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Abstract

This article presents a fully Bayesian approach to modeling incomplete longitudinal data using the t linear mixed model withAR(p)
dependence. Markov chain Monte Carlo (MCMC) techniques are implemented for computing posterior distributions of parameters.
To facilitate the computation, two types of auxiliary indicator matrices are incorporated into the model. Meanwhile, the constraints
on the parameter space arising from the stationarity conditions for the autoregressive parameters are handled by a reparametrization
scheme. Bayesian predictive inferences for the future vector are also investigated. An application is illustrated through a real example
from a multiple sclerosis clinical trial.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The most popular analytic tool for longitudinal data analysis with continuous outcomes is the linear mixed model
proposed by Laird and Ware (1982). The model assumes that both random effects and within-subject errors are normally
distributed for mathematical convenience. However, such normality assumptions are vulnerable to the presence of
atypical observations, which may seriously affect the estimation of fixed effects and variance components. To overcome
this obstacle, instead of using conventional normal errors, many authors (e.g., Zellner, 1976; Lange et al., 1989) consider
heavy-tailed t errors for linear regression models. A robust extension of the linear mixed models with the multivariate
t distribution, called t linear mixed models hereafter, is considered by Pinheiro et al. (2001). They present several
comparable efficient EM-type algorithms for computing the maximum likelihood (ML) estimates and illustrate the
robustness of the model via a real example and some simulations.

Due mainly to recent advances in computing technology, the Bayesian sampling-based approach has been recognized
to offer the data-analyst an alternative modeling strategy. The most pragmatic merit of adopting such an approach is
the ability to take account of all parameter uncertainties. While simulating directly from the posterior distribution is
typically difficult, a number of authors have advocated Markov chain Monte Carlo (MCMC) schemes to deal with in-
tractable posterior integration. For example, the Gibbs sampler (Geman and Geman, 1984) and the Metropolis–Hastings
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(M–H) algorithm (Hastings, 1970) are widely used in many areas of research. For normal linear mixed models, Gelfand
et al. (1990) present the Gibbs sampler for Bayesian calculation, and Zeger and Karim (1991) extend the approach
to generalized linear mixed models. Chib and Carlin (1999) consider several MCMC sampling schemes for hierar-
chical longitudinal models. More recently, Schafer and Yucel (2002) present some likelihood-based and Bayesian
computational techniques for multivariate longitudinal data with missing values.

In this article, we shall present a fully Bayesian sampling-based approach to the t linear mixed model when repeated
measures are serially correlated and some data are missing. The model involves a natural normal–normal-gamma
hierarchy, which is conceptually flexible and would be easily implemented for Bayesian practitioners. As explained by
Chi and Reinsel (1989) and Keramidas and Lee (1995), an appropriate dependence structure plays an important role for
model fitting as well as predictive power. In longitudinal studies, the repeated measures of each subject are collected
over time and hence tend to be serially correlated. Thus, we consider a stationary autoregressive (AR) time series
structure to account for the serial correlation for within-subject errors. Note that the pure AR model can be extended
to a much richer ARMA family, see Rochon (1992), Lin and Lee (2003) and Lee et al. (2005). Nevertheless, it is
appropriate and relatively simple to fit high-order AR models instead of ARMA models due to the fact that longitudinal
data are often short time series.

The rest of this article is organized as follows: Section 2 describes the model and the chosen priors. In Section 3, we
present Bayesian estimation and posterior predictive inferences. Section 4 illustrates the application of our methods to
a set of multiple sclerosis (MS) data. Finally, some concluding remarks are reported in Section 5.

