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Abstract: Protein–ligand docking can be formulated as a parameter optimization problem associated with an accu-

rate scoring function, which aims to identify the translation, orientation, and conformation of a docked ligand with the

lowest energy. The parameter optimization problem for highly flexible ligands with many rotatable bonds is more diffi-

cult than that for less flexible ligands using genetic algorithm (GA)-based approaches, due to the large numbers of pa-

rameters and high correlations among these parameters. This investigation presents a novel optimization algorithm

SODOCK based on particle swarm optimization (PSO) for solving flexible protein–ligand docking problems. To

improve efficiency and robustness of PSO, an efficient local search strategy is incorporated into SODOCK. The imple-

mentation of SODOCK adopts the environment and energy function of AutoDock 3.05. Computer simulation results

reveal that SODOCK is superior to the Lamarckian genetic algorithm (LGA) of AutoDock, in terms of convergence

performance, robustness, and obtained energy, especially for highly flexible ligands. The results also reveal that PSO

is more suitable than the conventional GA in dealing with flexible docking problems with high correlations among pa-

rameters. This investigation also compared SODOCK with four state-of-the-art docking methods, namely GOLD 1.2,

DOCK 4.0, FlexX 1.8, and LGA of AutoDock 3.05. SODOCK obtained the smallest RMSD in 19 of 37 cases. The av-

erage 2.29 Å of the 37 RMSD values of SODOCK was better than those of other docking programs, which were all

above 3.0 Å.
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Introduction

Automated protein–ligand docking is an effective tool for struc-

ture-based drug design. Protein–ligand docking identifies the

translation, orientation, and conformation of a ligand relative to

the active site of a target protein. Virtual screening by molecular

docking has become a conventional means of improving effi-

ciency in lead finding.1 Earlier docking methods that treat both

ligands and proteins as rigid objects are called rigid docking.2

Docking methods that consider a ligand as an articulated object,

and a protein as a rigid object are named flexible docking.3–5

Because most ligands are not rigid, flexible docking is the most

conventionally adopted method. Other methods include soft dock-
ing6–9 and partially flexible protein docking,4–6,9 which attempt

to reflect the side chain flexibility of proteins. Modeling protein

flexibility, along with scoring function development, is a rapidly

growing aspect of docking.

Protein–ligand docking can be formulated as a parameter opti-

mization problem associated with an accurate scoring function,

which aims to identify the docked conformation of a ligand with

the lowest energy. An efficient docking method comprises two

fundamental components, a good scoring function and an efficient

optimization algorithm. The scoring function is an approximation

of the free energy of binding interaction between protein and

ligands. The native structure of the protein–ligand complex deter-

mined from X-ray crystallography is thought to produce the low-

est docked energy. An accurate scoring function should reflect

this observation. But due to the approximation to the free energy,

the native structure may not always have the lowest energy using

Contract/grant sponsor: National Science Council of the Republic of

China, Taiwan; contract/grant number: NSC-94-2213-E-009-142.

Correspondence to: S.-Y. Ho; e-mail: syho@mail.nctu.edu.tw

q 2006 Wiley Periodicals, Inc.



the existing scoring functions. Wang et al. addressed the issue of

scoring functions for flexible protein–ligand docking.10

The optimization algorithm for solving the optimization prob-

lem of flexible docking aims to identify the docked conformation

with the lowest energy. The performance of the optimization

algorithms can be evaluated in terms of docked energy. Various

optimization algorithms, including simulated annealing (SA)11

and genetic algorithms (GAs),3,4 have been presented for solving

protein–ligand docking problems. The free energy landscapes of

scoring functions are usually complex, and exhibit a rugged fun-

nel shape.12 Hence, an efficient optimization algorithm that can

quickly obtain a potentially good approximation to the globally

optimal solution of the scoring function is desirable.

The desirable docking method attempts to identify the docked

conformation with the smallest root-mean-square deviation (RMSD)

between atomic positions in the docked ligand and the corre-

sponding position in crystal-structure ligand. A docked confor-

mation with a smaller RMSD is considered as a more accurate so-

lution to the docking problem. Since a newly created drug-like

ligand lacks a crystal structure, RMSD cannot be adopted as an

objective function in the optimization process. Therefore, optimi-

zation algorithms have to adopt the scoring function based on the

docked energy.

