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Abstract

Prediction of protein stability upon amino acid substitutions is an important problem in molecular biology and the solving of which would help
for designing stable mutants. In this work, we have analyzed the stability of protein mutants using two different datasets of 1396 and 2204 mutants
obtained from ProTherm database, respectively for free energy change due to thermal (AAG) and denaturant denaturations (A AG™°). We have
used a set of 48 physical, chemical energetic and conformational properties of amino acid residues and computed the difference of amino acid
properties for each mutant in both sets of data. These differences in amino acid properties have been related to protein stability (AAG and
AAG™®) and are used to train with classification and regression tool for predicting the stability of protein mutants. Further, we have tested the
method with 4 fold, 5 fold and 10 fold cross validation procedures. We found that the physical properties, shape and flexibility are important
determinants of protein stability. The classification of mutants based on secondary structure (helix, strand, turn and coil) and solvent accessibility
(buried, partially buried, partially exposed and exposed) distinguished the stabilizing/destabilizing mutants at an average accuracy of 81% and
80%, respectively for AAG and AAG"°. The correlation between the experimental and predicted stability change is 0.61 for AAG and 0.44 for
AAG™®. Further, the free energy change due to the replacement of amino acid residue has been predicted within an average error of 1.08 kcal/mol
and 1.37 kcal/mol for thermal and chemical denaturation, respectively. The relative importance of secondary structure and solvent accessibility,
and the influence of the dataset on prediction of protein mutant stability have been discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction important for the stability of proteins upon amino acid

substitutions and the stability depends on the location of

Prediction of protein stability upon amino acid substitutions
is one of the challenging tasks in molecular biology and a
reliable prediction method would also help in designing stable
protein mutants. Several methods have been proposed for
understanding the factors influencing the stability of protein
mutants and for predicting protein stability changes upon
mutation. It has been reported that hydrophobicity, hydrogen
bonds, ion pairs and other non covalent interactions are
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mutants with respect to secondary structure and solvent
accessibility [1-9].

Gromiha et al. [10] collected the experimental stability data
for more than 18,000 protein mutants and developed a database,
ProTherm, which is available freely for academic users. Based
on this database several methods have been developed for
predicting protein stability upon mutation, such as those based
on energetic criterion, stability scale for the 20 amino acid
residues, contact potentials, neural networks, support vector
machines, average assignment method etc. [11-17]. Guerois
et al. [17] developed a computer algorithm, FOLDEF for esti-
mating the stability of proteins upon amino acid substitutions.
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Zhou and Zhou [16] derived a stability scale of 20 amino acid
residues from a database of 1023 mutation experiments and
utilized the same for predicting protein mutant stability. Bordner
and Abagyan [15] developed an empirical energy function,
which includes terms representing the energy contributions of
the folded and denatured proteins and used the energy function
to predict protein mutant stability. Khatun et al. [13] tested the
ability of contact potentials to accurately and transferably
predict stability changes of proteins upon mutations. Capriotti et
al. [12] developed a method based on support vector machines
for protein mutant stability prediction. Saraboji et al. [11]
proposed an average assignment method for predicting the
stability of protein mutants.

Recently, the secondary structure and solvent accessibility
parameters have been used to classify the mutants and it was
observed that this classification improved the accuracy of
prediction. Gilis and Rooman [18,19] separated the mutants
based on solvent accessibility and used torsion and distance
potentials with different weighting factors for predicting the
stability of proteins upon buried and exposed mutations.
Gromiha et al. [8,20,21] analyzed the relationship between
amino acid properties and protein stability upon buried, partially
buried and exposed mutants. They showed that hydrophobicity
plays a major role to the stability of buried mutations whereas
hydrogen bonds, other polar interactions and hydrophobic
interactions are important to the stability of partially buried
mutations. Further, hydration entropy and strain energy are
influencing the stability of exposed mutations. Capriotti et al.
[14] have developed a neural network method for predicting the
stability of protein mutants in which the information about
solvent accessibility was added as one of the input neurons.
Further, the analysis of T4 and human lysozyme mutants
showed that the classification of secondary structure and solvent
accessibility are important to understand their stability [22].
These studies demonstrate the importance of classifying the
mutant stability data based on secondary structure and/or
solvent accessibility for understanding/predicting the stability
of protein mutants.

