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Abstract Design of experiments and Taguchi methods are
extensively adopted as off-line quality improvement
techniques in industry. However, these methods were
developed to optimize single-response processes. In many
situations, multiple responses must be optimized simulta-
neously, since some product designs, especially in the
integrated circuit industry, are becoming increasingly
complex to meet customers’ demands. Although several
procedures for optimizing multi-response processes have
been developed in recent years, the associated quality
measurement indices do not consider variations in the
relative quality losses of multiple responses. These
procedures may therefore result in an optimization in
which quality losses associated with a few responses are
very small but those associated with others are very large,
even if the overall average quality loss is small. Such an
optimization with a large variation of quality losses among
the responses is usually unacceptable to engineers.
Accordingly, this study employs the VIKOR method,
which is a compromise ranking method used for multi-
criteria decision making (MCDM), to optimize the multi-
response process. The proposed method considers both the
mean and the variation of quality losses associated with
several multiple responses, and ensures a small variation in
quality losses among the responses, along with a small
overall average loss. Two case studies of plasma-enhanced
chemical vapor deposition and copper chemical mechan-
ical polishing demonstrate the effectiveness of the
proposed method.

Keywords Multi-response process . Multicriteria decision
making . VIKOR method . Taguchi method . Quality loss .
Optimization

1 Introduction

The Taguchi method [1] is a commonly implemented off-
line experimental technique for improving quality in
industry. Taguchi used an orthogonal array to perform
experiments and employed the signal-to-noise (SN) ratio as
the quality measurement index, with simultaneous con-
sideration of the mean and variability of the quality
characteristic, to determine the optimal setting of process
parameters. The effectiveness of the Taguchi method for
improving quality in industry has been extensively
verified. However, most of the method applications
optimize only a single response. When more than one
response is to be optimized, engineers usually set the
optimal factor-level combination from their experience.
Such behavior is neither objective nor systematic. Some
procedures have been developed for optimizing multi-
response problems in recent years; however, these
procedures cannot explain the variation in quality losses
among multiple responses. The optimal factor-level
combination, determined using these procedures, may
result in small quality losses associated with some
responses but very large losses associated with others,
even if the average quality loss is sufficiently small.
Engineers sometimes cannot accept such a result of
optimization. Additionally, some methods for optimizing
several responses have been developed that use complex
statistical models and are impractical for application by
engineers who do not have a strong background in
mathematics. Therefore, this study proposes a new ap-
proach for solving the optimization problem for multi-
response processes using the VIKOR method taken from
multicriteria decision making (MCDM). The MCDM
procedure can be employed to determine the optimal
solution among several alternatives with conflicting and
compromising multicriteria. In this study, the VIKOR
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(VlseKriterijumska Optimizacija I Kompromisno Resenje
in Serbian) method [2–4] is applied to derive an integrated
quality measurement of several conflicting and compro-
mising responses. Firstly, the ideal and negative-ideal
solutions are initially determined from the quality loss.
Secondly, the utility measure and the regret measure of
each alternative are determined according to the weight of
each criteria. Thirdly, the VIKOR index of each experi-
mental run is obtained using the corresponding utility and
regret measures. Finally, the main effect of the VIKOR
index is determined and the optimal factor-level combina-
tion is thus obtained. Two cases, one of plasma-enhanced
chemical vapor deposition (PECVD) and one of copper
chemical mechanical polishing (Cu-CMP), are presented to
demonstrate the effectiveness of the proposed method.

2 Literature review

2.1 Optimizing multiple responses

Derringer and Suich [5] defined a desirability function to
transform several response variables into a single response.
Khuri and Conlon [6] simultaneously optimized various
responses using polynomial regression models. They firstly
defined a distance function by considering the ideal
solution, and then determined the optimal condition by
minimizing this function. Logothetis and Haigh [7] dem-
onstrated the use of the multiple regression method and the
linear programming approach, to optimize a multi-response
process using Taguchi experiments. Phadke [8] implemen-
ted the conventional Taguchi method to optimize individ-
ually the number of surface defects, and the thickness of the
wafer and the rate of deposition in an IC manufacturing
process. The optimal condition is determined by separately
optimizing each response. When conflicts arise in