2. The t linear mixed model and prior distributions

2.1. The model

Assume there are N subjects in a longitudinal study and the ith subject, Yi , is repeatedly measured over ni times, the
underlying formulation of the t linear mixed model can be represented as:

Yi = Xi� + Zibi + �i , bi | �i ∼ Nm2

(
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�i

�

)
,
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(
0,

�2

�i

Ci

)
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)
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where � is an m1 ×1 vector of fixed effects with corresponding design matrix Xi , bi is an m2 ×1 vector of unobservable
random effects with corresponding design matrix Zi , and �i is an unknown weight assumed to be distributed as gamma
with mean 1 and variance 2/�, and bi | �i and �i | �i are mutually independent random variables having normal densities.
Furthermore, � is an m2 × m2 unstructured positive definite matrix, while Ci is a structured AR(p) dependence matrix
for within-subject errors. Specifically,

Ci = 1

1 − �1�1 − · · · − �p�p

[�|r−s|],

where r, s = 1, . . . , ni and �k’s are implicit function of autoregressive parameters � = (�1, . . . ,�p) and satisfy the
Yule–Walker equation (Box et al. (1994)), i.e.,

�k = �1�k−1 + · · · + �p�k−p, �0 = 1, (k = 0, . . . , ni − 1).

In addition, the roots of 1 −�1B −�2B
2 −· · ·−�pBp = 0 must lie outside the unit circle for assuring the stationarity

of the model. For the pure AR model, admissible values of � are confined in a p-dimensional hypercube Cp.
The model (1) can be hierarchically formulated as follows:
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Combining the joint distribution of (Yi , bi , �i ) obtained from (2) and integrating out bi and �i , we have

f (Yi ) = �(� + ni/2) | �i |−1/2

�(�/2)(���2)ni/2

(
1 + (Yi − Xi�)T�−1

i (Yi − Xi�)

��2

)−(�+ni)/2

,

where �i = Zi�ZT
i + Ci . Let tn(µ, �, �) denote an n-dimensional multivariate t distribution with location vector µ,

scatter matrix � and degrees-of-freedom �. It follows that the distribution of Yi is tni
(Xi�, �2�i , �).

We are concerned with the situation in which some observations are missing. LetYi be partitioned into two components
(Yo

i ,Ym
i ), where Yo

i (no
i × 1) and Ym

i ((ni − no
i ) × 1) denote the observed and missing components of Yi , respectively.

To facilitate the computation, it is convenient to introduce two auxiliary binary indicator matrices, denoted by Oi and
Mi henceforth, corresponding to Yi such that Yo

i = OiYi and Ym
i = MiYi , respectively. Note that Oi and Mi are no

i × ni

and (ni − no
i ) × ni matrices extracted from an ni-dimensional identity matrix Ini

corresponding to row-positions of Yo
i

and Ym
i in Yi , respectively. Moreover, it is easy to see that
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It is crucial to utilize the distributional properties of the marginal distribution of Yo
i and the conditional distribution

of Ym
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i . Integrating Ym
i from the joint density of (Yo

i ,Ym
i ) leads to the marginal distribution of Yo
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tno

i
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We will focus on a general approach to estimate parameters (�, �2, �, �, �) from model (2). Note that the patterns of
missingness are assumed to be missing at random (MAR), see Little and Rubin (2002) for more details. In order to facil-
itate the estimating procedure and achieve the objective of ensuring admissibility of �, we perform a reparameterization
on � as in Barndorff-Nielsen and Schou(1973):

�(k)
k = 	k, �(k)

j = �(k−1)
j − 	k�

(k−1)
k−j , j = 1, 2, . . . , k − 1, (3)

where �(p)
j =�j =�(j)

j −�(j+1)
j+1 �(j)

1 −�(j+2)
j+2 �(j+1)

2 − · · ·−�(p)
p �(p−1)

p−j , for j = 1, . . . , p − 1. Note that (3) is a one-
to-one and onto transformation which reparameterizes � = (�1, . . . ,�p) ∈ Cp in terms of the partial autocorrelations
� = (	1, . . . , 	p) ∈ Rp, where R = [−1, 1]. We treat � as the reparameterized parameters and all random generation is
done in �, then inverting back to � at the end.

