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Abstract

A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that
an injected sample plug is expanded due to a “bulk” dispersion mechanism along the length coordinate, and that after traveling over a distance or a
period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate
by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments
with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak
position, height and area (¢, h* and A}) from a recorder. An empirical temporal shift (¢*) can be further approximated by ®*=D*/?, which
becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order
polynomial function of the pumping rate Q, for which D*(Q) =8, +8;Q + 8,0 The optimal dispersion occurs at a pumping rate of Qo = +/80/3>.
This explains the interesting “Nike-swoosh” relationship between the peak height and pumping rate. The excellent coherence of theoretical and
experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection

analysis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Flow injection analysis (FIA) was first introduced by Ruz-
ick and Hansen in 1975 [1], and has been widely adopted as
an efficient analytical tool in many scientific fields. Although
the principle seems to be well understood, Kolev [2] has sug-
gested that the theoretical foundation for generating a flow
injection peak is still far from complete due to the complexity of
mechanisms involved (dispersion, convection and other kinetic
reasons). He concluded that, in general, the Uniform Dispersion
Model (UDM) [3,4] and Random Walk Model (RWM) [5-7] are
theoretically preferred. But, they require difficult mathematics
and computations, and thus have limited utilization in a practi-
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cal system. On the other hand, the Tanks-in-Series Model (TSM)
[8,9] and Axially Dispersed Plug Flow Model (ADPFM) [10]
have gained more popularity not only because of the lesser math-
ematics involved, but also due to the fact that it is not necessary
to know the exact flow pattern in a tubular system.

Apart from those models, several mathematical approaches
have also been proposed to construct a peak curve including the
Exponentially-Modified Gaussian functions (EMG) [11,12] and
the Polynomial-Modified Gaussian functions (PMG) [13-17].
Recently, a Temporally-Convoluted Gaussian equation (TCG)
[18] has been developed which is not only the simplest, but also
indicates that a very basic and long-ignored principle can be an
important key to solve the ambiguous skewed peak problems.
This equation involves only two basic principles: (1) that the
expansion of the sample zone is proportional to the square root
of distance or time travelled; and (2) that the concentration pro-
file is gradually turned into a Gaussian-like distribution along
the tubular channel. The difference between this approach and
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all previous models is that it includes a temporal convolution
process, in which all spatial parameters need to be convoluted
along a temporal coordinate so as to simulate the peak that is
shown on the recorder. Later, Pai and Chiao [19] have suggested
that a “shift”, denoted as @, should exist universally between
an apparent peak position t; and its actual arrival time f,
(@=1— t;‘) for any flow-type instrument with a single fixed
detector. When restoring an experimental peak, this @ should be
added to modify the peak position term of a Gaussian equation.
Also, the same @ becomes a parameter to describe the expand-
ing nature of the flow system, for which @ ~ D/u*where D is a
longitudinal dispersion coefficient and u the flow speed. Those
findings have been combined, re-assessed and extended in this
work, and a new model is proposed here and has been thor-
oughly examined and verified by experiments using a self-made
single-line flow injection system. The relationship between the
dispersion coefficient D and flow speed u (or pumping rate Q)
will also be studied both theoretically and experimentally.

2. Theoretical
2.1. Parameters in a flow injection system

A typical single-line flow injection system is illustrated in
Fig. 1 (i). The basic tubular channel consists of an injector and a
detector with a mixing coil in between. The corresponding inter-
nal volumes are Vj, Vg and V., respectively. When summing up
the total tubular volume (Vipa1), only half of the injector and
detector volumes (V; and V) are taken into account, i.e. Viotal
(unit: ml)=0.5V; + V. +0.5V4 [1]. Since the liquid is pumped
at a consistent rate Q (mls~!), and the tubing is assumed to
have a uniform cross-section area a (cm?), the average migra-
tion speed of the sample can be calculated as u (cms~!) = Q/a.
The total channel length from the center of the injector to the
center of the detector is Lo (cm), which is calculated by Lioa)
(cm) = Viorar/a. The mean residence time for the mass center to
arrive at the detector is #;, (8)=Viotal/Q Or Liotai/u. A sample
plug is characterized by an initial concentration Cp (M) and
an injection volume V; (ml). An equivalent initial zone width
W; (cm) can be obtained by W; = Vi/a. This sample plug can be
plotted on a “conc. versus length” diagram (Fig. 1(i1)), so that
the area is CoW; (uM cm). The area remains constant during the
migration of the sample zone along the L coordinate.

To cope with the reading of the detecting device, the above
diagram needs to be further converted to a “signal versus
length” plot (Fig. 1(iii)). Accordingly, the initial concentration
Cop becomes Sy (signal units), where So = nCp and 7 is the sensi-
tivity (signal-uM™!) of the detector. The plug area, denoted as
AL (signal-cm), remains SoWj, even though the sample zone has
spread out after traveling over a distance.