The parameter optimization problem for highly flexible

ligands with many rotatable bonds is more difficult than that for

less flexible ligands using GA-based approaches, due to the large

numbers of parameters and high correlations among these param-

eters. This investigation presents a novel optimization algorithm

SODOCK for obtaining the docked conformation of a ligand with

the best score for solving highly flexible docking problems. The

proposed algorithm is a hybrid of particle swarm optimization

(PSO)13 and a local search. PSO is a population-based search

algorithm inspired by social behaviors of organisms, such as the

flocking of birds. PSO is simpler and quicker to converge than

GAs. Recent studies have revealed that PSO is a robust and effi-

cient optimization algorithm for solving continuous nonlinear op-

timization problems.14,15 To improve PSO, an efficient variant of

the Solis and Wets local search technique16 is incorporated into

SODOCK such that both techniques cooperate fully with each

other. Simulation results reveal that SODOCK has a better con-

vergence and a lower docked energy than PSO alone.

The implementation of SODOCK adopts the environment and

energy function of AutoDock 3.05.4 Computer simulation results

reveal that SODOCK is superior to the Lamarckian genetic algo-

rithm (LGA) of AutoDock, in terms of convergence performance,

robustness, and obtained energy, especially for highly flexible

ligands. This investigation also compared SODOCK with four

state-of-the-art docking methods which can be obtained from

public packages, including GOLD 1.2,3 DOCK 4.0,2 FlexX 1.8,5

and LGA of AutoDock 3.05.4 Simulation results reveal that SOD-

OCK can yield more accurate results than the other methods in

terms of RMSD.

Problem Definition

The investigated flexible protein–ligand docking problem was

formulated as a parameter optimization problem using the same

scoring function as AutoDock 3.05.4 The proposed optimization

algorithm attempts to identify the translation, orientation, and

conformation of a ligand with the best score, i.e., the lowest

energy.

Representation

In AutoDock, the translation, orientation, and conformation of a

docked ligand are denoted by the following parameters.4

1. Three parameters tx, ty, and tz denote the translation of the

ligand relative to the center of a specified 3D grid box. The

box should be sufficiently large to enclose the binding site of

protein.

2. The orientation of a ligand is represented by a quaternion,

which is defined by four parameters, nx, ny, nz, and �. The
three parameters nx, ny, nz [ [0,1] denote a vector specifying

an axis that the ligand rotates along with, and � [ [��,�]
denotes the rotation angle about this axis. Although the orien-

tation of a ligand can be represented by three Euler angles,

using the quaternion can prevent the gimbal lock problem

experienced with Euler angles.4

3. Angles tori [ [��,�] is associated with rotatable bond i of the
ligand, i ¼ 1, 2, . . . ,T where T denotes the number of rotatable

bonds.

Therefore, a docked conformation needs to optimize N ¼ 7 þ T
parameters. The N parameters are encoded into individuals, and

optimized by GA and SODOCK according to the energy function

described in the next section.

Scoring Function

AutoDock 3.05 adopts an empirical energy function as a scoring

function to evaluate a docked conformation. The total docked

energy of a candidate solution X is expressed as the sum of inter-

molecular interactions of the protein–ligand complex and the in-

ternal energy of the ligand:

minEtotalðXÞ ¼ Evdw þ EH – bond þ Eelec þ Einternal þ Edesolvation:

(1)

The first three terms are intermolecular energies, which are

van der Waals force, hydrogen bonding, and electrostatic poten-

tial. The term Einternal denotes the internal energy of the ligand,

which also comprises the first three forces. The last term models

the desolvation upon binding and the hydrophobic effect. Morris

et al. described the energy function in further detail.4

Methods

Particle Swarm Optimization

PSO is a general-purpose search algorithm that exploits a popula-

tion of individuals to probe promising regions in the search space.

In this context, the population is called a swarm, and the individu-

als are called particles. Each particle moves with an adaptable ve-

locity within the search space, and retains in its memory the best
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position that it has encountered. The standard version of PSO is

briefly described later.17–19

Assume an N-dimensional search space, S ( RN, and a swarm

comprising Np particles. The position X ¼ [x1, . . . , xN] ¼ [tx, ty,
tz, nx, ny, nz, �, tor1 , . . . , torT] of a particle in the search space S
denotes a candidate solution to the investigated docking problem,

where T is the number of rotatable bonds in the ligand. The cur-

rent position of particle i is an N-dimensional vector Xi ¼ [xi1,
xi2 , . . . , xiN]

t [ S. The velocity of this particle is also an N-dimen-

sional vector Vi ¼ [vi1, vi2 , . . . , viN]
t [ S, which indicates the dis-

placement for updating the position of each particle in the search

space. The best position encountered by particle i is denoted as

Pi ¼ [pi1, pi2 , . . . , piN]
t [ S. Assume that g is the index of the par-

ticle that attained the best position found by all particles in the

neighborhood of particle i. The swarm is manipulated by the fol-

lowing equations:17–19

vidðtþ 1Þ ¼ wvidðtÞ þ c1randðÞðpidðtÞ � xidðtÞÞ
þ c2randðÞðpgdðtÞ � xidðtÞÞ; ð2Þ

xidðtþ 1Þ ¼ xidðtÞ þ vidðtþ 1Þ (3)