determining the optimal level of a factor, the engineer
draws upon his own knowledge to determine the best
factor-level combination. Su and Hsieh [9] and Tong and
Hsieh [10] applied artificial neural networks (ANN) to find
the optimal solution to the multi-response type of problem.
Su and Tong [11] and Antony [12] utilized principle
component analysis (PCA) to analyze multi-response
problems. The PCA technique can transform several
related original variables into a smaller number of
uncorrelated principal components, which are linear
combinations of the original variables. The optimal
factor-level combination is determined using these un-
correlated principal components. Vining and Myers [13]
developed algorithms for obtaining the optimal solutions of
a dual-response surface system (DRSM). Their method
assumed that the DRSM includes a primary response, yp
and a constraint response, ys. yp and ys can both be fitted
using a quadratic regression model. The DRSM seeks
parameter settings that can optimize byp under the con-
straint byS ¼ c; where c is a constant.

The features of the above multi-response optimization
methods can be summarized as follows.

1. Most procedures neglect the variation in quality losses
for multiple responses. The optimal factor-level
combination may result in very small quality losses
associated with some responses, but very large quality
losses associated with others, even when the average
quality loss is acceptably small.

2. The optimal condition obtained from some procedures
is determined by separately optimizing each response.
When conflict arises in determining the optimal levels
of factors, the optimal factor-level combination is
determined from the engineer’s knowledge. Since each
engineer’s experience is subjective, addressing of the
same problem by various engineers may yield incon-
sistent results.

3. Some procedures used complex mathematics or
statistical methods, such as PCA, ANN or the dual-
response approach or linear programming. These
approaches are difficult to implement by individuals
with little background in statistics and so are of little
practical use.

4. Some procedures for developing an optimization
model cannot easily determine the optimal learning
structure or assign the best values of the learning
parameters.

5. Some methods can set parameters optimally, but
nothing can be learned about the relationship between

Table 1 Quality losses for five responses in two experimental runs

Response 1 Response 2 Response 3 Response 4 Response 5 Total loss

Experiment 1 10 10 10 10 10 50
Experiment 2 8 8 8 8 16 48

Table 2 Control factors and their levels

Control factor Level 1 Level 2 Level 3

A. Cleaning method No Yes
B. Chamber temperature 100°C 200°C 300°C
C. Run number after chamber
has been cleaned

1st 2nd 3rd

D. Flow rate of SiH4 6% 7% 8%
E. Flow rate of N2 30% 35% 40%
F. Chamber pressure 160 motorr 190 motorr 220 motorr
G. R.F. power 30 watt 35 watt 40 watt
H. Deposition time 11.5 min 12.5 min 13.5 min

The current levels are identified by underlining
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the control factors and the responses during the
optimization process.

This study proposes a novel approach based on the
VIKOR method from MCDM to solve some of these
problems.

2.2 MCDM and the VIKOR method

The MCDM method is an extensively applied tool for
determining the best solution among several alternatives
with multiple criteria or attributes. An MCDM problem can
be expressed using a decision matrix as follows:

D ¼

x1 x2 � � � xn
A1

A2
..
.

Am

x11 x12 � � � x1n
x21 x22 � � � x2n
..
. ..

. ..
.

xm1 xm2 xmn

264
375 (1)

where Ai represents the ith alternative, i = 1, 2, …, m; xj
represents the jth criterion, j = 1, 2, …, n, and xij is the
performance of alternative Ai with respect to the jth
criterion. The procedures for determining the best solution
to an MCDM problem include computing the utilities of
alternatives and ranking these utilities. The alternative
solution with the greatest largest utility is considered to be
the optimal solution. For details of MCDM methods refer
to Zeleny [14].

The VIKOR method includes the following steps.

Step 1. Determine the normalized decision matrix.

The normalized decision matrix can be expressed as
follows:

F ¼ fij
� �

m�n
(2)

where fij ¼ xijffiffiffiffiffiffiffiffiffiPm
i¼1

x2ij

r , i = 1,2, …, m; j = 1, 2, …,n; and xij is

the performance of alternative Ai with respect to the jth
criterion.