2.2. The Gaussian approximation

In the present study, the expanding of the sample zone is
assumed to be attributed to a “bulk” longitudinal dispersion
mechanism [20], which results in a Gaussian distribution pat-
tern after traveling a distance or a period of time. A Gaussian
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Fig. 1. Parameters involved in an ideal single-line flow injection system. (i) A
sample plug with a concentration Cp (wM) and volume V; (ml) is injected into
a tubular system, which has a cross-section of a (cm?) and the flow is pumped
atarate of Q (mls~!). The total tubular volume Vioi (ml) is measured from the
center of the injector to the center of the detector, Vioa =0.5V; + Ve +0.5Vy. (ii)
The same system is plotted on an L coordinate, with an initial zone width W;
(cm) = Vi/a, and an average flow speed u (cm s™1)=Qla. The plug area remains
conservative during the migration (Area = CoW;). (iii) The vertical coordinate is
converted to the recorder signal S, so the initial plug height is So =nCo, where
n (signal-uM™') is the sensitivity of the recorder. The plug area (Ar, unit:
signal-cm) becomes Ar, =SoW;. The initial plug can be converted to a hypo-
thetical Gaussian distribution pattern with an initial standard deviation oo (cm)
= W;/+/27. The mean residence time for the mass center to arrive at the detector
is tp () = Viora/Q or Liotar/ut.

function comprises three major parameters: the peak area Ar,
the standard deviation o, at the detector, and the peak position
L. The latter two terms refer to a mean residence time ¢, at a
given flow speed u. Therefore, at the detector, the standard devi-
ation is o (fp) and the peak position L, (f,) = utp. Accordingly,
the Gaussian pattern can be expressed by the following equation:

S(L) = o~ (L—utp)?/2o1(1p)*) )

AL
v 2moL(tp)
The standard deviation at any instance is proportional to the
square root of time, o1.(f) o 4/ , and the expanding rate of the
variance (do(r)2/dr) is a constant:

dor(1)* _

o 2D 2)

where D (having a unit of em?s~ 1) is defined as the “bulk”
longitudinal dispersion-diffusion coefficient at a constant flow
speed. It comprises two major fractions, i.e. Dg and Dp,; the
former is “dispersion” coefficient in the longitudinal direction
and the latter is the “molecular diffusion” coefficient. It should be
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noted here that once the liquid starts to flow, Dqg is much larger
than Dy, therefore the symbol D in Eq. (2) can be regarded
exclusively as a longitudinal dispersion coefficient.Integration
of the above equation gives:

oL(t)? (cm?) = o 4 2Dt (3)

where 01%0 refers to an initial variance at =0.
By combining Eqgs. (1) and (3), the longitudinal peak pattern
at a given time 7, can be written as:

AL e—(L—mp)2 /Qo10>+4Dty) (4)
\/ 270ty + 47Dty

2.3. The initial state

S(L) =

Although a sample plug may be small, the initial zone stan-
dard deviation oy should not be treated as zero, otherwise the
calculation of Eq. (4) will lead to infinity at # = 0. To avoid this
problem, the initial standard deviation is defined here to be:

Wi
5
Nz 5

or o0~0.399W;. With this definition, the initial peak height &
(at £ = 0) will be identical to the initial signal of the sample:
AL AL

h(r:O) = — =
V2mor Wi

Apart from this initial state, the relationship between the

peak width and standard deviation at any other time is still
WL() =4oL(D).

oo (cm) =

So (6)

2.4. Convolution of a spatial pattern to a temporal image

When a sample zone passes through a detector located at
L=L,, the recorder will give out a peak on the temporal coor-
dinate which is different in shape from the spatial distribution
pattern. A convolution process is required to transform the spa-
tial image S(L) to a temporal function S(¢). The transformations
of individual peak parameters (Lp(#,), AL and or(#p)) from a
longitudinal coordinate to a temporal axis (fp, Ay ando(t,)) are
described below:

L
fp(s) = —+ )
. AL
Aq(signal-s) = — (®)

The standard deviation term is no longer fixed at a specific #p,
but variable with time:

oL(?)

o(1)(s) = u ©

The resultant temporally convoluted Gaussian equation
(TCG) [18,19] becomes:

Aq o102/ 2010 [uP+4Dt/u?)

St) =
\/2mo10%/u? 4 4Dt /u>

(10)

This function imitates the temporal peak as normally seen on a
recorder. It is not symmetrical, and the peak position appears at
t;j, slightly earlier than the expected #,. The apparent peak height
h*(att = t;) is slightly higher than the expected & (at t=1p).