The stability of protein structures is dictated by several non
covalent interactions and the amino acid properties carry
sufficient information for understanding protein stability. In
our earlier works, we have explored the importance of amino
acid properties for understanding protein folding rates, stability
and transition state structures [8,23,24]. In this work, we have
used a set of 48 physical, chemical energetic and conforma-
tional properties of amino acid residues and analyzed the
relationship between amino acid properties and protein stability
using two large sets of data. We observed that the physical
properties, shape and flexibility are the major determinants for
protein stability. Further, we have developed a method using
classification and regression tool for predicting the stability of
protein mutants at different secondary structures and solvent
accessibility. We observed that the present method could predict
the stability of protein mutants at an accuracy of 81% and 80%
for AAG and AAG™°. The relative importance of solvent
accessibility and secondary structure, and the effect of data size
have been discussed.

2. Materials and methods
2.1. Datasets

We have used two sets of experimental stability data, (i) free
energy change of 1396 mutants obtained from thermal
denaturation (AAG) and (ii) free energy change of 2204
mutants obtained with chemical denaturation (A AG™°) for the
present study. All these datasets have been obtained from
ProTherm database (http://gibk26.bse.kyutech.ac.jp/jouhou/
protherm/protherm.html [10,25]) with the following conditions:
(1) all single mutants, (ii) known three dimensional structures,
(iii) any secondary structure and solvent accessibility and (iv)
data obtained from thermal denaturation for AAG and chemical
denaturation (urea and GdnHCI) for AAG™©. The secondary
structure information was obtained from the DSSP, Dictionary
of Secondary Structures in Proteins [26]. We have used the
program ASC [27] for calculating the solvent accessibility of
each residue and normalized with its respective extended state
accessibility as explained in our earlier article [8]. For a protein
of unknown structure, available online methods such as PHD
[28] and RVP net [29] are used for predicting the secondary
structure and solvent accessibility, respectively. The majority of
the mutants in this dataset are located in helical segments (42%)
followed by strand (24%) and coil (23%) regions. With respect
to solvent accessibility the distribution of mutants at different
ranges, such as, buried (0-2%), partially buried (2—20%),
partially exposed (20—-50%) and exposed (>50%) are, respec-
tively, 23%, 23%, 26% and 28%. We have not considered the
experimental conditions, such as pH, temperature, buffers, ions,
additives etc. as well as the occurrence of mutants with excess
heat capacity as these information are unknown for a new
mutant. All datasets used in the present study are available from
the corresponding author.

2.2. Amino acid properties

In the present study, we used a set of 48 diverse amino acid
properties (physical-chemical, energetic and conformational),
which fall into various clusters analyzed by Tomii and Kanehisa
[30]. This set of properties has been used in our previous works
for understanding protein stability, transition state structures of
proteins, predicting protein folding and unfolding rates etc.
[8,24,31-33]. The list of 48 properties used in the present study
and their brief descriptions are presented in Table 1.

2.3. Computational procedure

The mutation induced changes in property values AP(i) was
computed using the equation:

AP(i) = Puut(i)~Pwita(i), (1)

where, P (i) and Py;4(7) are, respectively, the property value
of the ith mutant and wild type residues, and i varies from 1 to
N, total number of mutants. The computed difference in
property values AP(i) has been used to predict the stability of
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protein mutants as stabilizing/destabilizing based on the
increase/decrease in both stability and property values.

2.4. Classification and regression tool

We have used classification and regression tool (CART),
which is an implementation based on classification and
regression tree algorithm [34], for predicting the stability of
protein mutants with 48 amino acid properties. It provides

Table 1
Accuracy of predicting the stability of protein mutants using 48 various amino
acid properties