Step 2. Determine the ideal and negative-ideal solutions.
The ideal solution A* and the negative ideal solution A−

are determined as follows:

A� ¼ max fij j 2 Jj� �
or min fij j 2 J

0��� �
i ¼ 1; 2; � � � ;mj

n o
¼ f �1 ; f

�
2 ; :::; f

�
j ; :::f

�
n

n o
(3)

A� ¼ min fij j 2 Jj� �
or max fij j 2 J

0��� �
i ¼ 1; 2; � � � ;mj

n o
¼ f �1 ; f �2 ; � � � ; f �j ; � � � ; f �n
n o

(4)

where J¼ j ¼ 1; 2; :::; n fij
�� ; a larger response is desired

	 

J 0 ¼ j ¼ 1; 2; :::; n fij

�� ; a smaller response is desired
	 


Step 3. Calculate the utility measure and the regret
measure.

Table 3 Summary of experimental data

Experimental run Control factor Average VIKOR value

A B C D E F G H DT RI

1 1 1 1 1 1 1 1 1 730.6 2.033 0.1620
2 1 1 2 2 2 2 2 2 874.2 2.224 0.0124

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

17 2 3 2 1 3 2 2 3 818 1.914 0.0000
18 2 3 3 2 1 3 3 1 738.8 2.021 0.0932

Fig. 1 Factor effects of RI
response on SN ratios
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The utility measure and the regret measure for each
alternative are given as

Si ¼
Xn
j¼1

wj f �j � fij
� �.

f �j � f �j
� �

(5)

Ri ¼ Max
j

wj f �j � fij
� �.

f �j � f �j
� �h i

(6)

where Si and Ri represent the utility measure and the regret
measure, respectively, and wj is the weight of the jth
criterion.

Step 4. Calculate the VIKOR index.
The VIKOR index can be expressed as follows:

Qi ¼ ν
Si � S�

S� � S�

� �
þ 1� νð Þ Ri � R�

R� � R�

� �
(7)

where Qi represents the ith alternative VIKOR value,
i=1, …, m; S� ¼ Min

i
Si; S�¼ Max

i
Si; R� ¼ Min

i
Ri; R� ¼

Max
i
Ri and ν is the weight of the maximum group utility

(and is usually set to 0.5 [1–3]).
Step 5. Rank the order of preference.
The alternative with the smallest VIKOR value is

determined to be the best solution.
The advantage of the VIKOR method, enabling it to be

applied in situations with multiple criteria, follows from the
use of the Lp metric in the compromising programming
method [14, 15]. It can be described as follows:

LP;i ¼
Xn
j¼1

wj f �j � fij
� �.

f �j � f �j
� �h ip( )1=p

(8)

where 1≤ p ≤ ∞; i =1, 2,…, m.

The utility function of the VIKOR method is an
aggregate of L1,i and L∞,i. L1,i is interpreted as ‘concor-
dance’ and can provide decision makers with information
about the maximum ‘group utility’ or ‘majority’. Similarly,
L∞,i is interpreted as ‘discordance’ and provides decision
makers with information about the minimum individual
regret of the ‘opponent’.

Of the many MCDM tools, the VIKOR method has the
following characteristics.

1. The best alternative determined by the VIKOR method
is nearest to the ideal solution and farthest from the
negative-ideal solution.

2. The best alternative according to the VIKOR method
has the maximum group utility for decision makers and
ensures the least regret.

3. The VIKOR method considers two distance measure-
ments, L1,i and L∞,i, based on the Lp metric in the
compromising programming method to provide in-
formation about utility and regret.

4. The VIKOR method considers two weights in
decision-making. One is that of the criteria, the other
that of the maximum group utility.

2.3 VIKOR method for multi-response optimization

The VIKOR method can be applied to optimize the multi-
response problem, because it accounts for the variation
among quality losses associated with multiple responses. It
also simultaneously accounts for the utility and regret
measures in an experimental run. For instance, two
experimental runs are completed and the quality losses
for five responses are obtained as in Table 1.