where i ¼ 1, 2, . . . ,Np is the particle’s index; d ¼ 1, 2, . . . ,N
denotes the dimension index; and t ¼ 1, 2, . . . , denotes the itera-

tion number. The variable w is a parameter called inertia weight,

which balances global and local searches in the PSO. The two

positive constants c1 and c2 are cognitive and social parameters,

respectively. Proper fine-tuning of c1 and c2 may improve the per-

formance of the PSO. An extended study of the cognitive and social

parameters was proposed by Kennedy,20 and c1 ¼ c2 ¼ 2 were rec-

ommended as default values. The function rand() generates a ran-

dom number uniformly distributed within the interval [0,1].

Overlapped neighborhoods are classified into two types,

named gbest and lbest.21 In a gbest neighborhood, each particle’s

neighborhood includes all the particles in the swarm. In an lbest
neighborhood, each particle is affected by the best positions of its

K immediate neighbors in the ring of topological population. For

instance, the lbest neighborhood of Particlei with K ¼ 2 are Parti-

clei�1, Particlei, and Particleiþ1. PSO with the gbest neighborhood
tends to converge more rapidly than PSO with the lbest neighbor-
hood, but also converges more easily to a local minimum.22

Clerc and Kennedy23 recently indicated that a constriction fac-
tor � may help ensure convergence. The new velocity of a parti-

cle is derived by the following equation:

vidðtþ 1Þ ¼ �½vidðtÞ þ d1randðÞðpidðtÞ � xidðtÞÞ
þ d2randðÞðpgdðtÞ � xidðtÞÞ�; ð4Þ

� ¼ 2

j2� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

p
j ; (5)

where � ¼ d1 þ d2 > 4. A setting of d1 ¼ d2 ¼ 2.05 is typically

used, making the above equation equivalent to eq. (2) with w ¼
0.72984 and c1 ¼ c2 ¼ 1.4962.

To prevent the velocity of a particle from increasing uncon-

trollably, a maximum velocity Vmax is defined. The velocity is

prevented from exceeding Vmax on each dimension d for particle i
as follows:

If vid > Vmax then vid ¼ Vmax

else if vid5�Vmax then id ¼ �Vmax:

The swarm and velocities are randomly initialized in the search

space, although more sophisticated initialization approaches can

improve the overall performance of PSO.24 The initial velocities are

often distributed randomly over [�Vmax,Vmax]. Eberhart and Shi25

have recommended restricting the maximal velocity Vmax to the

upper value of the dynamic search range.

Local Search

If the position of a particle is not a local optimum, a local search

operation has a good chance to find a better solution in its neigh-

borhood. Local search is a commonly adopted technique to

improve the search ability of GA. AutoDock adopts a LGA that is

a hybrid of GA and a variant of Solis and Wets local search,16

and is illustrated in Figure 1. One major advantage of this local

search is that it does not need gradient information about the local

energy landscape to facilitate the search operation.4 The perform-

ance of the LGA has been shown to be superior to that of both

GA and SA.4

PSO using an additional local search strategy can also improve

the search performance in a limited amount of computation time.

Moreover, recent studies26–28 also indicate that maintaining diver-

sity of particles can improve the performance of PSO. An effec-

tive approach is to incorporate a mutation operator into PSO.27,29

The local search modifies the position parameters of a particle

without referring to other particles, and also maintains the diver-

sity among particles. Hence, the behavior and effect of the local

search in SODOCK are similar to those of a mutation operator.

The simulation result reveals that the average Euclidean distance

among particles in the search space using SODOCK is greater

than that using PSO alone. Therefore, the local search of SOD-

OCK is beneficial to maintain diversity of particles and prevent

premature convergence.

Hybrid Search of SODOCK

SODOCK is a hybrid of the PSO and Solis and Wets local search,

and is designed for flexible docking. The parameters of the docked

conformations are encoded into particles and optimized by SOD-

OCK. The performance of both gbest and lbest type neighborhoods
in PSO was evaluated with different handling approaches of inertia

weight. The lbest type neighborhood with linear decreasing of

inertia weight18,19 from wmax ¼ 0.9 to wmin ¼ 0.4 was found to

perform best when it cooperated with the local search. The con-

striction factor was not adopted, because it resulted in premature

convergence in the test cases. Figure 2 illustrates the SODOCK

algorithm. The population is evolved over iterations until a speci-

fied maximal number nevalmax of function evaluations is attained.