A numerical test is illustrated in Fig. 2. Assuming that a
flow injection system is composed of 0.8 mm ID tubing, and
that the carrier flow is running at a rate of Q=0.04mls™!,
A sample plug of V;=0.100ml is injected with an initial sig-
nal of Sp=1.000, and three hypothetical detectors are located
at Lioa =200, 400 and 1000cm. A hypothetical dispersion
coefficient (D) is designated as 100 cm? s~!. The sample zone
arrives at the three detectors at t, = L/u=La/Q =25.14, 50.27 and
125.68 s, respectively. The corresponding heights of the spatial
peaks are £=0.1112, 0.0789 and 0.0500. When these peak pat-
terns are to be transformed onto a temporal axis, the apparent
peak positions (t;) are 23.61, 48.72 and 124.11 s. The temporal
shifts are 1.53, 1.55 and 1.57 s, respectively. The apparent peak
heights (h*) are 0.1130, 0.0795 and 0.0502, and all are slightly
higher than the corresponding 4.

2.5. The temporal shift

The temporal shift (represents the shift of the peak position
from an expected 1, to an apparent £3, i.e. &(s) = (f, — t;) isa
quite consistent value for a fixed flow system when ¢, is not too
small. Its scale is related to both the dispersion coefficient D and
flow speed u. An approximate relationship has been derived as
[19]:

D
D(s) ~ — an
u
Thus, @ can be calculated from D, but the latter may vary from
system to system so it needs to be estimated experimentally.

2.6. The dispersion coefficient D of a given system

Each flow injection system will have a specific dispersion
coefficient D. However, it is almost impossible to obtain the
D value directly from a “spatial” peak pattern because such a
pattern is not available when using a single fixed detector. Prac-
tically, the D value could be estimated from “temporal” peak
parameters, but a “recursion” process is necessary.

According to Eq. (10), the temporal peak height #* should
appear at 1 = 15

A
h* = S(ty) ~ - 4 (12)

V2ot /0 + 4Dty fu?

where Z is the exponential part of the Gaussian function:
7 = ef(t;71,,)2/(2<1L02/L¢2+4Dtl’§/u2) (1 3)

It would be difficult to solve D directly from Eq. (12). However,
one may first assume the temporal peak height #* is nearly equal
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Fig. 2. Diagrams illustrating the evolution of a sample plug on a length vs. time diagram, at given conditions. The upper left diagram showing the migration route
of the sample plug with two threshold boundaries (£o71.(¢)). Three detectors are located at Lioga = 200, 400 and 1000 cm, respectively. The mass distributions (spatial
peaks) of the sample arriving at the detectors are shown in the right diagram, whereas the temporal peaks are plotted in the bottom diagram. Circles denote the true
peak positions (fp); triangles represent the observed peak positions (t;,‘); the latter are always slightly earlier than that expected by a nearly-consistent temporal shift,

with apparent heights (7*) slightly higher than that of spatial peaks (/).
to the spatial peak height £. In other words, one may first let Z=1:
A;

h* & S(t) ~ (14)
\/ 2oty /U + 4 Dig fu?

A first estimation of D can be obtained:

A 2142 0_2

D(Istest) = ——— — L0 (15)
dmh*2es 2t

By putting this first approximated D into Eq. (13) and letting

Ip — t; = & ~ D/u?, a Z value is obtained. This Z value is put

Table 1

back into Eq. (12) and a second estimation of D is given:

2252 2
Afu-Z o010

D(2ndest) = ——— —
(2nd est.) 47rh*2tl’; 21

(16)

A numerical test is demonstrated in Table 1 using the data
provided in Fig. 2. In that system, the dispersion coefficient
D has been designated as 100cm?s™! and other conditions
(A, u, o1, ..) are fixed. At each given observation point (e.g.
L=200, 400 or 1000cm), a temporal peak is generated, and
three peak parameters (A, t; and h*) are obtained from that
peak. By putting these data into the above equations, a first esti-
mation of D by Eq. (15) gives the values of 103.12, 101.62 and

Numerical test showing the fesibility of estimating the dispersion coefficient D values from temporal peak parameters by a recursion calculation method (the D value

is designated to be 100 cm? s~ 1)

Channel length Spatial peak Temporal peak Temporal Estimation of D and @ values
Liotal (cm) " . " . ¥ shift @ (s)
Position #;, (s) Height / (abs) Position t; (s) Height 2™ (abs) D (Istest.) D (2nd est.) @ (est.) (s)
(cm?s™h (cm?s™h)
200 25.14 0.1112 23.61 0.1130 1.53 103.12 99.62 1.57
400 50.27 0.0789 48.72 0.0795 1.55 101.62 99.96 1.58
1000 125.68 0.0500 124.11 0.0502 1.57 100.43 99.79 1.58

Both spatial and temporal peak data are generated by Eqgs. (4) and (10). Conditions refer to Fig. 2. The iterating estimation of the D value follows Egs. (15) and (16).

