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SUMMARY

This work presents an artificial neural network (ANN) approach for detecting structural damage. In place
of the commonly used supervised neural network, this work adopts an unsupervised neural network which
incorporates the fuzzy concept (named the unsupervised fuzzy neural network, UFN) to detect localized
damage. The structural damage is assumed to take the form of reduced elemental stiffness. The damage site
is demonstrated to correlate with the changes in the modal parameters of the structure. Therefore, a feature
representing the damage location, termed the damage localization feature (DLF) is presented. When the
structure experiences damage or change in the structural member, the measured DLF is obtained by
analyzing the recorded dynamic responses of the structure. The location of the structural damage then can
be identified using the UFN according to the measured DLF information. This study verifies the proposed
model using an example involving a five-storey frame building. Both single- and multiple-damaged sites are
considered. The effects of measured noise and the use of incomplete modal data are introduced to inspect
the capability of the proposed detection approach. Additionally, the simulation results of well-known
back-propagation network (BPN) and UFN are compared. The analysis results indicated that the use of
fuzzy relationship in UFN made the detection of structural damage more robust and flexible than the BPN.
Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: unsupervised fuzzy neural network; damage detection; BPN

1. INTRODUCTION

Owing to improved instrumentation and understanding of the dynamics of the complex
structures, efforts to identify structural damage have received increasing attention recently.
Although potential applications have been achieved [1–3], damage assessment for complex civil
engineering structures remains problematic [4]. Among many damage detection techniques, the
vibration-based approach is promising because it is nondestructive and the vibration signal of a
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structure is easily measurable using properly deployed sensors. During the last two decades,
various vibration-based methods have been developed and applied to detect structural damage
in numerous areas. These methods are based on the fact that structural damages reduce the
structural stiffness, changing the dynamic structure characteristics (such as modal parameters)
of the structures. Analysis of the dynamic responses to obtain the modal parameters of the
structure before and after the occurrence of damage can diagnose the existence and extent of
structural damage.

Structural damage detection methods used natural frequencies to indicate damage in earlier
research. Cawley and Adams [5] proposed the first model by employing the changes in natural
frequencies, combined with a finite element model (FEM), to locate sites of damage on a given
structure. Following their results, some investigations [6–9] found this method susceptible to
measurement errors, and methods of improving the damage localization have been introduced.
However, the frequencies are not spatially specific, nor are they sensitive to damage, thus
limiting their application. Since mode shapes can provide much more information than natural
frequencies, many studies have focused on damage detection using mode shape information
[10–12]. Topole and Stubbs [13] used natural frequencies with mode shapes and demonstrated
the importance of introducing mode shape orthogonality to identify the location and extent of
structural damage. Recently, Shi et al. [14] developed a sensitivity and statistically based method
for localizing structural damage by using incomplete mode shapes. The damage detection
strategy involves first localizing the damage sites by using incomplete measured mode shapes,
and then detecting the site and extent of damage using the more accurate measured natural
frequency information.

Another set of techniques for detecting structural damage use change in modal strain energy.
Hearn and Testa [15] illustrated that the ratio of elemental strain energy to total kinetic energy
for the system is a fraction of the eigenvalue, and the ratio of this fraction for two different
modes depends only on the damage location. Shi et al. [16] developed a method based on modal
strain energy for locating structural damage. This method uses the change in modal strain
energy in each structural element before and after the occurrence of damage. Some properties of
the modal strain energy change are provided to illustrate its sensitivity of locating damage.

Owing to the features of robustness, fault tolerance, and powerful computational ability, the
ANN models have become a promising tool for solving civil engineering problems. Masri et al.
[17] demonstrated that neural networks are a powerful tool for identifying systems typically
encountered in structural dynamics. Some researches have examined the suitability and
capabilities of ANNs for damage detection. Ghaboussi et al. [18] and Wu et al. [19] trained
neural networks to recognize the frequency response characteristics of undamaged and damaged
structures. The various damage levels were simulated by adjusting the properties of individual
members. Elkordy [20] used an FEM to design failure patterns that were used to train a neural
network to subsequently diagnose damage in the reference structure. Zhao et al. [21] designed a
neural network approach based on mapping the static equilibrium requirement for a structure in
a finite element formulation based on the assumption that structural damage is reflected in terms
of stiffness reduction. The analytic results revealed that, even with input noise and incomplete
measured data, ANNs can still obtain a satisfactory diagnosis. Masri et al. [22, 23] used ANN-
based approaches to detect changes in the characteristics of systems whose structures were
unknown. Their approaches rely on using vibration measurements from ‘healthy’ systems to
train a neural network for identification purposes. Subsequently, the trained network is fed
comparable vibration measurements from the same structure under different episodes of
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response to monitor structure health. All of these investigations indicated that ANNs provide a
powerful tool for assessing the condition of damaged structures.