An iteration of SODOCK comprises four steps: updating veloc-

ities, moving particles, applying local search, and updating previ-

ous best positions of particles. The local search is only applied to
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the best (lowest energy) particle. A prespecified maximal number

(e.g., itermax ¼ 50) of steps for each local search is adopted to bal-

ance the global and local searches during the search process. The

global best position among all Pi is the final docking result of

SODOCK.

The hybrid search is efficient for the optimization problem of

flexible docking, because the energy function landscape usually

contains many local minima. The performance of the global or

local search alone is not satisfactory for solving highly flexible

docking problems. PSO has a good global search ability to obtain

a potentially good approximation to a global minimum. However,

the final positions of particles derived from eq. (2) are usually not

local minima. Using the local search operation alone, each indi-

vidual rapidly converges to a local minimum instead of the global

or nearly global minimum. But PSO and the local search can effi-

ciently compensate each other in SODOCK. The local search pro-

vides a highly efficient means of finding a local minimum near

the current position of a particle, which can also maintain diver-

sity of particles and prevent premature convergence. Simulation

results reveal that the hybrid search of SODOCK is more efficient

than PSO alone for solving highly flexible docking problems.

Implementation

AutoDock4 is free for academic use, and has fully available source

code. AutoDock is a good framework for developing novel optimi-

zation algorithms. SODOCK is implemented using Cþþ, and adopts

the environment and energy function of AutoDock 3.05. The source

code of SODOCK and some supplementary information are avail-

able at our website http://iclab.life.nctu.edu.tw/sodock/. All docking

simulations were performed on a PC with a Pentium 4 2.8-GHz

processor running Linux operating system. Table1 summarizes

the SODOCK parameter settings used in the computer simulation.

Figure 2. The SODOCK algorithm.

Table 1. Parameter Setting of SODOCK.

Number of particles, Np 50

Number of immediate neighbors, K 4

Maximal number of function

evaluation, nevalmax

250,000

Inertia weight, w 0.9*0.4 (linear decreasing)

Cognitive weight, c1 2.0

Social weight, c2 2.0

Maximal velocity, Vmax 2.0 Å (for tx, ty, and tz)
1.0 (for nx, ny, and nz)

508 (for � and tori)

Maximal steps of local search 50

Figure 1. Procedure of the Solis and Wets local search.
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The other parameters, such as the size and spacing of grid maps, are

the same as default values of AutoDock.

Analysis

The optimization problem of highly flexible docking is more dif-

ficult than that of less flexible docking due to the strong correla-

tions among torsion parameters. The major operators in GA and

PSO for dealing with torsion parameters were analyzed to demon-

strate the superiority of PSO over GA in obtaining solutions with

low-docked energies for highly flexible docking problems.

Interactions Among Encoded Parameters

The core of a flexible ligand is a rigid root, which is typically a

group of atoms. The other atoms are connected to the rigid root

by rotatable bonds (torsions). A flexible docking problem has

seven parameters for the rigid root, and T parameters for torsion

angles to be optimized. Because of the interdependence among

root and torsion parameters, simultaneous adjustments of these

parameters can efficiently obtain a solution with low energy. Tor-

sions of a flexible ligand may be nested, as illustrated in the

example of Figure 3. Even a small refinement of a torsion near

the root results in large adjustments on its following parts. This

scenario reflects the strong interactions among the encoded tor-

sion parameters, thus making the optimization problem intracta-

ble. Therefore, the ability of search operators in dealing with

interactions primarily determines the docking performance of the

search methods.

Crossover of GA

Interactions among parameters should be handled appropriately

when encoding chromosomes of GA and designing GA operators

to solve the optimization problem of flexible docking. High-quality

partial solutions are known as building blocks.30 General, fixed,

problem-independent crossover operators often disrupt building

blocks, possibly leading to premature convergence.31 The problem

of building block disruption is also called the linkage problem. A

serious linkage problem degrades the search performance of a GA

when using parameters with strong interactions.32,33 Several GAs,

including Messy GA,34 Linkage Learning GA,35 and Estimation of

Distribution Algorithm,36 focus on the linkage problem. However,

these algorithms require a high computational cost and have not

Figure 3. An example for highly flexible ligand with nested torsions.

(a) Structure of ligand myr and (b) corresponding interactions among

parameters.

Table 2. The Lowest Energy Results of SODOCK and LGAs.

