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Visual Salience-Guided Mesh Decomposition

Hsueh-Yi Sean Lin, Hong-Yuan Mark Liao, Senior Member, IEEE, and Ja-Chen Lin

Abstract—In this paper, we propose a novel mesh-decomposi-
tion scheme called ‘‘visual salience-guided mesh decomposition.”
The concept of “part salience,” which originated in cognitive psy-
chology, asserts that the salience of a part can be determined by
(at least) three factors: the protrusion, the boundary strength, and
the relative size of the part. We try to convert these conceptual
rules into real computational processes, and use them to guide a
three-dimensional (3-D) mesh decomposition process in such a way
that the significant components can be precisely identified and effi-
ciently extracted from a given 3-D mesh. The proposed decompo-
sition scheme not only identifies the parts’ boundaries defined by
the minima rule, but also labels each part with a quantitative de-
gree of visual salience during the mesh decomposition process. The
experimental results show that the proposed scheme is indeed ef-
fective and powerful in decomposing a 3-D mesh into its significant
components.

Index Terms—Mesh decomposition, perceptual organization, vi-
sual salience.

1. INTRODUCTION

ECOMPOSITION is a leverage to obtain the componen-
Dtial representation of a whole object. After the decomposi-
tion step is executed, the decomposed components can be indi-
vidually selected, grouped, and analyzed based on the properties
of interest. In recent years, a variety of applications have bene-
fited from decomposing a three-dimensional (3-D) object into
its component parts. These applications include collision de-
tection [21], radiosity simulations [9], robust transmission and
streaming [2], [3], texture mapping [20], [34], metamorphosis
[33], simplification and compression [40], 3-D shape retrieval
[71, [40], and control-skeleton extraction for key-frame anima-
tion [15]. The requirements that an effective object decompo-
sition method has to satisfy usually depend on the application.
In this study, we emphasize high-level abstraction and organi-
zation for human object understanding.

High-level organization imposed on perceived data has been
explored extensively in both human visual processes and com-
puter vision systems. Related studies can be found in [1], [11],
[12], [28], [30]. In order to account for human visual processes,
cognitive psychologists have identified a set of properties (or
rules) that are fairly important in the perception of a form or
a shape. In the field of computer vision, perceptual organiza-
tion has shown that computational resources can be effectively
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applied to extract structural and meaningful organization from
perceived data. Furthermore, perceptual organization can be re-
garded as an intelligent process that can perform high-level ab-
straction for image understanding. In the literature, perceptual
organization has been applied to the segmentation of range im-
ages [6], two-dimensional (2-D) images [31], textures [35], pat-
terns [38], and contours [39], respectively. However, for some
reason, existing 3-D object decomposition techniques lack a di-
rect link to perceptual organization. Below, we briefly review
some existing 3-D object decomposition techniques and specify
their possible links to perceptual organization. Furthermore, we
point out their common shortcomings in terms of perceptual or-
ganization.

In [36], Wu and Levine introduced a simulated electrical
charge distribution scheme to perform surface characterization.
Using their representation, the concave boundaries can be
located at the minima of the local charge density. In [24],
Mangan and Whitaker extended the watershed algorithm,
which was originally designed for image segmentation [27], to
partition both volumetric and mesh surfaces. In [21], Li ef al.
employed skeletonization and space sweeping procedures to
extract organic parts. In [29], Svensson and Baja introduced the
concept of distance transform to decompose 3-D volumetric
objects into kernels and elongated parts. Shlafman et al. [33]
proposed a k-means based clustering algorithm that separates
distant faces, but clusters close faces together. In [15], Katz and
Tal proposed a general framework for mesh decomposition, in
which a maximum-flow (minimum-cut) algorithm is applied to
construct boundaries without jagged effects. In [17], Lien and
Amato identified and resolved the non-convex features in order
of importance to achieve approximate convex decomposition.
In [19], Liu and Zhang introduced a spectral clustering method
that favors segmentation along concave regions. In [16], Katz
et al. introduced multidimensional scaling representation and
spherical mirroring operation to extract prominent feature
points and core component, respectively. The boundaries be-
tween the extracted features are then constructed and refined
using Katz and Tal’s algorithm [15].