Consequently, with strong theoretical support and successful applications of ANNs, the
damage detection approach proposed in this work is developed using the modal parameters of
the structure, and an ANN model with an unsupervised fuzzy reasoning algorithm. This work
first introduces a feature representing the damage location, termed damage localization feature
(DLF). The background and operation of the UFN then is briefly reviewed. The reasons for the
utilization of the unsupervised neural network then are explained in a subsequent section. The
damage location can be recognized using the DLF and the UFN reasoning process. This study
presents a numerical example of a five-storey frame building damaged at either single or
multiple sites, to verify the effectiveness of the proposed approach. Additionally, the influences
of measured noise and the use of incomplete modal data are also examined. Meanwhile, the
well-known BPN and UFN were compared. The results presented herein indicated that both
BPN and UFN are capable of damage localization purpose. However, the use of fuzzy
relationship in UFN increased detection robustness and flexibility.

2. IDENTIFICATION OF DAMAGE LOCALIZATION BASED ON THE CHANGES
IN MODAL PARAMETERS

Based on recent developments in measuring and data analyzing techniques, natural frequencies
and mode shapes of a structural system can easily be obtained through utilizing system
identification procedure. Therefore, the damage detection approach has been developed on the
basis of the available natural frequencies and mode shapes of the structures.

For an undamaged structure, the modal characteristics can be described by the following
eigenvalue equation:

½K� liM�fi ¼ 0 for i ¼ 1; . . . ; n ð1Þ

where li is the ith modal eigenvalue which presents the square of the natural frequency of the
structure; fi is the ith eigenvector which presents the mode shape of the structure; K and M are
symmetric stiffness and mass matrixes, respectively.

Generally, the damage of a structure is assumed to be the reduction of stiffness in structural
elements, then the eigenvalue equation for such a damaged structure becomes

½ðK� DKÞ � ðli � DliÞM�ðfi � DfiÞ ¼ 0 ð2Þ

Assume the system stiffness matrix is the combination of individual member stiffness matrices.
Thus, the change in stiffness matrix due to damage can be expressed as

DK ¼
XNd

e¼1

aeke ð3Þ

where ke is the individual stiffness matrix for the eth element; ae; which is within the range 0–1, is
the coefficient defining a fractional change of the eth elemental stiffness matrix; and Nd is the
total number of damaged elements in the structure.

Expanding Equation (2) and neglecting the higher-order terms of D yields

�DKfi þ DliMfi � KDfi þ liMDfi ¼ 0 ð4Þ
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Premultiplying Equation (4) with fT
i ; the expression for change in eigenvalue is obtained as

Dli ¼
fT
i DKfi

fT
i Mfi

ð5Þ

This equation expresses the relationship between the structural damage and the eigenvalue
change.

Subsequently, the relationship between the structural damage and the eigenvector change is
derived. Pre-multiplying Equation (4) with fT

j leads to the following equation:

ðlj � liÞf
T
j MDfi ¼ �f

T
j DKfi ð6Þ

where Dfi is assumed to be a linear combination of the mode shapes, i.e.

Dfi ¼
XN
k¼1

cikfk ð7Þ

Substituting Equation (7) into Equation (6), and introducing the orthogonal property,
Equation (6) is rearranged as

cij ¼
�fT

j DKfi

ðlj � liÞf
T
j Mfj

ð8Þ

Substituting Equation (8) into Equation (6), the expression shows the change in ith
eigenvector of the system.

Dfi ¼
XN
j¼1

�fT
j DKfi

ðlj � liÞf
T
j Mfj

fj ð9Þ

Equations (5) and (9) clearly show the expression of changes in modal values and vectors,
respectively. The changes in modal values and vectors are direct proportion to the stiffness
change.

Finally, imposing Equation (3) on Equations (5) and (9), and supposing that single damage or
multiple damages with similar severity (i.e. all ae; e=1�Nd, are identical) exist in the structure,
the expression for the change in the ith modal vector divided by the change in the jth modal
value (i.e. dividing Equation (9) by Equation (5)) can be obtained as follows:

Dfi

Dlj
¼

PN
j¼1

�fT
j

PNd

e¼1 kefi

ðlj � liÞf
T
j Mfj

fj

fT
j

PNd

e¼1 kefj

fT
j Mfj

ð10Þ

Explicitly, Equation (10) depends on damage location only and the term on the left-hand side,
termed the damage localization feature (DLF) in this paper, can be used as an indicator for
identifying the location of structural damage.