PDB Ligand Torsions

SODOCK LGA-default LGA-large LGA-arithmetic

Energy RMSD Energy RMSD Energy RMSD Energy RMSD

1hiv noa 23 �23.89 1.66 �10.89 11.30 �10.86 12.31 �10.93 9.12

1aaq psi 20 �18.84 0.97 �9.51 6.29 �13.33 3.29 �6.98 3.00

1epo mor 17 �16.45 1.27 �15.50 2.04 �14.03 1.78 �9.72 10.05

4phv vac 15 �20.75 0.53 �15.54 6.39 �16.03 3.77 �14.39 4.28

1hpv 478 14 �15.72 1.30 �13.31 4.59 �13.70 3.86 �12.98 8.68

1htf g26 13 �15.77 3.87 �15.43 2.27 �14.91 2.60 �14.72 2.59

1tmn clt 13 �15.55 2.16 �14.76 3.05 �15.24 2.45 �12.85 1.55

1cdg mal 12 �8.55 5.99 �8.28 4.54 �8.97 6.50 �8.49 6.12

1qbt 146 12 �24.33 1.36 �23.55 1.34 �23.49 1.45 �20.60 1.67

1dwd mid 10 �15.41 6.64 �14.54 1.82 �14.48 6.46 �14.53 1.62

1ets nas 10 �17.83 2.15 �16.11 0.87 �16.03 2.23 �13.83 2.05

4hmg sia 11 �8.57 0.66 �8.15 0.79 �8.06 0.78 �7.19 0.58

1hvr xk2 10 �21.43 0.64 �21.31 0.59 �21.26 0.51 �21.11 0.93

1stp btn 5 �10.91 0.47 �10.73 0.52 �10.75 0.40 �10.50 0.39

2mcp pc 4 �6.51 1.95 �6.38 2.04 �6.47 1.79 �5.80 1.84

2cpp cam 0 �7.40 3.08 �7.39 3.07 �7.39 3.07 �7.39 3.09

3ptb ben 0 �6.95 0.34 �6.94 0.34 �6.94 0.34 �6.94 0.34

Average �14.99 2.06 �12.84 3.05 �13.06 3.15 �11.70 3.41

Wins 16 6 0 6 1 4 0 5
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been applied to real-world applications with strong interactions,

such as flexible docking.

In LGA of AutoDock, the N parameters of an individual are

encoded as a string of real values. Two-point crossover is adopted

where cut points are only located on the boundary between pa-

rameters. The number of candidate solutions that can be explored

per crossover operation is only 2CN�1
2 . The individual parameters

can be modified by only mutation and local search operators.

Moreover, building blocks are easily disrupted by the crossover,

causing the fitness values of newly generated individuals to thrash

severely, as discussed later. Thomsen proposed an arithmetic

crossover operation to replace the two-point crossover of LGA

for flexible docking.37 The arithmetic crossover randomly gener-

ates two offspring from the hyperbox formed by their parents.

That is, no parameter of an offspring is directly inherited from its

parents. This property may be undesirable for highly flexible

docking problems, because the arithmetic crossover cannot easily

keep building blocks growing. These analyses are verified by the

simulation results which are described later.

Move Mechanism of PSO

Unlike GA, PSO has no selection operator.17 Hence, all particles

survive during the entire evolution. They can pass through the

local minima to the promising region if sufficient iterations are

given. In contrast to GA, the parameter order in encoding par-

ticles does not affect the performance of PSO, which adopts a

move mechanism instead of crossover as the search operator. The

new position Xi(t þ 1) of particle i generated by the move mecha-

nism is a linear combination of current position Xi(t), current ve-
locity Vi(t), its best previous position Pi(t), and the best previous

position Pg(t) in its neighborhood, where t denotes the iteration

number. The number of candidate solutions per move operation is

much larger than that of the per two-point crossover operation.

Another merit of PSO is that each particle maintains its best pre-

vious position Pi. Thus, the move mechanism always guides par-

ticles to positions better than their current positions. These prop-

erties improve the search ability of PSO in dealing with strong

interactions among parameters.

Results

The computer simulation comprised two parts. In Part 1, three ver-

sions of LGA and four versions of PSO were evaluated using 17

test cases, which consisted of six complexes used by Thomsen37

and 11 complexes with highly flexible ligands.38,39 In Part 2, the

docking accuracy of SODOCK and four state-of-the-art docking

methods were compared using 37 complexes. Molecule files and

seed values for random number generator used in the simulation

are available on our website http://iclab.life.nctu.edu.tw/sodock/.

Data Preparation

Both ligand and protein input files were saved using AutoDock’s

PDBQ format. The ligand input files were obtained using the fol-

lowing procedure: (1) extract the coordinates of ligand atoms

from the PDB file; (2) add hydrogen to all atoms, assign partial

charges, and merge nonpolar hydrogen atoms; and (3) define rigid

root and torsions of the ligand. The preparation of proteins is as

follows: (1) remove water molecules, ligands, and metal ions not

belonging to the binding site; (2) repair residues that have missing

atoms; (3) add hydrogen to all atoms, assign partial charges, and

merge nonpolar hydrogen atoms; and (4) assign solvent parame-

ters. This molecule file preparation stage was conducted using

AutoDock Tools.