Property Property Accuracy (%)
no. name AAG AAGHO
47 s 73.14 78.36
48 f 70.92 77.77
46 v 67.48 71.64
19 C, 65.62 70.15
38 —TAS, 64.04 66.02
8 B, 63.61 62.80
13 E, 63.32 56.26
27 yo 63.25 67.97
39 ACy, 63.18 61.03
33 AASA 63.11 64.79
2 H, 62.11 61.98
29 N, 61.68 53.95
9 R¢ 61.53 55.85
3 H, 61.25 53.22
16 Py, 60.89 57.53
23 N, 60.32 51.09
31 ASAp 59.89 67.56
21 B, 59.89 53.04
30 Hem 59.89 51.91
7 M, 59.46 67.24
22 R, 59.24 53.58
36 Ghn 58.88 51.95
10 u 58.17 61.07
34 AG, 57.95 52.36
41 AH, 57.74 62.16
35 Gnp 57.59 54.45
11 Hpe 57.59 52.77
14 E, 57.45 48.82
P 56.09 65.02
5 pHi 54.08 51.32
45 —TAS 54.01 55.58
24 Ol 52.44 49.27
6 pPK’ 49.07 46.78
28 N 48.57 50.54
15 P, 48.50 49.77
43 AG 4728 43.83
44 AH 46.99 47.73
1 K° 46.56 39.47
32 ASAy 46.49 57.12
37 AH, 46.35 40.88
12 Eon 46.35 37.75
18 P, 45.99 49.27
20 F 4420 48.00
26 Otin 43.91 46.92
25 O 43.63 46.14
17 P, 43.20 45.33
40 AG, 4291 48.68
42 ~TAS, 42.26 40.29

numerical values in the output, which can be compared with
experimental stability data.

CART constructs a binary decision tree based on training
dataset, starting at the tree root. The dataset will be progressively
split into smaller subsets which satisfy a given condition. The
splitting procedure is made in accordance with squared residuals
minimization criterion which implies that expected sum
variances for two resulting nodes should be minimized:

argmin
xi<xRi=1,....M

[P/ Var(Y;) + P, Var(Y,)] (2)

where P, P, are fractions of samples in the left and right nodes;
Var(Y;), Var(Y,) are variances of response vectors for corre-
sponding left and right child nodes; x; <xX is the optimal split-
ting condition which satisfies the criterion (Eq. (1)) with x_f the
best splitting value of variable x; from M variables in learning
samples. The splitting procedure goes on until: (1) only one
observation or more than two observations with the identical
values exist in each of the child nodes, or (2) the number of levels
exceeds the limit set by system. Then the procedure of building
the maximal tree is terminated.

CART is a nonparametric type of regression fitting approach,
which is suitable for unknown distributions of data. Another
advantage is that CART deals effectively with large datasets and
the issues of higher dimensionality. We have applied CART to
predict the stability of protein mutants and analyzed the results
obtained for different classifications based on secondary
structure and solvent accessibility.

Notes to Table:

K°, compressibility; F,, thermodynamic transfer hydrophobicity; H,,, surround-
ing hydrophobicity; P, polarity; pHi, isoelectric point; pK’, equilibrium constant
with reference to the ionization property of COOH group; M,,, molecular weight;
By, bulkiness; Ry, chromatographic index; u, refractive index; H,,., normalized
consensus hydrophobicity; Egy, short- and medium-range nonbonded energy; £,
long-range nonbonded energy; E, total nonbonded energy (Esm+ E)); Py, Pp,
P, and Pc are, respectively, a-helical, 3-structure, turn, and coil tendencies; C,,
helical contact area; F, mean r.m.s. fluctuational displacement; B,, buriedness;
R,, solvent-accessible reduction ratio; N, average number of surrounding
residues; o, o, and oy, are, respectively, power to be at the N-terminal, C-
terminal, and middle of a-helix; V°, partial specific volume; N,, and N, are,
respectively, average medium-and long-range contacts; Hgn,, combined
surrounding hydrophobicity (globular and membrane); ASAp, ASAy, and
AASA are, respectively, solvent accessible surface area for denatured, native,
and unfolding; A Gy, Gy,p, and Gy are, respectively, Gibbs free energy change of
hydration for unfolding, denatured, and native protein; A H,, unfolding enthalpy
change of hydration; —TAS;, unfolding entropy change of hydration; AC,
unfolding hydration heat capacity change; AG., AH. and —TAS, are,
respectively, unfolding Gibbs free energy, unfolding enthalpy, and unfolding
entropy changes of chain; AG, AH, and — TAS are respectively, unfolding Gibbs
free energy change, unfolding enthalpy change, and unfolding entropy change; V;
volume (number of nonhydrogen side-chain atoms); s, shape (position of branch
point in a side chain); £, flexibility (number of side-chain dihedral angles).