The estimated temporal shift is calculated by @ (est.)=D (2nd est.)/u?.
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100.43 cm?s~ !, respectively, with errors up to 3.12%. Through
a second estimation, the D values are more accurate (99.62,
99.96 and 99.79 cm? s_l), and the errors are effectively reduced
to less than 0.4%. Although more iterations can be done, the
results from the second estimation are deemed close enough to
the original value of D=100cm?s~!. In this case, a temporal
shift (@) of ca. 1.58 s can be estimated for this system, which
is close to the theoretical values of 1.53—1.57 s. This numerical
test demonstrates that the D value of a system can indeed be
retrieved from experimental peak parameters.

3. Experimental
3.1. Instrument layout

A flow injection system was assembled as illustrated in Fig. 3.
It consisted of (i) a speed-adjustable peristaltic pump; (ii) a
Rheodyne six-port injector with a changeable sample loop to
give a specific injection size; (iii) a changeable mixing coil made
by winding a desired length of Teflon tube (0.8 mm ID) onto a
1 cm diameter supporting rod; (iv) a Shimadzu 160A double
beam spectrophotometer installed with a Hellma flow cuvette
(1 cm light path with a capacity of 31 pl).

The spectrophotometer was operated in the “time-scan”
mode, so absorbance readings Sexp(#) were recorded sequentially
after the sample injection at required intervals (Ar=0.1-5s).

3.2. Dye solution

A food dye “blue #1” solution (maximum absorptivity at
629 nm) was prepared for the injection test. The absorbance of
a test sample when filled up into the flow cuvette was regarded
as the initial signal Sg.

3.3. Volumetric measurement

The actual sample volume injected (V;) was identified by
injecting a dense dye solution into the injector and collecting the
effluent in a 100 ml graduated flask and diluting to the mark. The
volume was calculated by comparing the absorbance that was
obtained by adding a known volume of the same dye solution and

Clmnfcwr Mixing coil
6-port injector
Dw—=— Pump 1 —
, ' L
I1® G T

&/

Flow cuvette

Sample
loop

Spectrophotometer

Dye

Fig. 3. The flow injection device used in this study consists of a peristaltic pump,
a 6-port injector with a sample loop, a mixing coil of designated length, and a
Hellma flow cuvette (1 cm, 31 wl) installed in a Shimadzu 160A spectropho-
tometer.

diluting to the same volume. In this way, V; could be measured to
a precision of better than 2 pl. The volume of the flow channel
(V¢, including the coil and connectors) and the detector (V) was
also estimated in a similar way by filling with a dye solution and
then draining it out for quantification. The pumping rate (Q) was
measured just prior to each experiment by weighing the outflow
water in a dry beaker over a suitable time span.

3.4. Calculation of channel length

A series of coils were made of 0.8 mm ID Teflon tube, which
gave a cross section area of a =0.005027 cm?. The length of
each coil was decided not by a ruler, but calculated from the
volumetric measurement. For example, the capacity of a coil
was measured to be V. =2.12ml, and then its length was cal-
culated to be L, = V./a=422 cm. The half of the cuvette volume
plus connecting tubing was estimated to be ca. 0.18 ml, which
was equivalent to 36 cm in length. The combined length was
422 +36=458 cm. When an injection volume of V;=0.112ml
was applied, the initial width was W; =22.28 cm. An extra length
of 0.5W; =11.14 cm should be added to compensate for the ini-
tial shift of the mass center. In this way, the total channel length
(Ltota) of this case was calculated to be ca. 469 cm.

3.5. Measurements of peak parameters

The injection of a sample and the switching-on of the recorder
were controlled simultaneously. Each injection action produced
atemporal peak on the recorder, which provided a temporal peak
position t; and an apparent peak height #*. The experimental
temporal peak area (denoted as Af) was estimated by sum-
ming up all absorbance values S(#) and multiplying the recording
interval Af,i.e. Af = XS(r) x At.

3.6. Calculation of the empirical D*

In Section 2.6, the dispersion coefficient can be theoretically
estimated by Eqgs. (12)—(16), but experimentally the flow speed
u and initial standard deviation o7 g still can not be directly mea-
sured. Also, the flow injection device may involve some physical
effects other than the longitudinal dispersion alone. For practical
reasons, the pumping rate Q and injection volume V; are used
instead of u and o1, and the experimentally retrieved D value
in the following sections is named the “empirical” dispersion
coefficient and denoted as D",

Since u=Q/a,or g = Wi/ /27 and W; = Vi/a, the first approx-
imation of D by Eq. (15) is rewritten as:

A;k2 Q2 _ Vi2h>k2

D*(Istest.) =
(stest) = s

a7

The temporal shift estimated from experimental data should also
be empirical and is denoted as ®* ~ D* ¢?/Q?. Similarly, Eq.
(13) becomes:

7% — e—(D*2a4n)/(Q2(vf+4nD*a2zg) (18)
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By putting Z* back into consideration, a second estimation is

obtained by:

A;kz QZZ*Z _ ‘/iZh*Z
4math*2t;

D*(2nd est.) = (19)

2.1

The unit for D* is cm? s~ L.