Based on the analytic model (FEM for example) of a real-world structure, the analytic
damage localization feature (ADLF) Dfi=Dlj for different damage cases can be calculated in
advance to construct an ADLF database. With proper deployment of sensors, the vibration
signal of the structure can be measured through ambient, free, or forced vibration tests and then
the modal parameters can also be generated through the system identification technique [24].
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When the measured modal parameters are available, the damage location can then be assessed
by matching the measured damage localization feature (MDLF) with the ADLF for different
possible damage cases. The damage case with the largest ‘similarity’ (i.e. the smallest
discrepancy) between MDLF and ADLF is identified to be the possible damage on the
structure.

3. UNSUPERVISED FUZZY NEURAL NETWORKS (UFN) FOR THE DAMAGE
DETECTION OF STRUCTURES

In the studies of damage detection that based on certain damage indices or features, there are
two main approaches usually adopted to deal with the detection or diagnosis process. One
computed the discrepancy between the measured (or real) damage index and the FEM-based
analytic damage index for all potential damage states to a structure. The case with the smallest
discrepancy represents the current state for the structure [15, 25]. The other optimizes the
specified objective function(s) in which the measured information is included to search for the
possible damage state [9]. Accordingly, no matter what approach is adopted, the key point of
damage detection is how to rapidly and correctly identify the possible damage state according to
the measured data. Therefore, one can establish the damage features for every possible damage
states via the analytic FEM. When the measured damage feature is available through
measurement, the damage state can then be identified by finding the same or most similar
damage features. According to Equation (10) in previous section, the location of damage to a
structure is dependant only on the ratio of changes in modal vectors and modal values, and can
be identified by matching the MDLF and the ADLF. The process of using DLF to find the
damage location is more like pattern classification (or recognition) than functional mapping.
Consequently, instead of the most utilized supervised neural network (which is powerful for the
functional mapping problems) in the related studies about damage detection or health motoring,
this study employs an unsupervised neural network model, the UFN reasoning model, to
implement the damage localization process.

The UFN reasoning model was proposed by Hung and Jan [26–28]. The UFN reasoning
model consists of an unsupervised neural network with a fuzzy computing process. The UFN
reasoning model is implemented in three steps which are briefly reviewed in the following
subsections.

3.1. Measurement of similarities

The first step involves searching for instances that similar to the new instance ðYÞ in the instance
base ðUjÞ according to their inputs (Yi and Uj;i). The similarity measurement is implemented by
calculating the degree of difference between two instances. The function of degree of difference is
defined as

dYj ¼ diff ðYi;Uj;iÞ ¼
XM
m¼1

amðxm � umj Þ
2 ð11Þ

where dYj denotes the discrepancy between the inputs of the new instance Y and the jth instance
Uj in the instance base; am denotes predefined weight which represents the degree of importance
for the mth decision variable in the input. After the values of dYj for all instances are calculated,
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the degree of similarity of instances Y and Uj can be derived by the following fuzzy membership
function.

mYj ¼ f ðdYj ;Rmax;RminÞ ¼

0 if dYj5Rmax

RmaxRmin � RmindYj

ðRmax � RminÞdYj
if Rmin5dYj5Rmax

1 if dYj4Rmin

8>>>><
>>>>:

ð12Þ

The terms Rmax and Rmin define the upper and lower bounds of the relationship of similarity. In
case the degree of difference is less than the upper bound Rmax; any two instances are treated as
similar in some measure. Obviously, Equations (11) and (12) show that the smaller the
discrepancy dYj is, the higher is the degree of similarity. Additionally, the upper bound Rmax

heavily influences the measurement of similarity. A large Rmax implies a loose similar
relationship between instances. On the other hand, a small Rmax indicates that a strict similar
relationship is adopted. In order to systematically determine the appropriate value of Rmax a
linear correlation analysis is employed. More details about the influence of Rmax and the
correlation analysis process can be seen in the references [26–28].

3.2. Generation of the fuzzy set of similar instances

The second step entails representing the fuzzy relationships among the new instance and its
similar instances. The instances with the degree of difference smaller than Rmax (i.e. m > 0) are
extracted from the instance base as similar instances. Subsequently, the fuzzy set of ‘similar to Y’
is then formed with the similar instances and their corresponding fuzzy membership values.