K® in m*/mol/Pa (x10™'%); H,, Hy, Hoe, Hymy AGhy Giup, Giny AHy, —TAS},
AG,, AH,, —TAS., AG, AH, and —TAS in kcal/mol; P in Debye; pHi and pK’
in pH units; Eg,,, E;, and E,, in kcal/mol/atom; B, C,, ASAp, ASAy, and
AASA in A% Fin A; 7° in m*/mol (% 10~ %); ACyy, in cal/mol/K; and the rest are
dimensionless quantities.
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Table 2
Prediction results based on the classification with ASA and secondary structure by self-consistency test
ASA Helix Strand Turn Coil
ANEC umber - Accuracy MAE  number r Accuracy MAE ~ number r Accuracy MAE  number r Accuracy MAE
of data (%) of data (%) of data (%) of data (%)
AAG 0-2 199 0.8932  90.95 0.6102 73 0.8779  87.67 0.4415 29 0.9601  100.00 0.2543 23 0.9247  91.30 0.6243
2-20 137 0.9476  87.59 04112 63 0.6942  90.48 1.2419 23 09767  95.65 0.2030 34 0.9830  100.00 0.1197
20-50 149 0.8031 8591 0.6658 102 0.9569 95.10 0.4267 22 0.8454  81.82 0.3235 96 0.8684  89.58 0.3457
>50 176 0.8763  89.20 0.2584 40 0.9551  95.00 0.1847 75 0.9446  92.00 0.1626 155 09147  86.45 0.2612
Weighted 0.8797 88.65 0.4878 0.8764 92.09 0.5805 09379  91.19 0.2549 0.9086  89.28 0.2990
average
AAG™® 02 162 0.8142  90.12 09189 244 0.8408 86.89 1.0256 12 0.8517 100.00 0.7083 56 0.8148  92.86 0.9417
2-20 170 0.7621 85.88 0.9997 248 0.8393  92.74 0.8522 61 0.8766  85.25 0.5175 155 0.8080  92.90 0.7445
20-50 183 0.7152  89.07 0.6657 139 0.8830  90.65 0.4596 74 09362  91.89 0.3777 196 0.6997  84.69 0.8067
>50 201 0.7832  86.57 0.4094 56 0.9201 94.64 0.1772 102 0.8599  86.27 0.4334 138 0.7787  86.23 0.3817
Weighted 0.7678  87.85 0.7303 0.8553  90.39 0.7793 0.8863  91.92 0.5501 0.7623  88.25 0.6953
average

ASA: accessible surface area (solvent accessibility).
MAE: mean absolute error.

2.5. Accuracy of distinguishing stability of protein mutants

The accuracy of distinguishing the stability of mutants
(stabilizing/destabilizing) has been determined by using the
following expression:

Accuracy(%) = p*100.0/N (3)

where, p is the total number of correctly discriminated residues
(both the difference in property and stability, increase/decrease
upon mutations) and N is the total number of data used for
discrimination.

2.6. Single correlation

The correlation between the experimental and assigned
stability (AT,,) has been calculated using the familiar expression:

o NE XY (XY Y)
YN TS XN (DY)

where 7 is the correlation coefficient, NV, X, and Y are the number
of data, experimental and assigned stability, respectively.

(4)

2.7. Mean absolute error

The mean absolute error (MAE) is defined as the absolute
difference between predicted and experimental stability values:

1
MAE == [Xi—Y (%)

1

where, X; and Y; are the experimental and predicted stability
values, respectively and i varies from 1 to N, N being the total
number of mutants.

2.8. Self-consistency and n-fold cross-validation tests

The present method was validated by both self-consistency
and n-fold cross-validation tests. Self-consistency included all
the stability data for training the CART model and prediction
was made for all the mutants. n-fold cross-validation partitions
samples into n sub-samples chosen randomly with approxi-
mately equal size. For each sub-sample, the method fits a tree to
the remaining data and uses it to predict the stability of the sub-
sample. The procedure has been repeated for » times to obtain
the accuracy, correlation and MAE.