3.7. Restoration of experimental peaks

To restore an experimental peak, it is necessary to compose
three peak parameters, i.e. the temporal peak area (A}), the peak
position #, and the standard deviation (ot (#)) into the TCG equa-
tion (Eq. (10)). The peak position (#,) can not be read from the
recorder but can be estimated by adding a shift @* to the apparent
peak position 15, i.e. fp = f5 + @*.

The longitudinal standard deviation is:

o1t (em) = /o2y +2D%a?1/ Q2 (20)

which needs to be converted to a temporal standard deviation:

oLo? + 2D*t
2

ol(1)(s) =

oL(?) _ 21
u

u
Accordingly, a restored peak function S'() is expressed as:
Af

S'(t) =
V20t /u? + dn Dt

P Ju2) /202, JuP+4D*1/u?) 22)

Then, o1 and u are replaced by V; and Q (Uﬁo = Vi2 / (27m2));
u=Q/a):

ATQ

\/ V2 + 4ma’ D+t

Furthermore, since @* ~ D*az/Qz, it can also be written as:

S'(1) = e—(l—t;‘—D*aZ/Qz)anz/(Vi2+4nazD*t)

(23)

At e~ = 0 (V2 /@440 oy

\/ V2 0% + dnd*t

The peaks that restored by either Eq. (23) or Eq. (24) are
identical.

S'(t) =

3.8. The residue curve

The difference between a restored peak S’(¢) and the original
experimental peak Sexp(?) is in a crooked shape, which has been
named here the residue curve:

(1) = S'(1) — Sexp(?) (25)

The amplitude of this residue curve (maximum to minimum)
indicates the offset from the theoretical simulation quantita-
tively, which may include the influences of some physical effects
other than the longitudinal dispersion.

4. Results and discussion
4.1. Peak reproducibility

The reproducibility of peaks generated by the flow injec-
tion system was quite good judging visually by overlapping
replicated peaks on one diagram. Moreover, it was evaluated
quantitatively by measuring the variations of the peak posi-
tion, height and area (i.e. ), h* and Af). A test was made
for the system using an injection volume (V;) of 0.499 ml and
a mixing coil length (L) of 328 cm, running at a pumping
rate (Q) of 0.024mls~!. The average peak appearance time
was: t;j =63.44+0.3s (n=7); the average peak height was:
h*=0.394 £0.003 (n=7); and the average peak area was: A} =
12.43 £ 0.08 (n=7). All showed a relative precision (RSD) of
better than £=1%. However, it was noticed that when the coil
length was too short (L. <70cm), or the pumping rate was
too fast (0>0.3mls™!), erratic peak shapes would occur. The
reproducibility was less satisfactory in those extreme conditions.

4.2. Effect of coil length

According to Ruzick and Hansen’s textbook [1], changing
the coil length from short to long will cause a longer peak
appearance time and lower peak height, but the peak area will be
conserved. These were proved experimentally and the data are
shown in Table 2. In this experiment, a series of coils (L. =70,
112, 215, 328 and 422 cm) were used. The flow system was
running at a constant pumping rate of Q=0.016mls~'. The
injection volume for all tests was 0.112ml. A dye solution
(absorbance Sy =2.4) was used for the injection.

In Fig. 4(A), the delay of the peak position was proportional
to the increase of coil length (tl’; = 33.3, 48.5, 80.0, 113.5 and
144.3 s, respectively). The peak height dropped exponentially,
i.e. h*=0.556, 0.458, 0.366, 0.318 and 0.299, respectively. The
peak areas were almost equal at 15.6 0.2 for all tested coil
lengths.

Calculation of the empirical dispersion coefficient (D) was
made by Egs. (17)—(19) using the above data, to be between
152 and 18.4cm?s~!. A slightly decreasing trend was found
for D” as the coil length increased. Although this phenomenon
was not expected, it was understood that the system in use was
not perfect. Thus, a larger dispersion might occur in the irregular
space in the injector and detector, but this defect would have been
reduced as the coil length increased. The temporal shifts were
estimated by @*=D*a?/Q?, to be in the range of 1.50-1.90s.