Ssup;Y ¼ fS1ðm1Þ;S2ðm2Þ; . . . ;SpðmpÞ; . . .g ð13Þ

where Sp is the pth similar instance to instance Y; and mp is the corresponding fuzzy membership
value.

3.3. Synthesis of the solution for new instance

Finally, the solution for instance Y is generated by synthesizing the outputs of similar instances
according to their associated fuzzy membership value through the center of gravity (COG)
method. The output Yo of instance Y is defined as follows:

Yo ¼

Pp
k¼1 mkSk;oPp

k¼1 mk
ð14Þ

Figure 1 schematically portrays the three steps of the UFN reasoning.
Together with the theories of DLF and UFN reasoning model, this study makes use of the

DLF as the input variables and the existence of the damaged site as the output vector to the
UFN. Based on the analytic model, the ADLF for various possible damage cases can be
calculated in advance. When the modal parameters of the structure are available, the damage
location can then be assessed by matching the measured damage localization feature (MDLF)
with the ADLF through the UFN reasoning.
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Figure 1. Process of the UFN reasoning (open and full circles represent the input and solution
of the instance, respectively).
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4. NUMERICAL STUDY

4.1. Introduction to the numerical example

A numerical example, a one-bay, five-storey shear plane frame structure, is presented herein to
investigate the feasibility of the proposed damage detection procedures. The structural
parameters for each floor are set to be the same, i.e. the mass mi=2kg and the stiffness ki=1500
N/m (i=1–5).

In this work, the damage cases are simulated by the reduction of storey stiffness of the first,
second or third floor. Both single-site and multiple-site damage cases are discussed. Table I
shows the characterizations of the simulated damage cases. Notably, the symbols Dam ki
(i=1–3) in Table I denote that the damage results in reduction of stiffness of ki at single site
(Cases 1–60). Similarly, the symbols Dam ki&kj (i=j) mean that the damages result in reduction
of stiffness of ki and kj at multiple sites (Cases 61–132). The modal parameters of the undamaged
and damaged cases are obtained through the analytic model.

4.2. Arrangement of the inputs and outputs for the UFN

The modal data for each damage case listed in Table I is yielding based on the analytic model
and is then compared with the modal data for undamaged model to obtain the changes in modal
eigenvalues and mode shapes. For each damage case, the ADLF can be derived using the left-
hand-side of Equation (10). For the UFN, the ADLF is treated as input variable of the neural
network. Moreover, the output vector for the UFN represents the condition of the structural
elements. If the element is damaged, the value in the output vector is set to 1 to the associate
element; otherwise, the value is set to be 0 to indicate an undamaged element. For example, the
output vector for damage class Dam k1&k3 is set to be [1, 0, 1].

4.3. DLF of the numerical model

Figures 2–7, respectively, show the contour maps of the DLF, which are obtained via the left-
hand-side of Equation (10), for each simulated damage class in this paper. The horizontal and
vertical axes represent the number of the measured degrees-of-freedom (dofs) and of the
obtained modes, respectively. For example, the contour maps (a) of Figures 2–7 are based on
the values of Df=Dl1; and the contour maps (b) of Figures 2–7 are based on the values of
Df=Dl2: Additionally, the darker the shades in the figures are, the larger are the values of DLF.

Table I. Characterizations of simulated damage cases.

Damage class Damage level Number of damage cases

Dam k1 2–40% (every 2%) Cases 1–20
Dam k2 2–40% (every 2%) Cases 21–40
Dam k3 2–40% (every 2%) Cases 41–60
Dam k1&k2 5–30% for k1 (every 5%) Cases 61–96

5–30% for k2 (every 5%)
Dam k1&k3 5–30% for k1 (every 5%) Cases 97–132

5–30% for k3 (every 5%)
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As mentioned previously, Equation (10) depends on damage location only. Consequently, the
DLFs, shown in Figures 2 and 3 for the same damage class, but with different damage levels, are
almost the same. Moreover, Figures 3–7 show that the DLF for different damage classes are
distinguishable. It is interested to mention that, although the DLFs for Dam k3 and
Dam k1&k3 class (Figures 5 and 7) are distinguishable, there exists certain degree of similarity
between each other. This outcome is rational because these two damage classes are both
damaged for stiffness k3.

