in all years before failure (Table 6). Degree of financial 4.142 4.273 4.058
In practice, the cost of misclassifying a failed firm is likely leverage (DFL) .
b h h h £ misclassifvi failed Liabilities to 2.831 1.476 4.466
to be muc gr;ater than t aj[ .0 misc qss1 y1gg :.11 non- a} e stockholder’s equity
firm. Type I is the probability of misclassifying a failed Interest coverage ratio 4211 4187 4.504™"

while Type II error is the probability of misclassifying a
non-failed firms. In the first year before failure, predictions
of failed firms not to fail (Type I error) were greater than
predictions of non-failed companies to fail (Type II error).
In the first year before failure, the average Type I and II
errors are 4.9% and 2.6%, respectively. In the second year
before failure, the average Type I and II errors are 6.5%
and 2.3%, respectively. In the third year before failure, the
average Type I and II errors are 11.4% and 4.8%, respec-
tively. Probit model and logit model yield the highest Type
I error, while DA has the highest Type II error.

KS Z denotes Kolmogorov—Smirnov Z test.
* Denotes o <0.1.

** Denotes o < 0.05.

“* Denotes o < 0.01.

4.4. Predictive accuracy of holdout sample

The holdout method, sometimes called test sample esti-
mation, partitions the data into two mutually exclusive
subsets called a training set and a test set, or a holdout
set. Two thirds of the data are commonly used as the
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Table 6
Accuracies of models on financial distress prediction
Models Year — 1 Year — 2 Year — 3

Accuracy  Type I error  Type Il error  Accuracy  Type I error  Type Il error  Accuracy  Type I error  Type II error
DA 0.8750 0.023 0.102 0.8522 0.057 0.091 0.7500 0.080 0.170
Logit 0.9205 0.080 0.000 0.8978 0.102 0.000 0.8068 0.182 0.011
Probit 0.9090 0.091 0.000 0.8977 0.102 0.000 0.7955 0.193 0.011
NN 1.0000 0.000 0.000 1.0000 0.000 0.000 1.0000 0.000 0.000
SVM 1.0000 0.000 0.000 1.0000 0.000 0.000 1.0000 0.000 0.000
GA-SVM  1.0000 0.000 0.000 1.0000 0.000 0.000 1.0000 0.000 0.000
Average 0.9261 0.049 0.026 0.9119 0.065 0.023 0.8381 0.114 0.048

Note: DA denotes discriminant analysis; NN denotes neural network.
SVM refers to a support vector machine with fixed values of parameters.

GA-SVM denotes a support vector machine with values of parameters optimized by RGA.

Type I error represents the probability of misclassifying a failed firm.
Type II error represents the probability of misclassifying a non-failed firm.

training set and the remaining one third are then used as
the test set. The training set is given to the inducer, and the
induced classifier is tested on the test set. In this study,
the holdout sample is the group of data unused when the
financial distress models are computed. This sample is used
to validate applicability of the financial bankruptcy models
to a separate sample of respondents, also called the valida-
tion sample (Hair, Anderson, Tatham, & Black, 1998). The
holdout sample herein consists of all firms listed on the
TSE and OTC in 2001 and 2002. The holdout sample there-
fore includes four data files. The file (2001 TSE.txt) con-
tained 605 records but 67 records were deleted because
data were missing. For the same reason, 69 records were
removed from the file (2002TSE.txt). The file (20010TC)
included 373 records, after 33 of the original 406 records
were removed and file (20020TC) included 356 records,
after 50 of the original 356 records were removed. The
models used to predict financial distress were trained using
the preceding year’s data. Results revealed that the pro-
posed model, GA-SVM, outperformed the other bank-
ruptcy models.

As Table 7 shows, the average predictive accuracy was
87.33% in predicting companies in the TSE market that
failed in 2001, and 74.9% in 2002. The proposed model,

Table 7
Predictive accuracies of models in holdout sample (the TSE market)

GA-SVM, outperformed other bankruptcy models in
2001 and 2002 years. The GA-SVM had the highest predic-
tive accuracy, the highest Type I error and the lowest Type
IT error. DA had the worst predictive accuracy of all mod-
els but it had the lowest Type I error. Table 8 presents
results concerning the prediction of bankruptcy in the
OTC market in 2001-2002. The average predictive accu-
racy is 79.50% in predicting companies in the OTC market
that failed in 2001, and 78.47% in 2002. The financial dis-
tress model performed better for the OTC market than
the TSE market in 2001-2002. The overall predictive accu-
racies exceeded that for the TSE market. The GA-SVM
still outperformed among the other financial distress mod-
els in 2001 and 2002 years. The GA-SVM exhibited the
highest predictive accuracy, the lowest Type I and Type
IT errors for the 2001 OTC market. DA and probit model
had the lowest predictive accuracy for the OTC market in
both 2001 and 2002.