Table 3
Prediction results based on the classification of ASA and secondary structure by 5-fold cross-validation test
ASA  Helix Strand Turn Coil
TANEE Number - Accuracy MAE  Number r Accuracy MAE  Number r Accuracy MAE  Number r Accuracy MAE
of data (%) of data (%) of data (%) of data (%)
AAG 0-2 199 0.7825 87.18 1.0086 73 0.4450 90.00 1.3213 29 0.8707  100.00 0.6538 23 0.9360 85.00 1.5218
2-20 137 0.8488 80.00 0.8395 63 0.3872 83.33 2.5068 23 0.6173  90.00 1.6597 34 0.5672  93.33 1.2550
20-50 149 0.4921 72.41 1.4411 102 0.7409  79.00 1.6189 22 02022 75.00 0.9461 96 0.6549 90.53 0.7928
>50 176 0.4235 78.29 0.6598 40 0.7060 85.00 0.7956 75 0.3998  68.00 0.8759 155 0.5964 74.19 0.7192
Weighted average 0.6352  80.00 0.9782 0.5780 83.73 1.6235 0.4958  83.96 1.0210 0.6368 82.20 0.8612
AAG™C -2 162 0.4488 83.75 1.8572 244 0.6744 79.58 1.6809 12 0.8182 100.00 1.7375 56 0.5149 87.27 2.0714
2-20 170 0.4694 74.12 1.8281 248 0.6145 88.57 1.5737 61 02117 7333 1.4435 155 0.5463 89.68 1.2825
20-50 183 0.3147 77.78 1.2528 139 04513 82.96 1.0989 74 0.4156  80.00 1.3255 196 0.1956 78.97 1.4037
>50 201 0.4052  75.00 0.7970 56 0.6780 85.45 0.5624 102 0.3248  70.00 0.9658 138 0.1402  71.11 0.9071
Weighted average 0.4072 77.48 1.3982 0.6079 83.99 1.4333 0.3479  83.88 1.4851 0.3141 80.88 1.3121

ASA: accessible surface area (solvent accessibility).
MAE: mean absolute error.
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3. Results and discussion

3.1. Relationship between amino acid properties and protein
mutant stability

We have computed the accuracy of predictions for the
stability of protein mutants using the difference in amino acid
properties upon mutation and the stability change due to amino
acid substitution. The results obtained for the two sets of data
(AAG and AAG ™) are shown in Table 1. We found that the
properties shape (s) and flexibility (/) predicted the stability of
protein mutants at an accuracy of more than 70% for AAG
whereas helical contact area (C,), volume (v), shape (s) and
flexibility (/) predicted the stability of protein mutants at high
accuracy for AAG ™. Interestingly, s predicted the stability of
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Fig. 1. a: Relationship between experimental and predicted AAG (self-
consistency test) in a set of 1396 mutants (»=0.90). b: Relationship between
experimental and predicted AAG (5-fold cross-validation method) in a set of
1396 mutants (#=0.59).

Table 4
Average accuracy, correlation and MAE of predicting protein mutant stability
with self-consistency, 4-fold and 5-fold cross-validation methods

AAG AAG™®

r Accuracy (%) MAE r Accuracy (%) MAE
4-fold 0.5884 80.59 1.1010 0.4159 80.22 1.3816
5-fold 0.6093 81.08 1.0794 0.4401 80.10 1.3684

MAE: mean absolute error.

protein mutants with the highest accuracy of more than 72% in
these two sets of data. This result indicates that shape (position of
branch point in a side chain) is one of the major determinants to
protein mutant stability, which is consistent with other studies
that shape plays an important role to the stability of thermophilic
proteins [35,36] as well as for explaining the stability of protein
mutants [37].

3.2. Prediction of protein stability upon amino acid substitutions

The information about the difference of amino acid
properties upon mutation have been used to predict the stability
of protein mutants through CART. We have used CART for
predicting the stability of protein mutants based on their
secondary structure and solvent accessibility and the method
has been optimized with 4-fold, 5-fold and 10-fold cross-
validation procedures. The results obtained with self-consisten-
cy test are shown in Table 2. From this table, we observed that
the data has been trained with the weighted average accuracy in
the range of 88—92% for the two measures of stability. The
weighted average correlation lies between 0.76 and 0.94. The
weighted average mean absolute error between the experimental
and computed free energy change is 0.25-0.78 kcal/mol, which
shows the average deviation of about 40%.