Part 1: Evaluation of Search Ability

Since optimization algorithms are guided only by energy func-

tion, their search ability can be evaluated in terms of docked

energy using the same number of function evaluations. Four ver-

sions of PSO were implemented by combining two neighbor-

hoods, gbest and lbest, and two approaches for handling inertia

weight, namely linear decreasing and constriction factor. For the
lbest neighborhood, the number of immediate neighbors was set

to K ¼ 4. In the linear decreasing approach, the inertia weight w
was decreased linearly from 0.9 to 0.4 during the optimization

Figure 4. The docked ligand conformations with the lowest energies

for 1hiv using 250,000 function evaluations. The native conforma-

tions and the predicted conformations are represented by white sticks

and black sticks, respectively. (a) LGA-default (RMSD equals to

11.30 Å) and (b) SODOCK (RMSD equals to 1.66 Å).
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process, and c1 ¼ c2 ¼ 2.0. For the constriction factor approach,

the inertia weight w ¼ 0.72984 and c1 ¼ c2 ¼ 1.4962. The effec-

tiveness of local search in these versions of PSO was also eval-

uated. SODOCK refers the combination of the lbest neighborhood
and the linear decreasing approach, in which local search per-

forms best than in other versions. The supplementary simulation

results of various versions of PSO are available on our website

http://iclab.life.nctu.edu.tw/sodock/.

The evaluations of the search abilities of SODOCK and LGA

obtained in AutoDock are presented here. Table 1 shows the

default parameter settings of SODOCK, where the maximal num-

ber of function evaluations nevalmax is 250,000. The arithmetic

crossover operator proposed by Thomsen,37 which randomly gen-

erates two offspring in the hyperbox formed by two parents, was

also implemented as an extension to AutoDock in this study.

Three versions of LGA were evaluated: default mode (Npop ¼ 50

and nevalmax ¼ 250,000), large mode (Npop ¼ 200, nevalmax ¼
1,000,000), and arithmetic crossover mode (same as the default

mode except that arithmetic crossover is adopted). Each method

was run 30 times independently for each protein–ligand complex.

Table2 shows the best results in terms of docked energy for the

four compared methods. The RMSD of heavy atoms between

atomic positions in docked ligand and the corresponding positions

in the crystal-structure ligand is also given. Simulation results

show that SODOCK performs best among all methods in terms of

both docked energies and RMSD. SODOCK obtained the lowest

energies for 16 out of 17 complexes. For 1hiv and 1aaq with

highly flexible ligands, the energies obtained by SODOCK are

much lower than those of LGAs. The RMSD values of 1hiv and

1aaq obtained by SODOCK were also much smaller than those of

the three LGAs. For the complexes with less flexible ligands, the

differences of both docked energy and RMSD between the four

methods are not significant. This finding reveals the superiority of

SODOCK for highly flexible docking. According to the schema

theorem, KrishnaKumar et al.40 showed that GAs need an enor-

mously large population size and a large number of function eval-

uations to solve a Large Parameter Optimization Problem. How-

ever, the average energy obtained by LGA of the large mode

(LGA-large) is just slightly lower than that obtained by LGA of

the default mode (LGA-default). This scenario reflects that inter-

actions among encoded parameters, instead of a large search

space, make the optimization problem intractable. The LGA with

the arithmetic crossover (LGA-arithmetic) had the worst average

performance, possibly because LGA-arithmetic is most effective

for ligands with a small number of torsions when it cooperates

with a modified mutation operator and a specialized parameter

setting.37 Therefore, only the LGA-default and LGA-large were

further evaluated. The docked conformations with the lowest

energies were also verified. Figure 4 shows that the docked ligand

conformation (RMSD equal to 1.66 Å) for 1hiv obtained by SOD-

Figure 5. Comparison of average convergence performance: (a) 1hvr

and (b) 1hiv.

Figure 6. Average Euclidean distance among Np particles using 1hiv

as an example.
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OCK is much closer to its native conformation. Notably, the

result with RMSD equal to 11.30 Å obtained by LGA-default is

highly unfavorable.