From the traditional perspective, in which smaller losses
are better, experiment 2 apparently yields a higher quality
measurement than experiment 1, since its total loss is
smaller. However, from an engineering perspective, exper-
iment 2 is worse than experiment 1 because the loss of
response 5 is too large. A good quality measurement index
must reflect this fact. By the VIKOR method, the utility

Table 4 Main effects on VIKOR values

Factor Level 1 Level 2 Level 3 Max−Min

A 0.174 0.227 0.054
B 0.269 0.125 0.208 0.144
C 0.214 0.246 0.142 0.103
D 0.269 0.153 0.180 0.116
E 0.321 0.143 0.138 0.184
F 0.108 0.107 0.387 0.280
G 0.170 0.166 0.266 0.101
H 0.171 0.290 0.141 0.148

Fig. 2 Factor effects of DT
response on SN ratios
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measure in experiment 1 is 50 and the regret measure of
experiment 1 is 10, while the utility measure in experiment
2 is 48 and the regret measure is 16. By simultaneously
considering both concordance and discordance, the
VIKOR method determines that experiment 1 is better
than experiment 2.

3 Proposed procedure

Although some methods have been developed to solve
simultaneous optimizing multi-response problems, they
neglect the variation among quality losses associated with
the various responses. The optimal factor-level combina-
tion may generate an inconsistent quality loss among
responses that is unacceptable to customers. A systematic
multi-response optimization procedure is presented herein
to solve this problem. The VIKOR method in MCDM is
employed to optimize the solution to the multi-response
problem. The proposed procedure firstly calculates the

ideal and negative-ideal solutions of each experimental run
by considering the quality loss and weight of each
response, and then the corresponding utility and regret
measures can be determined. The VIKOR index is obtained
by weighting the utility and regret measures of each
experimental run. The developed VIKOR index can help
engineers to determine the optimal setting of parameters.
The proposed optimization procedure is as follows.

3.1 Step 1. Calculate the quality loss.

Taguchi [8] defined three formulae for quality loss, based
on the desirability of each quality characteristic, as follows.

(a) For a smaller-is-better response:

Lij ¼ k1 � 1

r

Xr
k¼1

y2ijk (9)

Fig. 3 Factor effects on VIKOR
values

Fig. 4 Factor effects on the
average of RI response

Fig. 5 Factor effects on the
average of DT response

Step 1. Calculate the quality loss.
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(b) For a larger-is-better response:

Lij ¼ k2 � 1

r

Xr
k¼1

1

y2ijk
(10)

(c) For a nominal-is-better response:

Lij ¼ k3 � Sij
yij

 !2

(11)

where Lij is the quality loss associated with the jth
response in the ith experimental run; yijk is the observed
kth repetition datum for the jth response in the ith
experimental run; r is the number of repetitions for each
experimental run, yij ¼ 1

r

Pr
k¼1

yijk; and S2ij ¼ 1
r�1Pr

k¼1
yijk � yij

� �2
; and k1, k2 and k3 are quality loss

coefficients, for i= 1, 2,…, m; j= 1, 2,…, n; k= 1, 2,…, r.

3.2 Step 2. Calculate the normalized quality loss
(NQL) of each response in each experimental run.

The NQL can be obtained as follows:

fij ¼ LijffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

L2ij

s ; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; n (12)

where fij represents the NQL of the jth response in the ith
experimental run.

3.3 Step 3. Determine the ideal and negative-ideal
solutions.

A smaller NQL is preferred, so the ideal and negative-ideal
solutions which represent the minimum and maximum
NQL of all experimental runs are as follows:

A� ¼ min fij i ¼ 1; 2; ::::mj	 
 ¼ f �1 ; f
�
2 ; :::; f

�
j ; :::; f

�
n

n o
(13)

A� ¼ max fij i ¼ 1; 2; ::::mj	 
 ¼ f �1 ; f �2 ; :::; f �j ; :::; f �n
n o

(14)

3.4 Step 4. Calculate the utility and regret measures for
each response in each experimental run.

The utility and regret measure of each response in each
experimental run can be obtained using Eqs. 5 and 6.

3.5 Step 5. Calculate the VIKOR index of the ith
experimental run.

Substituting Si and Ri into Eq. 7 yields the VIKOR index of
the ith experimental run as follows. A smaller VIKOR
index produces better multi-response performance.