2.2. Prior distributions

To complete a Bayesian formulation of model (2), one must specify a prior distribution for � = (�, �2, �, �, �).
Suppose (�, �2, �, �, �) are independent a priori, that is

�(�) ∝ �(�)�(�2)�(�)�(�)�(�). (4)
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In the absence of good prior information, a convenient strategy of avoiding improper posterior distribution is to use
diffuse proper priors. The prior distributions adopted are as follows:

� ∼ Nm1(�0, B0), �2 ∼ IG

(
a0

2
,
b0

2

)
, � ∼ IW(c0, �0),

	i ∼ U(−1, 1) (i = 1, . . . , p), log(1/�) ∼ U(−10, 10),

where IG(·, ·) denotes the inverse gamma distribution, IW(·, ·) denotes the inverse Wishart distribution, and U(·, ·)
denotes the uniform distribution. Note that the prior for � is also considered by Liu and Rubin (1998) on the basis
of vagueness. The values of the hyperparameters �0, B0, a0, b0, c0, �0 can be based on strong prior knowledge or
be chosen to reflect diffuse prior information. The hyperparameters a0 and c0 are held fixed as small as possible.

Meanwhile, we shall set �0 = �̂, B0 = ĉov(�̂) =∑N
i=1(X

oT

i �̂
o−1

i Xo
i )

−1, b0 = �̂2, and �0 = �̂, where �̂, �̂2,�̂ denote
the ML estimates for the ordinary normal linear mixed model with missing value imputed by the mean of two adjacent
values. Generally, we shall choose a0 = 3 and c0 = m2 + 2, which will lead to flat distributions, and make E�(�2) = �̂2

and E�(�) = �̂, where E�(Q) denotes the expectation taken with respect to the prior distribution.

3. Bayesian estimation and predictive inferences

Let Yo = (Yo
1, . . . ,Yo

N), Ym = (Ym
1 , . . . ,Ym

N), b = (b1, . . . , bN), �= (�1, . . . , �N), ei =Yi − Xi�− Zibi , Si(�, bi , �)=
eT
i Ciei and n =∑N

i=1ni . Combining the complete-data likelihood function of model (2) with the prior distribution (4),
we have the following joint posterior density of (�,Ym, b, �):

p(�,Ym, b, � | Yo)

∝ (�2)−(n+Nm2+a0+2)/2

[
N∏

i=1

∣∣∣∣ 1

�i

Ci

∣∣∣∣−1/2
]

exp

{
−
∑N

i=1 �iSi(�, bi , �)

2�2

}

×
[

N∏
i=1

∣∣∣∣ 1

�i

�

∣∣∣∣−1/2
]

exp

{
−
∑N

i=1�ibT
i �−1bi

2�2

}[
N∏

i=1

��/2−1
i

]
exp

{
− �

2

N∑
i=1

�i

}

×
[

(�/2)�/2

�(�/2)

]N

exp

{
− (� − �0)

TB−1
0 (� − �0)

2

}
exp

{
− b0

2�2

}
× | �|−(c0+m2+1)/2 exp

{
− 1

2
tr(�−1�0)

}
J�, (5)

where J� = 1/�(0 < � < ∞) is the Jacobian of transforming log(1/�) to �. Details on the forms of the full conditions
and the implementation of MCMC sampler can be found in the Appendix.

We consider the prediction of yi , a q × 1 future observations of Yi . Let xi and zi be q × m1 and q × m2 design
matrices of prediction regressors corresponding to yi . We thus have[

Yi

yi

]
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where X∗
i = (XT

i , xT
i )T, Z∗

i = (ZT
i , zT

i )T and �∗
i = Z∗

i �Z∗T

i + C∗
i with C∗

i = [
�|r−s|

]
(r, s = 1, . . . , ni + q).
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i )T and Yo∗
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to those pointed out in Section 2, we have Yo∗
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i .
The posterior predictive distribution of yi is

p(yi |Yo) =
∫

f (yi |Yo, �)p(�|Yo) d�. (6)
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In (6), we have f (yi |Y, �) = tq(yi | µ2·1, w�22·1, � + no
i ), where
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Let �(g) be the generated sample at the gth iteration of the MCMC sampler when the convergence is achieved. We
can obtain the approximate predictive distribution of yi using the Rao–Blackwellization (Gelfand and Smith, 1990).
That is,

p(yi |Y) ≈ 1

G

G∑
g=1

tq(yi |µ(g)
2·1, w

(g)�(g)
22·1, �

(g) + ni).