The results obtained with 5-fold cross-validation test are
presented in Table 3. We found that for the data AAG, the
weighted accuracy for predicting the stability of protein mutants
is 81%; the buried strand and turn mutants can be predicted with
90-100% accuracy whereas the exposed turn mutants are
predicted with the accuracy of 68%. We obtained similar trend
for AAG™°. This might be due to the fact that buried mutants
are dominated by hydrophobic interactions whereas other
interactions including hydrogen bonds, electrostatic and van
der Waals interactions along with hydrophobic interactions are
important for the stability of exposed mutations [8]. Further, the
high accuracy of buried mutations is attributed with the
constraints in the interior of the protein. The correlation in 16
sets of data lies in the range of 0.20—0.94 and the average
correlation is 0.61. The MAE between experimental and
predicted AAG is 1.08 kcal/mol. Further, we noticed that the
results obtained with AAG"™° data are moderately worse than
that obtained with AAG.

The comparison between experimental and predicted AAG
for a set of 1396 mutants is shown in Fig. 1(a and b) and we
observed a good relationship between them. The main cause of
the outliers might be due to the inclusion of same mutants
obtained with different experimental conditions, which are not
considered in the present work.
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Table 5
Prediction results for the classification based on secondary structure or ASA by self-consistency test
Group AAG AAG™©

Number of data r Accuracy (%) MAE Number of data r Accuracy (%) MAE

Helix 661 0.7939 81.09 0.7849 716 0.6685 84.22 1.0139
Strand 278 0.7967 89.57 1.0459 687 0.7607 86.32 1.0339
Turn 149 0.9101 83.89 0.4275 249 0.8308 83.94 0.5897
Coil 308 0.8227 87.99 0.5436 545 0.6530 82.39 0.9156
Weighted average 0.8132 84.60 0.7455 0.7119 84.39 0.9477
ASA 0-2 324 0.8074 88.27 0.8600 480 0.8048 86.88 1.1778
ASA 2-20 257 0.8212 89.11 0.7342 635 0.7683 86.61 0.9240
ASA 20-50 369 0.7907 84.01 0.8158 592 0.7614 88.18 0.6682
ASA>50 446 0.7503 79.15 0.4541 497 0.8144 84.51 0.4294
Weighted average 0.7873 84.38 0.6955 0.7848 86.62 0.7990

ASA: accessible surface area (solvent accessibility).
MAE: mean absolute error.

3.3. Effect of the data obtained with excess heat capacity

The influence of excess heat capacity on protein stability
has been analyzed by carrying out the computations using the
data associated with AC,. We obtained a set of 510 mutants
with excess heat capacity and used the same dataset for
predicting AAG. We observed that the stability of protein
mutants in regular secondary structures (helix and strand) are
better predicted for the data obtained with excess heat capacity.
This result reveals that the mutations in helical and strand
segments are attributed with amino acid properties and our
method could reliably predict the stability. On the other hand
mutations in turn and coil regions showed moderately less
correlation compared with that obtained with the whole dataset
of 1396 mutants.

3.4. Influence of n-fold cross-validation data

The average accuracy, correlation and MAE obtained with 4-
fold and 5-fold cross-validation procedures are presented in
Table 4. We observed that the difference in accuracy between 4-
fold and 5-fold cross-validation methods is marginal. Similar
trend is also observed for correlation and MAE.

3.5. Relative importance of secondary structure and solvent
accessibility to predict protein mutant stability

We have analyzed the relative influence of secondary
structure and solvent accessibility for predicting the stability of
protein mutants and the results obtained with self-consistency
and 5-fold cross-validation methods are presented in Tables 5
and 6. We observed that the accuracy of correctly assigning
the mutants as stabilizing or destabilizing for the mutants in
helical, strand, turn and coil segments are, respectively 81%,
90%, 84 and 88% for AAG. The 5-fold cross-validation test
showed the accuracy of 71%, 80%, 68% and 79% for the
mutants in these regions. The correlation lies in the range of
0.44 to 0.64.

On the other hand, the classification based on solvent
accessibility showed the accuracy of 82%, 82%, 70% and 68%
for the buried, partially buried, partially exposed and exposed
mutations, respectively. The correlation lies in the range of 0.25
to 0.60. We observed a similar trend in AAG™°. However, the
average weighted correlation is weaker than that obtained with
AAG.