4.3. Effect of injection volume

An experiment was done by changing the sample loop with 7
sizes (total injection volume ranged from 0.046 to 0.573 ml, see
Table 2) and the resultant peak shapes were recorded. The coil
length used in this experiment was 328 cm, and the system was
running at a pumping rate of Q=0.016mls~!. A dye solution
with an absorbance of Sy =0.89 was used for the injection. In
Fig. 4(B) it can be seen that the peak appearance time for the
smallest volume (V; =0.046 ml) was found at 111.3 s and gradu-
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Table 2
Experimental conditions and resultant peak data
No. Experimental conditions Observed peak data Calculation
Lc (cm) Q (mls™) Vi (ml) So (abs) 1 (s) h* (abs) A? (abs s) D*(cm?s™1) D (s)
Changing coil length
1 70 0.016 0.112 2.4 333 0.556 15.30 16.7 1.75
2 112 ” ” ? 48.5 0.458 15.71 18.4 1.90
3 215 ” ” ? 80.0 0.366 15.50 17.4 1.72
4 328 ” ” ? 113.5 0.318 15.55 16.5 1.63
5 422 ” ” ? 1443 0.299 15.80 15.2 1.50
Changing injection volume
6 328 0.016 0.046 0.89 111.3 0.050 2.35 15.8 1.56
7 ? ” 0.066 ? 112.5 0.075 3.52 15.7 1.55
8 ? ” 0.112 ? 114.0 0.120 5.81 16.1 1.59
9 ? ” 0.227 ? 117.0 0.229 11.80 16.8 1.55
10 ? ” 0.344 ? 120.5 0.319 17.12 16.1 1.58
11 ? ” 0.450 ? 124.5 0.408 23.25 15.8 1.56
12 ? ” 0.573 ? 128.8 0.482 29.37 15.1 1.49
Changing pumping rate
13 422 0.0038 0.112 2.49 633 0.425 67.62 1.8 3.02
14 ? 0.0065 ” 377 0.360 40.23 43 2.58
15 ? 0.014 ” ? 179.0 0.302 19.55 12.2 1.83
16 ? 0.016 ” ? 144.0 0.295 15.80 15.7 1.55
17 ? 0.034 ” ? 71.8 0.275 7.88 40.8 0.89
18 ? 0.051 ” ? 47.1 0.275 5.34 64.3 0.62
19 ? 0.138 ” ” 17.5 0.272 2.01 186.8 0.24
20 ? 0.208 ” ? 11.6 0.284 1.35 262.8 0.15
21 ? 0.277 ” ? 8.8 0.298 1.03 3234 0.11

ally delayed to 128.8 s for the largest injection size of 0.573 ml.
The peak heights increased exponentially, and the peak areas
were increased proportionally with the injection volume, as they
should be. The results of the D* calculation are listed in Table 2
and plotted in Fig. 4(B). All values were found almost equal at
15.9+£0.5cm? s~!. The temporal shifts (@*) in this case were
then estimated to be ca. 1.56s.

4.4. Effect of pumping rate

The experimental conditions were: V;=0.112ml,
L.=422cm. A dye with an absorbance of ca. 2.49 was
used. The pumping rate was adjusted from Q=0.0038 to
0.277mls™ L. Experimental data are listed in Table 2, and were
plotted against the pumping rate Q (Fig. 5(A)) and also, its
reciprocal 1/Q (Fig. 5(B)). The peak appearance time z]’; was
found to be in a parabolic relationship with the pumping rate
Q. This was confirmed by the linear line when the same data
were plotted against 1/Q. Similar relationship was also found
between the peak area A and Q.

The most interesting part was the effect of changing the
pumping rate to the peak height h*. At the slowest pump-
ing rate (Q=0.0038 mls~!), 2* was 0.425. When the pumping
rate was increased to 0.034-0.138 mls~!, the peak height was
decreased to 0.272-0.275, but then increased to 0.298 at the
fastest pumping rate of 0.277mls~!. The A*(Q) curve looks
quite like a “Nike” shape (the “swoosh”), with a minimum at
around Q=0.1mls~!. A similar relationship can also be found
on the A* versus 1/Q diagram.

On the D* versus Q diagram, the relationship is even more
interesting. The correlation curve is not a linear one but shows
an “S” shape (a slight turning at the bottom and top ends of the
curve). When the pumping rate was minimal, D* approached
nearly zero. This is reasonable because in a static situation only
the molecular diffusion should be taken into account, which is
at the level of 107 cm?s~!. This relationship will be further
discussed in a latter section (Section 4.6).

The temporal shift calculated could be as large as 3 s when
the system was operating at the slowest pumping rate of
0.0038 mls~!, but rapidly dropped to almost nothing when the
pumping rate was faster than 0.138 mls~!.