For the future value yi , it can be straightforwardly predicted by

ŷi = 1

G

G∑
g=1

µ
(g)
2·1, (8)

where µ
(g)
2·1 is µ2·1 in (7) with � replaced by �(g).

4. Example

We apply the methods from previous sections to the MS data from a clinical trial of 52 relapsing–remitting MS
(RRMS) patients. The cohort study, conducted at the University of British Columbia site during the period June
1988–May 1990, was a placebo-controlled trial of interferon beta-1b (INFB), which had been approved by the US
Food and Drug Administration in mid 1993 for patients with early stage RRMS. All 52 patients were randomized into
three treatment groups—a placebo (PL) group, a low-dose (LD) group, and a high-dose (HD) group. The LD and HD
treatments correspond to doses of 1.6 and 8 million international units (MIU) of IFNB every other day, respectively.
D’yachkova et al. (1997) use the MS data to illustrate the application of the generalized estimating equation (GEE)
approach. Gill (2000) separately analyze the three treatment groups based on mixed linear modeling with Huber’s
� function. Lin and Lee (2006) present an alternative robust approach using the t distribution and provide a score test
statistic for detecting AR(1) serial correlation.

The response variable in this study is the patient’s “disease burden”, which is measured by the total area of MS lesions
on all slices of an cranial magnetic resonance imaging (MRI) scan (in mm2). The disease burden for the ith patient at
time point j is denoted by Area(i, j), with j =0 as the baseline time point. Due to strong skewness of the untransformed
burden measurements, we use the log relative burden (LRB), defined by LRB(i, j) = log(Area(i, j)/Area(i, 0)), as
the response variable Yij .

In this study, three patients were not included in the analysis since two of them (one in each of groups LD and HD)
dropped out very early and one in group LD had 3 measurements of zero on MRI scans. Note that each patient was
repeatedly measured approximately once every six weeks over the two-year period, so that the maximum number of
visits was 17 for each patient. In this data set, all but 5 patients have a complete set of 17 scans: one dropped out from
PL after completing 14 visits, two dropped out from LD after completing 13 visits, and two dropped out from HD
after completing 12 visits. Assuming these early dropouts are “ignorable” (Rubin, 1976), our analyses are limited to
the LRB measurements on the remaining 49 patients. There are 17 patients in PL and 16 patients in both LD and HD.
Among these 49 patients, six patients have one or two isolated MRI scans missing. Instead of imputing these missing
values via the mean of two adjacent values as in Gill (2000), we simply simulate these missing values using (A.1) via
the MCMC approach.
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Fig. 1. Longitudinal trends in LRB from three treatment groups and the average LRB versus time

We coded these 49 patients by numbering them from 1 to 49. The identity numbers are 1 to 17 for PL, 18 to 33 for
LD and 34 to 49 for HD. Fig. 1 depicts the time evolution of LRB measurements for each patient and the average LRB
of each group, indicating that some outlying observations are apparently present for PL and LD groups.

We carry out the analyses for all three treatment groups by fitting a single t linear mixed model with the variance
components and the degrees-of-freedom taken to be common across all treatment groups. In addition, we assume a
linear growth function for fixed effects, along with subject-specific random intercepts and slopes and an AR(p) structure
for Ci for p = 0, 1, 2, 3. Note that p = 0 indicates the within-subject residuals follow a white noise process. The fitted
hierarchical model can be written as

Yi | bi, �i ∼ Nni

(
Xi� + Zibi ,

�2

�i

Ci

)
,

bi | �i ∼ N2

(
0,

�2

�i

�

)
, �i ∼ Gamma

( �

2
,
�

2

)
, (9)

with

� = (
0, 
1, 
2, 
3)
T, Xi = [1ni

k(1)
i k(2)

i k(3)
i ], Zi = [1ni

ki],
ki = (1, 2, . . . , ni)

T, k(1)
i = kiIPL(Yi ), k(2)

i = kiILD(Yi ), k(3)
i = kiIHD(Yi ),

where 1ni
is a ni ×1 vector of ones, and IA(u)=1 if u ∈ A and IA(u)=0 else. In this model, 
0 is a fixed intercept effect

common to all subjects, and 
i (i = 1, 2, 3) are treatment-specific slopes for PL, LD and HD groups, respectively.