Table3 summarizes the average results of SODOCK and the

LGAs. A docked ligand conformation with RMSD less than 2.0 Å

was defined as a successful docking. The docked energies obtained

by SODOCK were better than those obtained by LGAs for all

complexes except 1tmn. SODOCK is also more robust than LGAs,

which have smaller average variances of energies. The simulation

results reveal that the success rates of SODOCK are much better

than those of LGAs, especially for highly flexible ligands. The av-

erage success rate of SODOCK (0.52) is better than those of LGA-

default (0.35) and LGA-large (0.39). For LGA-large, increasing

the number of function evaluations did not produce a significant

improvement. Moreover, the number of function evaluations

nevalhit taken by SODOCK to reach the final energy value of

LGA-default was also recorded, showing that SODOCK had better

convergence performance using ratio ¼ nevalhit/nevalmax ¼ 0.18 to

obtain the same docked energy of LGA-default. The execution

time of SODOCK was slightly greater than that of LGA-default

using the same number 250,000 of function evaluations. The aver-

age execution time of SODOCK per independent run was 14.36 s,

while that of LGA-default was 11.52 s. The execution time of

LGA-large using 1,000,000 function evaluations was *4 times

that of LGA-default, and is omitted in Table 3.

To further observe the effectiveness of the used local search,

this study compared the convergence performance of SODOCK,

PSO only, LGA-default, and GA only (SGA). Two complexes

were chosen from Table 2, where 1hiv has the ligand noa with 23

torsions and 1hvr has the ligand xk2 with 10 torsions. Figure 5

shows the average convergence performance for the two docking

problems. SODOCK had the lowest docked energies for both 1hiv

and 1hvr. SODOCK also had the best convergence performance

among all methods. Notably, even PSO without local search per-

formed better than LGA and SGA. Additionally, SODOCK and

LGA performed better than PSO and SGA, respectively. Thus the

local search can improve the search ability of both GA-based and

PSO-based methods. For less flexible ligands such as that of 1hvr,

PSO alone has sufficient search ability to obtain accurate results

(Fig. 5a). However, for highly flexible ligands such as that of 1hiv,

the local search of SODOCK is essential to obtain good docked

energies and accurate conformations (Fig. 5b).

Figure 6 shows the average Euclidean distance among Np par-

ticles during the optimization process using 1hiv as an example,

where the distance is derived as follows:

Dist: ¼ 1

CNP

2

XNP�1

i¼1

XNP

j¼iþ1

kXi � Xjk: (6)

Without the local search, particles of PSO converged rapidly

after 10,000 energy evaluations, and thus did not make any fur-

ther improvement. By contrast, SODOCK using the local search

can maintain sufficient diversity among particles during entire

evolution, and gives the particles the opportunity to improve the

docked energies.

Figure 8. Average number of improvements in terms of docked

energy of the best individual in every 100 iterations/generations for

30 independent runs on 1hiv.

Figure 7. Docked energy of the best individual having the lowest

docked energy for 1hiv during the optimization process: (a) SGA, (b)

PSO. Final energies obtained by SGA and PSO are �10.52 and

�20.13 kcal/mol, respectively.
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The search operators of PSO and SGA were further analyzed.

Figure 7 shows the docked energy of the best individual, i.e., the

one with the lowest docked energy, during the optimization pro-

cess, taking 1hiv as an example. The energy of SGA was

recorded before applying an elitist strategy that directly inherits

the best individual of previous generation. The energy of the best

individual thrashed seriously in SGA, indicating that the cross-

over and mutation operators usually disrupt the best individual

and produce poor offspring. By contrast, the energy of the best

individual in PSO stabilized after a period of evolution. The abil-

ity of search operators to generate high-quality offspring was also

evaluated by counting the number of energy improvements on the

best individual every 100 generations (iterations). Figure 8 shows

the average number of improvements from 30 runs for 1hiv,

showing that PSO can more easily improve the energy of the best

individual than SGA. Above simulation results reveal that PSO is

stable in solving docking problems.

Part 2: Docking Accuracy

The 37 protein–ligand complexes obtained from Bursulaya

et al.41 were adopted to evaluate the docking accuracy of SOD-

OCK. Table4 shows the heavy-atom RMSDs of the best scored

(lowest-energy) results, where the values of four state-of-the-art

docking methods, namely GOLD 1.2,3 DOCK 4.0,2 FlexX 1.8,5

and AutoDock 3.05,4 were obtained from Bursulaya et al.41 Each

method conducted 30 independent runs with its default parameter

setting. Since each method adopted different scoring functions,

parameter setting, and computation costs, their docking abilities

could not be directly compared by the reported RMSD values in

Table 4. RMSD Values of the Results with the Best Scores of Each Method.