12345
1st

2nd

3rd mode

4th

5th

d.o.f
12345

1st

2nd

3rd mode

4th

5th

d.o.f
12345

1st

2nd

3rd mode

4th

5th

d.o.f

12345
1st

2nd

3rd mode

4th

5th

d.o.f
12345

1st

2nd

3rd mode

4th

5th

d.o.f

(a )

(d )

(b ) (c )  

(e )  

Figure 2. Contour maps of the DLF for the damage class Dam k1 with 20% damage extent.
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Figure 3. Contour maps of the DLF for the damage class Dam k1 with 26% damage extent.
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4.4. Training of the UFN

The ADLF, together with the related structural element condition for each damage case, is
treated as an instance. Hence, 132 instances are obtained. Note that, Cases 1–10 are instances of
damage class Dam k1; Cases 21–40 are instances of damage class Dam k2; Cases 41–60 are
instances of damage class Dam k3; Cases 61–96 are instances of damage class Dam k1&k2;
Cases 97–132 are instances of damage class Dam k1&k3. These 132 instances are separated into
two sets: the training set and the testing set. For UFN, the training set is also named as an
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Figure 4. Contour maps of the DLF for the damage class Dam k2 with 20% damage extent.
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Figure 5. Contour maps of the DLF for the damage class Dam k3 with 20% damage extent.
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instance base. A total of 18 instances that randomly selected from the 132 instances are collected
as testing set to verify the performance of the UFN reasoning model. Table II lists some
characterizations about the testing instances. Furthermore, the input values of the testing
instances are treated as MDLF. Hence, the output of the testing instances will be generated
through the UFN reasoning by matching the MDLF and ADLF.

Before verification of the testing instances, the UFN is trained first. The training of the UFN
is to determine the upper bound Rmax for the membership function and the weights am for the
similarity measurement. According to Hung and Jan [28], an appropriate value of Rmax is
selected when the accumulative correlation coefficient (ACC) exceeds 0.8. Herein, the
corresponding Rmax that makes the accumulative correlation coefficient exceeds 0.85 is adopted
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Figure 6. Contour maps of the DLF for the damage class Dam k1&k2 with 20% damage extent.
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Figure 7. Contour maps of the DLF for the damage class Dam k1&k3 with 20% damage extent.
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for more strict. The value of Rmax is determined to be 0.01 and the values of am are all set to be
constant one.

4.5. Evaluation of the diagnostic accuracy

An index, SDD (degree of successful diagnosis), is used to evaluate the accuracy of the predicted
outputs of the networks. Herein, the values 0.2 and 0.8 are selected to be the threshold of the
confirmed undamaged and damaged site, respectively. Restated, the generated output value of
the network that less than 0.2 or larger than 0.8 is assumed to be a successful diagnosis for
undamaged or damaged case. The SDD is calculated by the following equation.

SDD ¼
NSD

NED
� 100% ð15Þ

where NSD is the total number of the successful diagnosis; NED is the total number of the
expected diagnosis. The value SDD equals to 100% if the identifications of damage location(s)
for all testing cases are correct; otherwise, a value 0% represents that wrong damage localization
happens for every testing case.

5. RESULTS AND DISCUSSIONS

5.1. Identification results without noise polluted in DLF

Based on the working parameters generated from the training process, the verified results of the
18 testing instances are obtained and listed in Table III. According to the verified results, the
UFN reasoning model shows excellent agreement in localization of the damage (SDD=100%).

Table II. Characterizations of the verified instances.

Instance Output vector Damage class Damage severity (%)

1 [1, 0, 0] Dam k1 8
2 [1, 0, 0] Dam k1 26
3 [0, 1, 0] Dam k2 6
4 [0, 1, 0] Dam k2 22
5 [0, 0, 1] Dam k3 12
6 [0, 0, 1] Dam k3 24
7 [1, 1, 0] Dam k1&k2 5 and 10
8 [1, 1, 0] Dam k1&k2 10 and 10
9 [1, 1, 0] Dam k1&k2 15 and 10
10 [1, 1, 0] Dam k1&k2 20 and 20
11 [1, 1, 0] Dam k1&k2 25 and 15
12 [1, 1, 0] Dam k1&k2 30 and 20
13 [1, 0, 1] Dam k1&k3 5 and 15
14 [1, 0, 1] Dam k1&k3 10 and 15
15 [1, 0, 1] Dam k1&k3 15 and 20
16 [1, 0, 1] Dam k1&k3 20 and 10
17 [1, 0, 1] Dam k1&k3 25 and 25
18 [1, 0, 1] Dam k1&k3 30 and 15
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It is interested to mention that, for testing instance 2, Cases 79 and 115 in the instance base are
found to be ‘similar’ to this testing instance, even the damage class of the testing instance 2 (i.e.
Dam k1) and those of Cases 79 and 115 (i.e. Dam k1&k2 and Dam k1&k3, respectively) are
different. However, the UFN reasoning model can still generate the correct result. The same
situation also occurs for the other testing instances such as testing instances 1, 9, 10, 11, 12, 13,
16, and 18.