Furthermore, the random effects bi = (b1i , b2i )
T have the scale covariance matrix � =

[
�11 �21
�21 �22

]
, and Ci’s are

implicit functions of � = (�1, . . . ,�p). Of course, Ci = Ini
if p = 0.

We ran 10 independent parallel chains with different initial values for each chain started from a point drawn at random
from the prior. For each chain, we implemented 10,000 iterations. We monitored the convergence by examining the
multivariate potential scale reduction factor (MPSRF) of Brooks and Gelman (1998) using multiple chains. For all the
fitted models, convergence to the posterior distribution was quick and the mixing was good. The convergence occurred
after 2000 iterations. Discarding the first 2000 iterations as a “burn-in” for each chain, we then stored one imputed
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Table 1
Summarized posterior results of MCMC samples for the t linear mixed model with four selected dependence structures

Posterior estimates Parameter


0 
1 
2 
3 �11 �21 �22 �2 � �1 �2 �3

White noise
Mean −0.0355 0.0193 0.0132 0.0136 1.4407 −0.0036 0.0077 0.0117 2.3703 — — —
Standard deviation 0.0216 0.0029 0.0030 0.0027 0.4213 0.0228 0.0026 0.0018 0.4726 — — —
Median −0.0355 0.0192 0.0132 0.0137 1.3803 −0.0021 0.0073 0.0116 2.3259 — — —
Q0.025 −0.0773 0.0135 0.0074 0.0082 0.7780 −0.0535 0.0037 0.0085 1.5714 — — —
Q0.975 0.0070 0.0251 0.0190 0.0190 2.4166 0.0382 0.0137 0.0154 3.4067 — — —

AR(1)
Mean −0.0331 0.0181 0.0133 0.0132 0.9669 0.0234 0.0052 0.0120 2.3964 0.3730 — —
Standard deviation 0.0208 0.0030 0.0030 0.0028 0.3487 0.0201 0.0024 0.0018 0.4822 0.0449 — —
Median −0.0331 0.0181 0.0133 0.0133 0.9173 0.0246 0.0048 0.0118 2.3402 0.3729 — —
Q0.025 −0.0747 0.0122 0.0075 0.0077 0.4295 −0.0204 0.0015 0.0087 1.5670 0.2827 — —
Q0.975 0.0071 0.0241 0.0194 0.0187 1.7647 0.0618 0.0106 0.0159 3.4627 0.4606 — —

AR(2)
Mean −0.0322 0.0178 0.0134 0.0131 0.8890 0.0244 0.0048 0.0120 2.3760 0.3677 0.1267 —
Standard deviation 0.0212 0.0032 0.0030 0.0029 0.3582 0.0192 0.0024 0.0019 0.4741 0.0436 0.0450 —
Median −0.0324 0.0177 0.0134 0.0131 0.8301 0.0256 0.0043 0.0119 2.3299 0.3686 0.1264 —
Q0.025 −0.0724 0.0117 0.0073 0.0072 0.3614 −0.0183 0.0015 0.0087 1.5629 0.2781 0.0406 —
Q0.975 0.0092 0.0240 0.0193 0.0188 1.7038 0.0591 0.0104 0.0158 3.4231 0.4519 0.2178 —