4.5. Predictive accuracy of simulated sample
The bootstrap technique was introduced by Efron and is

fully elucidated in Efron and Tibshirani (1993). Given a
dataset of size n, a bootstrap sample is constructed by

Models 2001 TSE (538 firms) 2002 TSE (534 firms)

Year + 1 Year +2

Accuracy Type 1 error Type 1I error Accuracy Type I error Type 1I error
DA 0.7937 0.000 0.206 0.7846 0.009 0.206
Logit 0.8773 0.007 0.115 0.6985 0.015 0.287
Probit 0.8922 0.004 0.104 0.5524 0.019 0.429
NN 0.8271 0.006 0.167 0.5131 0.017 0.470
SVM 0.8662 0.006 0.128 0.9738 0.026 0.000
GA-SVM 0.9833 0.013 0.004 0.9738 0.026 0.000
Average 0.8733 0.006 0.121 0.7494 0.019 0.232

Note: DA denotes discriminant analysis; NN denotes neural network.
SVM refers to a support vector machine with fixed values of parameters.

GA-SVM denotes a support vector machine with values of parameters optimized by RGA.

Type I error represents the probability of misclassifying a failed firm.
Type 11 error represents the probability of misclassifying a non-failed firm.
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Table 8
Predictive accuracies of models in holdout sample (the OTC market)
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Models 2001 OTC (373 firms) 2002 OTC (356 firms)

Year + 1 Year +2

Accuracy Type I error Type 1I error Accuracy Type I error Type 1I error
DA 0.5899 0.000 0.410 0.7416 0.006 0.253
Logit 0.7837 0.000 0.216 0.6067 0.011 0.382
Probit 0.6938 0.000 0.306 0.5056 0.011 0.483
NN 0.7135 0.000 0.287 0.8820 0.014 0.104
SVM 0.9944 0.000 0.006 0.9860 0.014 0.000
GA-SVM 0.9944 0.000 0.006 0.9860 0.014 0.000
Average 0.7950 0.000 0.2051 0.7847 0.012 0.204

randomly sampling » instances uniformly from the original
data. In this section, the simulated sample is constructed by
bootstrap techniques. The original sample of 88 enterprises

Table 9
Predictive accuracies of bankruptcy models for simulated samples

Bootstrap times Predictive accuracy of bankruptcy models

DA Logit Probit NN Fix-SVM"~ GA-SVM
50 0.68 0.69 069 069 0.64 0.72
100 071 0.69 070  0.68 0.66 0.75
200 071 0.69 069 070 0.65 0.75
300 0.72 0.69 0.69 070 0.64 0.75
400 072 070 071 070 0.65 0.76
500 071 0.69 0.69 070 0.65 0.76
1000 071 0.69 069 070 0.65 0.75

Note: Predictive accuracies of bankruptcy models are represented as
percentages.
" Fix-SVM denotes that SVM is run with fix values of SVM parameters.

Predictive Accuracies of Bankruptcy Models

0.8
§ ——DA
5 0.75 . —&— Logit
[&]
< % Probit
2 0.7 ?r;k = e n NN
o
T 0.65 =k *———%———%—| | x—Fix-SVM
a —e—GA-SVM
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Times

Fig. 3. Predictive accuracies of bankruptcy models for simulated sample.

Table 10
Type I and II errors of bankruptcy models for simulated samples

is divided into a training sample of 60 enterprises, and the
remaining 28 enterprises are used as the validation sample.
The ratio of the size of the training sample to that of the
validation sample is designed to be 2:1. The financial dis-
tress models are predicting for varying samples, by boot-
strapping from 50 to 1000 times, to evaluate the
reliability of validation.

Table 9 and Fig. 3 present and plot, respectively, the
predictive accuracies of the bankruptcy models obtained
after bootstrapping various numbers of times. As results
shown, GA-SVM performed well when applied to the sim-
ulated sample when bootstrapping was performed various
numbers of times. Traditional SVM with fixed values of
parameters had the lowest predictive accuracy, regardless
of the number of bootstrapping times. The results implied
that the predictive accuracies of the SVM were dramati-
cally increased by using the optimal parameters. Addition-
ally, GA-SVM and SVM run with fixed values (Fix-SVM)
have the lowest Type I error, but that the Fix-SVM exhib-
ited the highest Type II error for simulated sample (Table
10).