Because the upper bound Rmax is selected when the accumulative correlation coefficient
exceeds 0.85, an explanation is made that the found similar instances have more than 85%
correlation with the testing instance. Restated, when the solution for a testing instance is
obtained through the UFN, the degree of reliability of the solved solution is more than 85%.
Consequently, the output values of the UFN have a further meaning. For example, the output
vector for the testing instance 18 is [1.00, 0.02, 0.98] which means that the possibilities of the
elemental damage are 100, 2, and 98, respectively, based on the reliability of 85%.

Table III. Diagnostic results via UFN (without noise).

Instance True vector UFN outputs Similar instances

1 [1, 0, 0] [1.00, 0.01, 0.02] 1,2,3,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,
73,79,80,85,86,91,92,93,95,115,121,127,128

2 [1, 0, 0] [1.00, 0.00, 0.00] 1,2,3,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,
79,85,86,91,92,93,115,121,127,128

3 [0, 1, 0] [0.00, 1.00, 0.00] 21,22,24,25
4 [0, 1, 0] [0.00, 1.00, 0.00] 28,29,30,32,33,34,35
5 [0, 0, 1] [0.00, 0.00, 1.00] 41,42,43,44,45,47,48,49,50,51,52
6 [0, 0, 1] [0.00, 0.00, 1.00] 47,48,49,50,51,52,53,54,56,57,58
7 [1, 1, 0] [1.00, 1.00, 0.00] 61,63,64,65,69,70,71,72
8 [1, 1, 0] [1.00, 1.00, 0.00] 61,67,69,70,71,72,75,76,77,78,80,81,83,84,88,

89,90,95,96
9 [1, 1, 0] [1.00, 0.99, 0.00] 61,67,69,70,71,72,73,75,76,77,78,79,80,81,83,

84,85,86,88,89,90,92,93,95,96,103,109,116,122
10 [1, 1, 0] [1.00, 1.00, 0.00] 61,67,69,70,71,72,73,75,76,77,78,79,80,81,83,

84,85,86,88,89,90,92,93,95,96,109
11 [1, 1, 0] [1.00, 0.99, 0.01] 1,2,3,5,6,67,73,75,76,77,79,80,81,83,84,85,88,

89,92,93,95,96,103,109,115,121,122,127,128
12 [1, 1, 0] [1.00, 0.98, 0.02] 1,2,3,6,7,9,10,67,73,75,76,77,79,80,81,83,84,85,

86,89,90,91,92,95,96,109,115,121,122,127,128
13 [1, 0, 1] [0.99, 0.00, 1.00] 56,57,58,59,98,100,101,102,106,107,108
14 [1, 0, 1] [1.00, 0.00, 1.00] 97,98,104,106,107,108,111,113,114,118,119,

120,126
15 [1, 0, 1] [1.00, 0.00, 1.00] 97,98,104,106,107,108,110,111,113,114,117,

118,119,120,124,126,131,132
16 [1, 0, 1] [1.00, 0.01, 0.99] 67,73,79,80,81,86,92,93,103,104,109,110,115,

117,118,121,122,123,126,127,128,130,131,132
17 [1, 0, 1] [1.00, 0.00, 1.00] 97,103,104,110,111,113,114,117,118,119,120,

122,123,124,126,130,131,132
18 [1, 0, 1] [1.00, 0.02, 0.98] 67,73,79,80,85,86,91,92,93,103,109,110,115,

117,118,121,122,123,124,127,128,130,131,132
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5.2. Verified results with noise polluted in DLF

In order to make the proposed damage detection method more practical, the noise effect is
considered in the verification. In this study, the mode shapes are noise polluted with various
levels of random signals. The contaminated signal is represented as [29]

%fij ¼ fijð1þ r
f
i l

fjfmax;j jÞ ð16Þ

where %fij and fij are the mode shape components of the jth mode at the ith dof with and without
noise, respectively; r

f
i is the random number with zero mean and unit variance; lf is the noise

level; and fmax;j is the largest component in the jth mode shape.
Table IV shows the diagnostic results of the testing instances of which the mode shapes are

contaminated with 1, 3, and 4 random noise, respectively. As mentioned previously, the values
0.2 and 0.8 are used to be the threshold of the confirmed undamaged and damaged site. The
UFN outputs, listed in Table IV, also show the correct diagnosis about the damage location
except for the testing instance 3 with 4% contaminated noise. The SDD for the 1 and 3%
measured noise conditions are both 100%, and the SDD for the 4% measured noise condition
can still reach 94.4%. The reason why the UFN cannot generate an output vector in the
condition of 4% measured noise is that the matching process finds no similar instances in the
instance base within 85% degree of correlation. To overcome this problem, two strategies are

Table IV. Diagnostic results via UFN (with various noise levels).