AR(3)
Mean −0.0314 0.0178 0.0133 0.0131 0.8347 0.0259 0.0044 0.0120 2.3771 0.3677 0.1249 0.0418
Standard deviation 0.0219 0.0032 0.0031 0.0029 0.3455 0.0180 0.0023 0.0018 0.4742 0.0449 0.0453 0.0461
Median −0.0317 0.0178 0.0134 0.0131 0.7962 0.0270 0.0040 0.0120 2.3385 0.3654 0.1242 0.0411
Q0.025 −0.0747 0.0116 0.0070 0.0074 0.2802 −0.0133 0.0010 0.0086 1.5924 0.2788 0.0355 −0.0458
Q0.975 0.0118 0.0241 0.0194 0.0187 1.6411 0.0586 0.0100 0.0159 3.4316 0.4593 0.2153 0.1316

parameter values for every 20 iterations to reduce the autocorrelation. We have final 4000 realizations from the target
posterior distribution.

Based on the converged simulated realizations under four considered dependence structures, summary statistics of
converged MCMC samples, including the mean, standard deviation, median and 95% posterior intervals, are listed in
Table 1. As can be seen, all estimates of the �’s are extremely small, indicating the normal-based model is not suitable
for the MS data. In addition, the autoregressive parameters �1 and �2 in the AR model are significantly different from
zero, while �3 is negligible in the AR(3) model.

We are interested in comparing the appropriateness of the four selected dependence structures using the Bayes factor,
which involves the calculation of the marginal likelihoods of the competing models. Assuming the four models are
equal-probable a priori, the Bayes factor is equivalent to the ratio between two corresponding marginal densities of the
data. Here the marginal density for model Mk is given by

p(Y | Mk) =
∫

p(Y | �k, Mk)�(�k | Mk) d�k , (10)

where �k is the vector of parameters of model Mk , p(Y | �k, Mk) is the likelihood and �(�k | Mk) is the prior density of
�k under model Mk , respectively. However, the calculation of marginal likelihood remains a computationally intensive
task. In this example, after analytically integrating missing values Ym and latent values bi’s and �i’s, a simple way of
calculating the marginal density (10) is to use the harmonic means of sampled likelihoods (Newton and Raftery, 1994).
That is,

p(Y | Mk) ≈
{

1

L

L∑
�=1

p(Y | �
(�)
k , Mk)

−1

}−1

.
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Table 2
Estimated marginal densities for selected dependence structures

Dependence structure p(Y | Model)

WN 1.2290 × 10117

AR(1) 2.1133 × 10131

AR(2) 4.0260 × 10132

AR(3) 6.7018 × 10129
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Fig. 2. Marginal posterior distribution of �i for the 49 patients. The boxplots are drawn containing 2.5%, 25%, 50%, 75%, 97.5% quantiles of the
MCMC samples.

The estimated marginal densities for the four selected models are listed in Table 2. All AR models are more plausible
than the WN model and the AR(2) model has the largest marginal density. The Bayes factor of AR(2) relative to WN,
AR(1) and AR(3) are 3.2758 × 1015, 19.05 and 600.73, respectively. Based on the analysis so far, it appears that the
AR(2) structure is adequate for the MS data.

To detect outlying observations, Fig. 2 shows the boxplots of sampled �i for i = 1, 2, . . . , 49. As pointed out by
Wakefield et al. (1994), the �i’s can be used as concise indicators for detecting outliers with prior expectation of 1.
Hence, when the value of �i is substantially lower than 1, it indicates that the ith patient should be regarded as an
outlier in the population. The figure reveals that patients 4, 5, 9, 12, 13, 19, 24, 25, 28, 31, 45 and 46 could be treated as
outliers, since they exhibit extremely small values of �i (none of 95% upper posterior limits exceed 1). We mark these
identity numbers in Fig. 1.