4.5. Restoration of experimental peaks

Each of the above experimental peaks provide three basic
peak parameters (i.e. #}, Af and #*) and two calculated terms (i.e.
the empirical dispersion coefficient D* and temporal shift @ *).
With this information, an experimental peak can be restored by
Eq. (24). A total of 21 peaks were generated in this way and dis-
playedin Figs. 6 and 7. Each peak was numbered according to the
experimental conditions listed in Table 2. The original recorder
track (the experimental peak) was overlapped for comparison.
The residue curve for each peak pair was also plotted.

In general, all peaks fit amazingly well if judged by the peak
positions and heights, as well as the trends of asymmetry. How-
ever, small differences at the root of both sides of each peak
can be identified on the diagrams. For most cases, the ampli-
tude of the residue curve (normalized as % of the peak height)
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Fig. 4. Effects of changing (A) the coil length L. and (B) the injection volume V;
to the peak parameters (i.e. peak position £, peak area A{ and peak height /%),
empirical dispersion coefficient D* and temporal shift @*. The pumping rate
for all tests was at 0 =0.016 mls~!. Other conditions: V;=0.112 ml and Sy =2.4
for the experiment (A); L, =328 cm and Sp =0.89 for the experiment (B).

lies between +5% and —3%, but can exceed £10% when (i) the
coil length is too short (i.e. L. <112 cm); (ii) the injection vol-
ume is too large (i.e. V;>0.450 ml); and (iii) the pumping rate
is too fast (i.e. 0 >0.208 ml s~1). Under these conditions, some
physical mechanisms, classified as spatial asymmetrical factors,
although minor, indeed exist in the flow system. Nonetheless, it
shows that the temporal distortion effect is still the major fac-
tor controlling the peak-shape in flow injection analysis; further
proofs since the first introduction of the concept several years
ago [18].

4.6. The “Nike” swoosh

The interesting relationship between the pumping rate Q and
the apparent peak height #* (the “Nike” swoosh) was studied
further. This phenomenon is quite similar to the two trends of
dispersion variation that was described by Li and Ma [21]. It
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Fig. 5. Effect of the pumping rate to the peak parameters, dispersion coeffi-
cient and temporal shift. Data were plotted against (A) Q and (B) 1/Q. The
experimental conditions were: L, =422 cm, V;=0.112ml and Sy =2.49.

can be seen that in Fig. 5(A), when Q was decreased, the peak
appearance time was delayed, the peak became wider but the
peak height (h*) was “growing” higher. This last phenomenon
is counter-intuitive that the peak height should be lower due to
the longer residence time for dispersion. The only explanation
would be that the dispersion is a function of the pumping rate
0, i.e. D* becomes smaller when Q is slower.

Taking the data provided in Table 1, an empirical correlation
was obtained by a fifth-order polynomial curve fitting (with no
intercept):

D*(Q) =810 +80% +80° +840* +550° (26)

where 81 =729.3, 6, =17637, 63=—164538, 64=615341 and
85 =—832415. However, when an intercept was allowed (ignor-
ing the data at the slowest pumping rate), a much simpler
second-order equation could be obtained:

D*(Q) =8 + 810 + 5,07 27)
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where §p=-—5.3, §;=1515 and &, =—1161, with units of
cm?s™!, cm! and cm™4s, respectively.

The use of the “negative” intercept (§) reduces the complex-
ity of the function from a 5Sth-order to a 2nd-order, but it may
be debatable even though it is just a mathematical fitting. If one
enlarges the bottom part of the D*(Q) curve shown in Fig. 5,
the D* value becomes relatively small when the pumping rate
Q is less than 0.0065 mls~!. Additional tests using extremely
slow pumping rates (Q between 0.0005 and 0.003 mls~!) show
that the D* value approaches gradually to zero (the sample plug
takes more than 1000s to arrive at the detector). Theoretically,
when the flow is almost stationary, turbulence in the mixing coil
is minimal, so the longitudinal dispersion is less impacted by the
variation of the pumping rate. If the flow is completely stopped,
then only the molecular diffusion is in charge, which should be
a very small constant independent of the pumping rate.

Nonetheless, since the scale of the second term is dominating,
it can be stated that the magnitude of dispersion in a flow injec-
tion system is basically proportional to the pumping rate within a
limited working range (e.g. Q between 0.0065 and 0.277 ml s~
in this work).