UFN output vector

Instance 1% noise 3% noise 4% noise

1 [1.00, 0.08, 0.04] [1.00, 0.11, 0.01] [1.00, 0.19, 0.04]
2 [1.00, 0.01, 0.00] [1.00, 0.01, 0.01] [1.00, 0.04, 0.02]
3 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00] [NA, NA, NA]

([0.00, 1.00, 0.00])�

4 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00] [0.00, 1.00, 0.00]
5 [0.00, 0.00, 1.00] [0.00, 0.00, 1.00] [0.00, 0.00, 1.00]
6 [0.00, 0.00, 1.00] [0.00, 0.00, 1.00] [0.04, 0.00, 1.00]
7 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
8 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
9 [1.00, 1.00, 0.00] [1.00, 0.99, 0.00] [1.00, 1.00, 0.00]
10 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
11 [1.00, 0.99, 0.01] [1.00, 0.98, 0.02] [1.00, 0.98, 0.02]
12 [1.00, 0.98, 0.02] [1.00, 0.97, 0.02] [1.00, 0.98, 0.01]
13 [0.99, 0.00, 1.00] [0.99, 0.00, 1.00] [0.87, 0.00, 1.00]
14 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
15 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
16 [1.00, 0.01, 0.99] [1.00, 0.01, 0.99] [1.00, 0.03, 0.97]
17 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
18 [1.00, 0.02, 0.98] [1.00, 0.02, 0.98] [1.00, 0.03, 0.97]

SDD 100% 100% 94.4%

NA: data not available (no similar instance found).
�When the most similar instance is chosen.
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employed in this work. One is to loose the degree of correlation (i.e. to select a larger value of
Rmax). The other is to select the instance with the smallest degree of difference as the similar
instance to generate the output vector. For example, if the second strategy is adopted, the
output vector of the unsolved testing instance 3 will be [0.00, 1.00, 0.00], and the SDD would be
100% which means the identifications of the damage locations are undoubtedly successful.

5.3. Comparison with the BPN

In this study, the same data set is also processed through a supervised neural network for the
sake of comparison. A BPN with the topology of 100-53-3 (i.e. 100 inputs, one hidden layer with
53 hidden nodes, and 3 outputs) is adopted. The training is terminated when the system error of
the BPN is smaller than that of the UFN. The diagnostic results of the instances without and
with noise are listed in Table V. It is evident that the BPN can precisely detect the location of the
damaged element when the data set is not polluted. However, even with small intensity of noise
(with 1% noise), the BPN could possibly generate the incorrect damage localization. For
example, the BPN outputs for the testing instance 1 indicate that the damage occurred at the
first and third storey columns, while the actual damage occurred at the first storey columns only.
According to the numerical example, although the system error of the network output for BPN
is slightly smaller than that for UFN, it is important to mention that BPN is more inflexible due
to the possibility of incorrect diagnosis when dealing with measured noise. Nevertheless, it is

Table V. Diagnostic results via BPN.

BPN output vector

Instance Without noise 1% noise

1 [1.00, 0.00, 0.00] [1.00, 0.00, 0.44�]
2 [1.00, 0.00, 0.00] [1.00, 0.00, 0.00]
3 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00]
4 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00]
5 [0.00, 0.00, 1.00] [0.00, 0.00, 1.00]
6 [0.00, 0.00, 1.00] [0.00, 0.00, 1.00]
7 [1.00, 1.00, 0.01] [1.00, 1.00, 0.00]
8 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
9 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
10 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
11 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
12 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
13 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
14 [1.00, 0.01, 1.00] [1.00, 0.00, 1.00]
15 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
16 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
17 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
18 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]

SDD 100% 98.1%

�Wrong diagnosis.
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clear from this study and other researches that neural network is a promising technique in the
damage detection of structures.