For dependent longitudinal data, a more appropriate measure of “fitness” is the predictive accuracy of future obser-
vations (Rao, 1987; Lee, 1988). Bayesian predictive accuracy were compared between a normal model and a t model
with the AR(2) structure. The fitted normal model is obtained by setting �=∞ in (9). We use (8) to predict the last mea-
surements of the MS data. To compare the performance of different models, we shall use the mean of square deviations
|ŷj − yj |2, absolute deviations |ŷj − yj | and relative absolute deviations |ŷj − yj |/yj . We call these measures MSE,
MAE and MARE, respectively. We consider one-step-ahead and two-step-ahead forecasts for the last measurements of
the MS data. The prediction accuracies are displayed in Table 3. From the prediction results summarized in the table,
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Table 3
Comparison of Bayesian predictive accuracies in terms of various discrepancy measures (DM) between the normal linear mixed model (nlmm) and
the t linear mixed model (tlmm) with AR(2) dependence

Discrepancy measure One-step-ahead Two-step-ahead

nlmm tlmm RIPa (%) nlmm tlmm RIPa (%)

MSE 0.1303 0.1205 7.52 0.1703 0.1554 8.75
MAE 0.1881 0.1785 5.10 0.2070 0.1941 6.23
MARE 0.7328 0.6829 6.81 0.8694 0.8145 6.31

aThe relative improvement percentage (RIP) is measured by [DM(nlmm) − DM(tlmm)]/DM(nlmm) × 100%.

it appears that the t model has better prediction results with minimum improvements over 5% for the one-step-ahead
forecast and over 6% for the two-step-ahead forecast, respectively.

5. Concluding remarks

We provide a fully Bayesian method for handling t linear mixed models with AR(p) dependence and simultaneously
accommodating the presence of missing values. The proposed approach allows the user to fit longitudinal data in a
wide variety of considerations. Under the flexible normal–normal-gamma hierarchy, computational techniques using
the MCMC method allow us to generate samples from the posterior and predictive densities in a straightforward manner.

In the illustrated example, the graphical outputs provide both easily understood inferential summaries and informative
diagnostic aids for detecting outliers. Furthermore, in terms of Bayesian forecast accuracy, the t linear mixed model is
evidently more adequate than the normal counterpart. Although the proposed approach may still have some limitations,
it is worthwhile to note that the situation in which no presence of outlying observations (taking �=∞) and no presence
of missing values (taking Oi = Ini

) are simply special cases.
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Appendix

In this appendix, we provide the detailed forms of full conditionals and strategies for the implementation in the
MCMC algorithm.

A.1. Full conditional posterior distributions

From (5) the full conditionals are given as follows (using “| · · ·” to denote conditional on Yo and all other parameters,
missing components Ym, and latent variables b and �):

Ym
i | · · · ∼ Nn−no

i

(
µ∗

i ,
�2

�i

Cmm·o
i

)
, (A.1)

�i | · · · ∼ Gamma

(
ni + m2 + �

2
,
�−2

(
Si(�, bi , �) + bT

i �−1bi

)+ �

2

)
, (A.2)

bi | · · · ∼ Nm2

(
b∗
i ,

�2

�i

Wi

)
, (A.3)
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� | · · · ∼ Nm1(µ�, ��), (A.4)

�2 | · · · ∼ IG

(
n + Nm2 + a0

2
,
b0 +∑N

i=1�i (Si(�, bi , �) + bT
i �−1bi )

2

)
, (A.5)

� | · · · ∼ IW

(
�0 +

N∑
i=1

�ibibT
i , N + c0

)
, (A.6)

where Ci = Ci (�) and

µ∗
i = Mi (Xi� + Zibi + CiOT

i (OiCiOT
i )−1Oi (Yi − Xi� − Zibi )),

Cmm·o
i = Mi (Ini

− CiOi (OiCiOT
i )−1OT

i )CiMT
i ,

Wi = (�−1 + ZT
i C−1

i Zi )
−1, b∗

i = WiZT
i C−1

i (Yi − Xi�),

�� =
(

�−2
N∑

i=1

�iXT
i C−1

i Xi + B−1
0

)−1

,

µ
 = ��

(
�−2

N∑
i=1

�iXT
i C−1

i (Yi − Zibi ) + B−1
0 �0

)
.