Accordingly, the temporal shift also becomes a function of
0:
®*(Q) = —0.000130 72 + 0.038290 " — 0.0293 (28)

With Egs. (27) and (28), one can generate peaks for a flow
injection system at any given pumping rate within the valid
range. Examples are given in Fig. 8. In this simulation, a sample
plug (V;=0.112 ml) was injected into a flow system at pumping
rates of 0.01, 0.015, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.2,
0.3 and 0.35mls~!, respectively. Three hypothetical detectors
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Fig. 8. Numerical simulations of the flow injection peaks at various pumping
rates. A sample is injected into a flow system running at @ =0.01, 0.015, 0.02,
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conditions are V;=0.112ml, Sp=2.49, §o=—5.3, §; =1515, 5 =—1161. The
migration routes are plotted on an L vs. t diagram, with three hypothetical detec-
tors located at L= 100, 200 and 469 cm, respectively. The peaks generated at all
three positions show a “Nike” trend on peak height, while the peak areas are
proportional to 1/Q.

were located at Loy = 100, 200 and 469 cm. Other conditions
were: a=0.005027 cm?; Sp=2.49. The peak shapes generated
at each detecting position were plotted on an overlapped
diagram (Fig. 8). It can be seen that the peak areas expand in
proportion to 1/Q. The peak heights (h*) are relatively high
at very fast pumping rates, but drop slightly as the pumping
rate decreases, then raise when the pumping rate becomes very
slow, an exact “Nike” trend like the experimental results shown
in Fig. 5(A).
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Fig. 9. The lowest point of the “Nike swoosh” is found at a pumping rate of
Q' = /80/8,. Circles are simulated peak heights from Fig. 8 assuming that
the detecting position is at L=100, 200 and 469 cm, respectively. Dots are
experimental data for Liota =469 cm taken from Table 2.

The apparent peak height 2* at a position t;)‘ can be roughly
estimated (ignoring the initial o1 ) by:

AL
\J4mD*tra? | Q2

where all three variables (i.e. t;j, Af and D") are func-
tions of Q. Among these, A{(Q)= Ara/Q, t;(Q)%
Lea/Q,and D*(Q) = 8 + 81 Q + 8, Q. In combination, h* o
v Q/D*(Q), or

RO S
80+ 810 + 8,02

h*(tg) ~ (29)

(30)

This explains why the A" (Q) curve looks like a “Nike” shape,
and why there exist two dispersion trends in a flow system. To
locate the lowest point, a further differentiation of h*(Q) was
made, which led to an equation:

S0 — 80> =0 (31)

Thus, the lowest peak height should occur at a pumping rate
of

Q' =/80/8> (32)

In the present case (see Fig. 9), §o=—5.3 and §, =—1161,
therefore Q' =0.0676mls~!. In flow injection analysis, it is
always expect that the sample zone should mix with reagents
at the largest dispersion; therefore, the optimal pumping rate
Qopt should be at Q'. Up to this point, one may interestingly
find that all the above descriptions for FIA are very similar to
the search for an optimal flow rate for chromatography by the
famous van Deemter equation.

4.7. Throughput

The three peak parameters (h*, t;‘,‘ and A}’) can also be used to
give a measure of the analysis speed of a flow injection system
with a fixed channel length operating at a given pumping rate.
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Since h* can be expressed as:

h* = Al (33)
A 2mot

where oy is the temporal standard deviation when the sample
zone arrives at the detector at t;‘. The temporal width of a peak
W, is defined as W, =40y, therefore,
Wi = Ay (34)
' 2kt
By taking this width as a minimum time span to separate
two sequentially injected samples, a maximum throughput R
(samples per hour) can be reasonably defined by:

3600

0D = 5

(35)

5. Conclusion

The present model has successfully demonstrated its use-
fulness in simulating peak shape, position and height for flow
injection analysis. It is much simpler than most previous mod-
els, but the result matches all the characteristics that have been
customarily used to describe the expanding nature of an injected
sample plug in a tubular channel.

The model has several improvements over the previous work
[18,19]:

(i) The sample size and the initial standard deviation have been
included, which enables the modeling be feasible even when
the sample size is not a small plug.

(i) An observed dispersion coefficient D* has been defined,
which can be reasonably estimated from the measure-
ments of the experimental peak position, height and
area.

(iii)) An empirical temporal shift @* can be calculated from D*.
It is nearly a constant for a given flow system operating at
a fixed pumping rate. One can use it to modify the position
term of a Gaussian function, so as to restore an experimental
peak.

(iv) The relationship between D* and the pumping rate
O has been related by an empirical function, i.e.
D*(Q)=80+810+8,0% The modeling of peak shapes can
therefore be applied at different pumping rates.

(v) The optimal operation for a flow injection system can be

find at a pumping rate of Qgpe = +/30/62.

However, small deviations on the peak shape due to physical
effects cannot be denied. It could mean that the development of a
sample band might not be completely symmetrical in the initial
stage. If one insists, a further modification on the longitudinal
standard deviation term (expressed as a polynomial function
of time) [13-17] may be carried out. In this way, the spatial
distribution pattern will become asymmetrical, and an even more
skewed temporal peak image could be generated by a similar
convolution process that has been described in this work.
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