5.4. Verified results when using the incomplete modal data

In practical situation, only a truncated set of modal frequencies can be obtained experimentally.
Besides, only partial dof with respect to the total dof of a real structural would be monitored,
which results in incomplete measured mode shapes. In this section, the effect of using incomplete
modal data (truncated set of modal frequencies and incomplete mode shapes) is investigated to
verify the robustness of the UFN in damage detection. Assumed that only the first, second, and
third modes can be obtained and only the first, third, and fifth dofs of the structure are
monitored. Hence, the number of the input variables is substantially reduced from 100 to 18.

Table VI shows the verified results of the UFN in damage detection while using the
incomplete modal data with/without noise. It is clear from the table that, even with the
measured noise and partial modal data, the UFN still can locate the damaged sites satisfactorily.
The SDD for the conditions of 0, 1, and 3% measured noise are 100, 100, and 94.4%,
respectively. The results shown in Sections 5.2 and 5.4 validate that the proposed damage
detection approach is robust and flexible when dealing with the measured noise and (or)
incomplete modal data situations.

Table VI. Diagnostic results of using incomplete modal data via UFN.

UFN output vector

Instance Without noise 1% noise 3% noise

1 [1.00, 0.01, 0.04] [1.00, 0.13, 0.07] [1.00, 0.16, 0.12]
2 [1.00, 0.00, 0.00] [1.00, 0.02, 0.02] [1.00, 0.08, 0.03]
3 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00] [NA, NA, NA]

([0.00, 1.00, 0.00])*
4 [0.00, 1.00, 0.00] [0.00, 1.00, 0.00] [0.00, 1.00, 0.00]
5 [0.00, 0.00, 1.00] [0.00, 0.00, 1.00] [0.03, 0.00, 1.00]
6 [0.00, 0.00, 1.00] [0.01, 0.00, 1.00] [0.01, 0.00, 1.00]
7 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
8 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
9 [1.00, 0.99, 0.00] [1.00, 0.99, 0.00] [0.98, 1.00, 0.00]
10 [1.00, 1.00, 0.00] [1.00, 1.00, 0.00] [1.00, 1.00, 0.00]
11 [1.00, 0.98, 0.00] [1.00, 0.97, 0.00] [1.00, 0.99, 0.00]
12 [1.00, 0.98, 0.00] [1.00, 0.97, 0.00] [1.00, 1.00, 0.00]
13 [0.94, 0.00, 1.00] [0.94, 0.00, 1.00] [0.92, 0.00, 1.00]
14 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
15 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
16 [1.00, 0.00, 0.96] [1.00, 0.00, 0.94] [1.00, 0.00, 0.96]
17 [1.00, 0.00, 1.00] [1.00, 0.00, 1.00] [1.00, 0.00, 1.00]
18 [1.00, 0.00, 0.94] [1.00, 0.00, 0.94] [1.00, 0.00, 0.90]

SDD 100% 100% 94.4% (100%)�

NA: data not available (no similar instance found).�When the most similar instance is chosen for NA situation.
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6. CONCLUSIONS

This investigation proposes a novel method of damage detection, based on structural modal
data and an unsupervised fuzzy neural network. After obtaining the damage feature based on
structure modal data, the damage site is located by matching two sets of damage features,
analytic damage localization feature (ADLF) and measured damage localization feature
(MDLF). The matching process is implemented using the UFN reasoning model. From the
analytic model, the ADLF must be calculated in advance. By deploying sensors on the structure,
the MDLF can be obtained and inputted to the UFN reasoning model to locate the damage.

A numerical example involving a five-storey shear-building structure was presented to
demonstrate the feasibility of the proposed approach. To improve the practicality of the
proposed damage detection method, the effects of measured noise and incomplete modal data
are introduced to examine the feasibility of the proposed detection approach. Additionally, a
commonly used supervised neural network, BPN, in the network-based damage detection
method is also introduced, and its performance is compared with that of the UFN. Some
conclusions are made based on the simulation results demonstrated in this work.

1. The matching process based on the damage localization feature is a form of pattern
recognition. From the verification results, the unsupervised neural network (UFN in this
study for example) appears superior to the BPN in dealing with the damage localization.
However, more investigations (such as training algorithm, network topology, etc.) need to
be available concerning the BPN.

2. Even with noise contamination in the modal parameters, the UFN still locate the damage
sufficiently accurately, although the BPN would likely make an incorrect diagnosis in such
circumstances.

3. The UFN achieves effective damage localization when using a truncated set of modal
frequencies and incomplete mode shapes.

4. The use of the fuzzy set in UFN increased the robustness and flexibility of the detection.
The proposed approaches display excellent promise for damage localization.
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