The full conditional distributions of � and � do not have standard forms. They are proportional to the following
functional forms:

f (� | · · ·) ∝
[

N∏
i=1

| Ci |−1/2

]
exp

{
−
∑N

i=1�iSi(�, bi , �)

2�2

}
, (A.7)

f (� | · · ·) ∝
[

(�/2)�/2

�(�/2)

]N [ N∏
i=1

��/2−1
i

]
exp

{
− �

2

N∑
i=1

�i

}
J�. (A.8)

A.2. Implementation of the MCMC algorithm

Computing posterior model probabilities requires a high dimensional numerical integration over the posterior distri-
bution p(�,Ym, b, �|Y) in (5), which is analytically intractable. To deal with this difficulty, we use the MCMC approach.
One sweep of the algorithm can be implemented as follows:

Step 1: Using the Gibbs sampler to generateYm
i , �, �2, �, �i and bi , i=1, . . . , N, from the associated full conditional

distributions (A.1)–(A.6).
Step 2: Generate � from (A.7) using the M–H algorithm.
Step 3: Generate � from (A.8) using the M–H algorithm.

To implement the MCMC algorithm at the (k+1)st iteration in Step 2, we can transform � to �∗ =(	∗
1, . . . , 	

∗
p) ∈ Rp,

R = (−∞, ∞), where, 	∗
i = log((1 + 	i )/(1 − 	i )) (i = 1, . . . , p). We then apply the M–H algorithm to g(�∗ | · · ·) =

f (� | · · ·)J�∗ , where J�∗ =∏p
i=1

(
2e	∗

i /(1 + e	∗
i )2
)

is the Jacobian of transforming � to �∗.

A p-dimensional multivariate normal distribution with mean �∗(k)
and covariance matrix c2�(k)

�∗ is chosen as the

proposal distribution, where the scale c ≈ 2.4/
√

p, as suggested in Gelman et al. (2004). The covariance matrix �(k)
�∗

can be estimated by inverting the sample information matrix given �∗(k)
. Having obtained �∗ from the M–H algorithm,

we transform it back to � by 	i = (e	∗
i − 1)/(e	∗

i + 1) (i = 1, . . . , p), then transform � back to � by inverting (3). In the
case of AR(1), �1 =	i . For the AR(2) process, �1 =	1(1−	2) and �2 =	2. For the AR(3) process, �1 =	1 −	1	2 −	2	3,
�2 = 	2 − 	1	3 + 	1	2	3and �3 = 	3.
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Similarly, we transform � to �∗ = log(1/�) and then apply the M–H algorithm to the function g(�∗ | · · ·) ∝ f (�∗ |
· · ·)J�∗ , where J�∗ =e−�∗

. The proposal distribution can be chosen as the truncated normal distribution with mean �∗(k)
,

variance �2(k)

�∗ , and truncated region R=(−10, 10). Furthermore, an approximation of �2(k)

�∗ is chosen as �(k)−2
I−1(�(k)).

The Fisher information of �, I (�), is given by:

I (�) = 1

4

N∑
i=1

[
�
( �

2

)
− �

(
� + no

i

2

)
− 2 (� + 2)

�
(
� + no

i + 2
) − 2

�
+ 4

� + no
i

]
,

where �(x) = d2/dx2 log(�(x)) is the trigamma function. At the (k + 1)st iteration, one can generate a truncated
normal variate (Gelfand et al., 1992) by

�∗(k+1) = �∗(k) + �(k)
�∗ �−1

{
�

(
−10 − �∗(k)

�(k)
�∗

)
+ U

[
�

(
10 − �∗(k)

�(k)
�∗

)
− �

(
−10 − �∗(k)

�(k)
�∗

)]}
,

where � denotes the standard normal cumulative distribution function and U denotes a random uniform (0, 1) variate.
We repeat Steps 1 to 3 until the sequence becomes stable. The convergence of the MCMC algorithm can be assessed by

examining the MPSRF of Brooks and Gelman (1998) using multiple chains. After “burn-in”, we can use the remaining
sample to estimate the parameters of interest.
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