Table 6 Summary of experimental data

Experimental run Control factor Response VIKOR value

A B C D E RR NU TaN/Cu

1 1 1 1 1 1 294 14.3 4 0.7058
2 1 2 2 2 2 289 15.7 4.3 0.6240

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

17 3 2 1 3 1 580 15.1 4.6 0.3490
18 3 3 2 1 2 651 5 5.8 0.0000

Table 5 Results of confirma-
tory experiment

Response Index Starting
condition

Optimal condition
(prediction)

Optimal condition
(confirmation)

Improvement

Refractive
index

SN 32.09 33.21 38.53 6.44
Average 2.0216 1.8714
Variance 0.00198 0.000491

Deposition
thickness

SN 22.58 27.99 31.13 8.55
Average 1043.267 1124.35
Variance 6000.8 974.54

Step 3. Determine the ideal and negative-ideal

Step 2. Calculate the normalized quality loss
Step 5. Calculate the VIKOR index of the ith

Step 4. Calulate the utility and regret measures for
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3.6 Step 6. Determine the optimal factor-level
combination.

The multi-response quality scores for each experimental
run can be determined from the VIKOR index obtained in
step 5, and the effects of the factors can be estimated from
the VIKOR values. The optimal combination factor-level
combination is finally determined, based on the fact that a
smaller VIKOR value indicates a better quality.

3.7 Step 7. Perform the confirmatory experiment.

A confirmatory experiment should be performed to ensure
that the optimal condition actually yields improvement. If
the predicted and observed SN ratios are close to each
other, the effectiveness of the optimal condition is ensured.
The optimal condition can then be applied to the
production line and expected to yield a robust result. If
the predicted and observed SN ratios are not comparable,
then the additive model is suspected to have failed and the
interactions of factors are to be significant. Consequently,
the entire experimental design must be reviewed to obtain a
successful additive model and an optimal condition.

4 Illustrative examples

4.1 Optimizing the PECVD process

The following case study [16] demonstrates the effective-
ness of the proposed optimization procedure. The case
illustrates the improvement of a PECVD process used in
fabricating an IC. Two major responses (nominal is the
best) in the multi-response process are of interest, i.e., the
refractive index (RI) and the deposition thickness (DT).

Following a discussion with process engineers, eight
control factors were chosen to be optimized. Table 2 lists
these factors and their levels. The standard orthogonal

array L18 is selected to plan the experiment. Table 3
summarizes the experimental data. The relative importance
of RI and DT was determined to be 2:1 in the discussion
with the engineers. The target values of the two responses
are 2 and 1000 Å, respectively.

4.1.1 Conventional Taguchi method

The following study illustrates the difficulty of determin-
ing the optimal condition of the multi-response process
using the conventional Taguchi method. Figures 1 and 2
show the factor effects of responses RI and DT on SN
ratios, respectively. These two Figures illustrate the
conflicts among the conditions for some factors.

A larger SN ratio reflects better quality, so the following
optimal factor-level combination for each response can be
found as follows.

– RI: A1 B3 C2 D1 E3 F1 G1 H3

– DT: A1 B1 C3 D2 E2 F2 G2 H3

The two responses can be optimized by setting factor A
to level 1 and setting factor H to level 3. However,
determining the optimal settings of factors B, C, D, E, F
and G is difficult. For instance, setting factor C to level 2 is
advantageous for the RI response, but not for the DT
response. In contrast, setting factor C to level 3 is
advantageous for the DT response, but not for the RI
response. This conflicting situation reveals the difficulty of
optimizing factor-level combination by separately optimiz-
ing the two responses.

4.1.2 Proposed optimization procedure

By applying the procedure proposed, the values of the
VIKOR index can be obtained, as presented in the last
column of Table 3. Table 4 summarizes the VIKOR values
of factor effects. Figure 3 plots the corresponding effects of

Table 7 Main effects of factors on VIKOR values

Factors Level 1 Level 2 Level 3 Max−Min

A 0.691 0.367 0.257 0.434
B 0.618 0.490 0.207 0.114
C 0.514 0.400 0.401 0.080
D 0.419 0.408 0.488 0.080
E 0.431 0.449 0.435 0.018

Table 8 Confirmatory experimental result

Response Starting
condition

Optimal
condition
(prediction)

Optimal
condition
(confirmation)

Improvement

RR 52.7071 56.2585 57.0861 4.3790
NU% −18.0167 −16.8302 −14.8440 3.1727
TaN/Cu 12.9393 14.8497 19.3768 6.4375

Fig. 6 Effects of factors on
VIKOR values

Step 6. Determine the optimal factor-level

Step 7. Perform the confirmatory experiment.
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these factors. The order of the strength of the effects of
control factors on the VIKOR value is F, E, H, B, D, C, G
and A. A smaller VIKOR value means a better quality, so
the optimal condition is A1B2C3D2E3F2G2H3.