From these results, we noticed that the performance of the
prediction method with the classification of secondary structure

Table 6
Prediction results based on the classification of ASA or secondary structure by 5-fold cross-validation test
Group AAG AAGHO

Number of data r Accuracy (%) MAE Number of data r Accuracy (%) MAE
Helix 661 0.6322 71.21 1.0380 716 0.3494 77.34 1.3508
Strand 278 0.4795 79.64 1.6162 687 0.5481 79.71 1.3903
Turn 149 0.4397 67.59 1.0265 249 0.4564 74.29 0.9740
Coil 308 0.6358 78.69 0.8050 545 0.3230 76.33 1.2675
Weighted average 0.5820 74.15 1.1005 0.4171 77.48 1.2998
ASA 0-2 324 0.6036 81.88 1.1656 480 0.5538 81.25 1.6661
ASA 2-20 257 0.6040 81.57 1.1865 635 0.3951 77.01 1.5440
ASA 20-50 369 0.2501 70.41 1.4026 592 0.2207 78.14 1.1912
ASA >50 446 0.4209 67.87 0.7051 497 0.1722 67.47 0.8846
Weighted average 0.4519 74.32 1.0850 0.3326 76.09 1.3271

ASA: accessible surface area (solvent accessibility).

MAE: mean absolute error.
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is better than or similar to that with solvent accessibility. This
observation is similar to our previous findings on human and T4
lysozymes that secondary structure carries more or similar
information than solvent accessibility for assigning the stability
of protein mutants [22].

3.6. Number of data versus accuracy

We have examined the bias on the present results whether the
prediction accuracy depends on the population of data in each
class. This has been revealed from the relationship between the
number of data for each class and their average accuracy. Fig. 2
shows a relationship between number of data and accuracy (and
MAE) for the two measures of stability, AAG and AAG"°
obtained with self consistency and 5-fold cross-validation
method. We observed that the class with 137 AAG data (helix,
2-20% ASA; see Table 3) predicted the stability of protein
mutants (accuracy: 88% and 80%, correlation: 0.95 and 0.85
and MAE: 0.41 and 0.84 kcal/mol) better than that with 75 data
at exposed turn mutants (accuracy: 86 and 68%, correlation:
0.94 and 0.40 and MAE: 0.16 and 0.88 kcal/mol). Similar
results are also obtained with AAG™°. We observed a poor
correlation between number of data and accuracy or MAE and it
is in the range of —0.4 to 0.1. These results showed that the
accuracies obtained in this work are not biased with the number
of data in each class.

3.7. Comparison with other methods

We have compared the predictive ability of our method with
other methods in the literature. Although direct comparison is
not appropriate due to the difference of datasets used in for
training and test as well as the information used to develop the
model it would provide the information about performance of
different methods. Gilis and Rooman [18,19] derived distance
and torsion potentials using 10 proteins and reported the
correlation of 0.80 and 0.67 for 121 buried and 106 surface
mutations between the predicted and experimental AAG.
Khatun et al. [13] developed contact potentials and showed a
correlation of 0.66 and 0.46, respectively for training and
validation tests in a dataset of 1356 mutations, Zhou and Zhou
[16] used a finite ideal gas reference state for the statistical
potential and reported a correlation of 0.55 for 1023 mutants in
35 proteins. Here, the mutations that have decreased number of
atoms were only used to avoid strains associated small-to-large
mutations. Capriotti et al. [12] developed support vector
machine based method, which predicts protein stability with
80% accuracy. The correlation and MAE are respectively, 0.71
and 1.3 kcal/mol. However, multiple occurrences of same
mutations were observed in the dataset. The present method
could predict the stability of protein mutants with an average
accuracy of 90% using self consistency and 78% with 5-fold
cross validation test. The average correlation and MAE are 0.90
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and 0.49 kcal/mol, respectively for self consistency, and 0.59
and 1.01 kcal/mol for 5-fold cross validation test. This analysis
shows that the performance of our method is similar to or better
than other methods in the literature.

4. Conclusions

We have analyzed the stability of protein mutants using two
large databases and 48 various amino acid properties. We found
that the properties shape and flexibility are the major
determinants to protein stability. Further, we proposed a method
based on classification and regression tool for predicting the
stability of proteins upon amino acid substitutions. We observed
that the classification based on secondary structure and solvent
accessibility significantly improved the correlation and the
accuracy of assigning the stability of protein mutants. This
classification showed an average accuracy of 81-90% for
correctly assigning the protein mutants in two different datasets
of AAG and AAG™®. The correlation is significantly high and
ranges from 0.42—0.90. We suggest that the present method
could be used as an effective tool for predicting the stability of
protein mutants.
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