5. Discussions

This study develops a novel model to search the optimal
values of SVM parameters, to increase the accuracy of pre-
diction and ability of generalization. DA, logit, probit,
NN, SVM, and the proposed model (GA-SVM) were
applied to a dataset on bankruptcies in Taiwan. First, this
study found that the RGA yields different optimal values of
the parameters of SVM given various datasets (paired sam-

Bootstrap times Type I error %

Type 1I error %

DA Logit Probit NN Fix SVM GA SVM DA Logit Probit NN Fix SVM GA SVM
50 0.19 0.18 0.19 0.17 0.08 0.13 0.12 0.13 0.12 0.14 0.27 0.15
100 0.16 0.18 0.19 0.17 0.11 0.13 0.13 0.13 0.12 0.15 0.23 0.12
200 0.16 0.18 0.19 0.17 0.11 0.12 0.12 0.13 0.12 0.12 0.23 0.12
300 0.16 0.18 0.19 0.16 0.10 0.12 0.12 0.14 0.13 0.14 0.26 0.13
400 0.16 0.17 0.18 0.16 0.11 0.12 0.12 0.12 0.11 0.14 0.24 0.13
500 0.16 0.17 0.19 0.17 0.11 0.12 0.13 0.14 0.13 0.14 0.24 0.12
1000 0.17 0.18 0.19 0.17 0.11 0.12 0.13 0.14 0.13 0.14 0.24 0.13

Note: Predictive accuracies of bankruptcy models are represented percentages.
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ple, holdout sample, and simulated sample). The optimal
values of SVM parameters are not constant but fall in
the range and the range of each parameter differs with
the dataset. This work found that the optimal values of the
two parameters of SVM differed with the dataset, and
changed at each time. The results reveal that the optimal
values have a range, and are not constants which provide
a direction for future investigation. Secondly, properly
determining the values of SVM parameters were drastically
increased the accuracy of the prediction of bankruptcies.
The optimal kernel parameters of SVM can be automati-
cally determined via the proposed approach.

Thirdly, artificially intelligent models (GA-SVM, SVM,
and NN) are more accurate in predicting financial distress
than other multivariate statistical models. Experimental
results show that the GA-SVM model performs the best,
implying that the hybrid system has a high potential to dra-
matically increase the predictive accuracy when integrating
GA with traditional SVM model. Fourthly, most financial
ratios did not satisfy the normality assumption for multi-
variate statistical models such as the MDA and the probit
model. Thus, MDA exhibited the worst predictive accuracy
and the largest errors of all models tested herein. Finally,
the structural risk minimization principle (SRM) has been
shown to be superior to traditional empirical risk minimi-
zation principle (ERM) which employed by conventional
neural networks, was embodied in SVM. SRM is able to
minimize an upper bound of generalization error as
opposed to ERM that minimizes the error on training data.
Thus, the solution of SVM may be global optimum while
other neural network models tend to fall into a local opti-
mal solution, and overfitting is unlikely to occur with SVM
(Cristianini et al., 1998; Hearst, Dumais, Osuna, Platt, &
Scholkopf, 1998; Kim, 2003). Based on these reasons, we
can conclude that the proposed model more accurately pre-
dicts bankruptcy than the other tested models of bank-
ruptcy. Additionally, the results of this work demonstrate
that the predictive accuracy of the SVM in forecasting
the financial distress of corporations is significantly
increased by optimizing its parameters.

6. Conclusions

This study pioneered on applying the GA-SVM to finan-
cial distress prediction. Therefore, the primary goal of this
study is to apply this new model to increase the predictive
accuracy of financial failure. Empirical results reveal that
the proposed GA-SVM model is a very promising hybrid
SVM model for predicting bankruptcy in terms of both
predictive accuracy and generalization ability. The pro-
posed GA-SVM model can be automated to determine
the optimal values of SVM parameters and exhibits
increased predictive accuracy in given various datasets.
Grice and Ingram (2001) reported that Altman’s Z-score
model declined when applied to various industries. In other
words, the Z-score model was sensitive to industry classifi-
cations. In addition, both theories and experiments have

shown that benefits do not always accrue as the computa-
tional cost is increased, especially if the relative accuracies
are more important that the exact values. The results imply
that the models with high predictive accuracies in sample
do not guarantee to the same high accuracies in holdout
sample prediction. The contribution of this study demon-
strated that the proposed model performed well when
applied in the holdout sample, revealing the generalizabil-
ity of this model to forecast financial distressed firms in
various industries. Thus, the forecasting technique (GA-
SVM) can be developed and coded as a commercial pack-
age for investors. The result of the GA-SVM (financial
distress pre-warning system) can provide a guide of invest-
ment for investors and government.
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