PDB Ligand Torsions SODOCK AutoDocka DOCKa FlexXa GOLDa

1apt iva 19 2.18 1.89 8.06 5.95 8.82

6cpa zaf 17 1.11 8.30 8.30 9.83 4.96

1apu iva 16 1.42 9.10 7.58 8.43 10.70

1icn ola 15 7.79 3.99 3.88 2.95 2.05

6tmn cbz 14 2.99 8.72 7.78 4.51 8.54

2ifb plm 14 1.91 3.09 1.43 8.94 2.61

1cnx eg2 12 7.15 10.90 7.35 6.83 6.32

1icm myr 12 5.26 1.80 3.99 2.94 2.30

1phg hem 12 0.81 3.52 5.57 4.87 4.20

5tln ina 10 9.18 5.34 1.39 6.33 1.60

1ets nas 10 2.15 5.06 3.93 2.11 2.39

1nsc sia 10 0.89 1.40 4.86 6.00 1.02

1phf hem 10 0.84 2.09 2.39 4.68 4.42

1etr mqi 9 1.14 4.61 6.66 7.26 5.99

1nnb dan 9 0.71 0.92 4.51 0.92 0.84

1nsd dan 9 0.47 1.20 4.51 1.56 0.96

1ett tos 8 2.57 8.12 1.33 6.24 1.30

1pph tos 8 0.92 5.14 3.91 3.27 4.23

3tmn val 7 4.10 4.51 7.09 5.30 3.96

3cpa gly 7 1.37 2.26 6.48 1.51 1.87

1rhl 2gp 6 0.86 0.96 0.71 1.15 1.08

1rls 3gp 6 0.68 0.98 1.75 4.33 1.16

1tpp apa 6 1.65 1.80 3.25 1.95 2.33

5abp gla 6 0.23 0.48 3.89 4.68 0.59

1cbx bzs 5 7.12 1.33 3.13 1.32 1.87

1tni pbn 5 3.92 2.61 5.26 2.73 4.93

1cil ets 4 2.80 5.81 2.78 3.52 6.04

1abf fca 4 0.31 0.48 3.25 0.76 0.50

1abe ara 4 0.25 0.16 1.87 0.55 0.18

1tnk pra 4 1.50 1.69 1.87 1.70 3.08

1okl mns 3 1.52 8.54 5.65 4.22 3.55

1gsp sgp 3 0.54 2.67 1.16 3.71 0.70

1tnj pea 3 2.12 1.21 1.56 1.73 1.90

1tng amc 2 2.32 0.62 0.86 1.08 1.89

1tnl tpa 2 0.46 0.41 2.08 3.74 1.61

3ptb ben 0 0.34 0.80 0.59 1.11 1.09

2cpp cam 0 3.08 3.40 2.48 0.44 3.49

Average 2.29 3.40 3.87 3.76 3.11

Wins 19 7 4 3 4

aValues are obtained from Bursulaya et al.41
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Table 4. However, all reported RMSD values of the well-known

methods could be used as a baseline for evaluating the perform-

ance of SODOCK. Table 4 shows SODOCK performed well,

obtaining the smallest RMSD values in 19 of 37 cases. The aver-

age RMSD 2.29 Å of SODOCK was better than those of other

docking programs, which were all above 3.0 Å. AutoDock

obtained the smallest RMSD values in 7 cases; GOLD in 4 cases;

DOCK in 4 cases; and FlexX in 3 cases. Apart from SODOCK, no

method is significantly better than any other in terms of RMSD.

Conclusions and Future Work

This investigation has presented a novel optimization algorithm

SODOCK for flexible protein–ligand docking. SODOCK is more

simple and efficient than GA-based methods. Simulation results

reveal that SODOCK is superior to the LGA of AutoDock for

solving flexible docking problems, in terms of convergence per-

formance, docked energy, robustness, and success rate. The dock-

ing accuracy of SODOCK was also evaluated using 37 com-

plexes, whose ligands had numbers of torsions ranging from 0 to

19. The results show that SODOCK can obtain more accurate

docked conformations than FlexX 1.8, DOCK 4.0, GOLD 1.2,

and LGA of AutoDock 3.05.

Our results indicate that the energy function of AutoDock can-

not reflect the affinity between ligand and protein for some test

cases, due to the approximation in the scoring function. Figure 9

illustrates the scatter plot of test case 1ets using 30 docked results

for each of SODOCK and LGA-default, where each point denotes

the result of an independent run. From Figure 9, although the

lowest energy of 30 runs obtained by SODOCK is lower than that

of LGA-default, the corresponding RMSD of the docked confor-

mation with the lowest energy of SODOCK is worse than that of

LGA-default. A more appropriate scoring function than that of

AutoDock would further improve the docking accuracy of SOD-

OCK in terms of RMSD. Integration of other scoring functions

such as X-Score42 with SODOCK is in progress. Moreover, the

coefficients of AutoDock’s energy function are also being refined

using efficient evolutionary algorithms such as intelligent evolu-

tionary algorithm.43
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