Figures 4 and 5 plot the factor effects on the averages of
responses RI and DT, respectively. The flow rate of SiH4

(Factor D) is selected as the factor to be adjusted to
optimize the RI response, because it only weakly affects the
VIKOR value of the RI response and the average DT
response, whereas it more strongly affects the average RI
response. Similarly, the R.F. power (factor G) is selected to
be adjusted to optimize the DT response, because it only
weakly affects the VIKOR value of DT response and the
average RI response, but more strongly affects the average
DT response. If the average RI is not satisfactory, the flow
rate of SiH4 can be adjusted to the target value of RI.
Similarly, if the average of DT is not satisfactory, the R.F.
power can be adjusted to the target value of DT.

The optimal condition was verified by performing a
confirmatory experiment. Table 5 compares the optimal
condition A1B2C3D2E3F2G2H3 with the starting condition
A2B1C2D2E2F2G2H2. The optimal condition represents an
improvement of 6.44 dB (with a decline in variance to
25%) in the RI response and 8.55 dB (with a decline in
variance to 16%) in the DT response.

4.2 Optimizing the Cu-CMP process

The Cu-CMP process [17] is optimized using the VIKOR
method to demonstrate the effectiveness of the procedure.
As advanced IC technology develops, devices are becom-
ing smaller. As the speed and performance of IC devices
are increased, reducing the width of the metallic lines and
increasing the resistance may delay signal propagation.
Such a delay is a major concern. Additionally, increasing
the speed of IC operation may also increase current
densities in smaller interconnections. Copper is an
appropriate material for metalizing advanced interconnec-
tions since it has lower resistivity and higher electro-
migration resistance than aluminum alloy interconnects.
Accordingly, Cu-CMP is a promising method for fabricating
multilevel Cu interconnections and performing planarization.

This process optimization case concerns a Taiwanese
integrated circuit (IC) manufacturer. In a discussion with
engineers, the following three important responses were
identified.

1. Removal rate (RR): larger is better
2. Non-uniformity (NU): smaller is better
3. Selectivity of TaN/Cu: larger is better

Five control factors (A to E) were selected and included
in an orthogonal array L18. The starting levels of all control
factors were set to 2. For reasons of confidentiality, no
detailed information about the factors or levels is
presented. Table 6 summarizes the experimental data.

4.2.1 Proposed optimization procedure

The last column of Table 6 lists the VIKOR values for each
experimental run, obtained by the proposed procedure.
Table 7 summarizes the main effects on the VIKOR values,
and Fig. 6 plots their effects of the corresponding factors.
The optimal factor-level combination is determined as
A3B3C2D2E1 and the order of the strengths of the effects of
the control factors on the VIKOR value is A, B, C, D and E.

Table 8 presents the predicted and confirmed results. The
optimal condition provides an improvement of 4.379 dB in
RR, 3.1727 dB in NU% and 6.4375 dB in TaN/Cu. This
great improvement demonstrates the effectiveness of the
proposed method.

5 Conclusions

Most applications of the Taguchi method concern only the
optimization of a single-response problem. When more
than one response is considered, engineers generally
optimize based on their subjective experience. Although
some systematic procedures for optimizing multi-response
problems have been developed in recent years, the quality
indices associated with these procedures are concerned
primarily with optimizing the utility of the multi-response
process, and they neglect the variation in quality loss
among the various responses. In this study, a systematic
procedure is developed that involves applying the MCDM
compromise ranking method VIKOR to optimize the multi-
response process. The procedure consists of the following
steps: (a) computing the quality loss; (b) determining the
VIKOR value; (c) determining the optimal condition; (d)
performing and analyzing the results of a confirmatory
experiment. Theoretical analysis herein revealed that the
quality concepts of Taguchi’s SN ratio and VIKOR index
are compatible. Taguchi’s SN ratio simultaneously con-
siders the mean and variation of a quality characteristic and
can be applied to optimize the single-response process,
while the VIKOR index simultaneously considers the
utility and regret measure to optimize the multi-response
process. Two case studies of plasma-enhanced chemical
vapor deposition and copper chemical mechanical polish-
ing demonstrate the effectiveness of the proposed method.
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