From the perspective of perceptual organization, the under-
lying assumption of the above methods is based on psycholo-
gists’ definitions of a part, which are regularized by “a unifor-
mity of nature” [11]. In cognitive psychology, the principle of
transversality! is regarded as one of the guidelines for finding a
part’s shapes. Among existing methods, those that trace con-
cave regions [15], [24], [26], [36] adopt the minima rule? to

ITransversality regularity: When two arbitrarily shaped surfaces are made to
interpenetrate, they always meet in a contour of concave discontinuity of their
tangent planes. For a detailed discussion of transversality, please refer to [8].

2Minima rule: All negative minima of the principal curvatures (along their
associated lines of curvature) form boundaries between parts. For a detailed
discussion of the minima rule, please refer to [12].
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construct a part’s boundaries. With regard to clustering-based
methods [15], [33] and merging processes [24], [29], the Gestalt
law of similarity and proximity is frequently adopted to capture
the homogeneous characteristics of parts. Obviously, some ex-
isting 3-D object decomposition methods do attempt to extract
a part’s shapes and boundaries by mimicking human visual per-
ception of 3-D shapes. However, none of the existing methods
takes the salience of parts into account. According to the find-
ings of cognitive psychologists [12], the salience of parts usu-
ally plays an important role in the 2-D silhouette and 3-D shape
partitioning processes.

In this paper, we propose a novel mesh decomposition
scheme called “visual salience-guided mesh decomposition,”
which bases decomposition on the theory of part salience bor-
rowed from cognitive psychology [12]. The theory asserts that
the salience of a part is usually determined by three factors: the
protrusion, the boundary strength, and the relative size of the
part. The computational processes designed for realizing two
of these salient features are presented in Section III. We use
these features to guide the decomposition process so that the
visually significant components can be extracted from a given
3-D mesh. This new approach has a number of potential appli-
cations. For example, in 3-D shape databases, the organization
of each object should be in accordance with our visual percep-
tion. Specifically, the organization from the parts to the whole
would allow us to conduct a “part-in-whole” search process (as
in [7]). In addition, extracting significant components based
on different salient features would allow us to construct an
efficient and valid set of visual parts from a 3-D model. In this
way, one could realize “query-by-significant-components” in a
3-D shape retrieval system.

The remainder of this paper is organized as follows. In
Section II, we introduce the theory of part salience and illus-
trate its importance in the perception of parts. In Section III, we
propose the computational processes for realizing the qualita-
tive salient features, and describe in detail how to incorporate
visual salience into the mesh decomposition process. The
experimental results are presented in Section IV. Finally, in
Section V, we present our conclusions.

II. REVIEW OF HOFFMAN AND SINGH’S
THEORY OF PART SALIENCE

In [12], Hoffman and Singh proposed the theory of part
salience, which states that at least three factors determine the
salience of a part: the protrusion, the boundary strength, and the
relative size of the part. We now give the quantitative definitions
of these salient factors and then describe their importance in
visual processes.

A. Protrusion of a Part

This factor is the degree to which a part protrudes from its
main body. For 2-D silhouettes, it can be quantified as the ratio
of the perimeter of the part (excluding its bases) to the sum of its
base lengths. For 3-D shapes, the base of a part is referred to as
the minimal surface formed by the boundary curve of the part.
Hence, the protrusion of a 3-D part can be quantified as the ratio
of the area of the part’s surface to the area of its base surface.
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Fig. 1. Illustration of turning normals and locale turning at the boundary of a
2-D silhouette. (a) Turning normals. (b) 2-D silhouette. (c) Locale turning.

B. Strength of a Part’s Boundary

According to the principle of transversality, a part’s bound-
aries are usually located at the concave creases, as shown in
Fig. 1(b). In [12], Hoffman and Singh proposed that possible
quantitative definitions of the boundary strength include the
turning normals and locale turning, as shown in Fig. 1(a)
and (c), respectively. Obviously, the indication of the normal
direction must have a global orientation consistency so that the
boundary strength can be captured precisely. The discriminating
capability of turning normals and locale turning is shown by the
following examples. For 2-D silhouettes, two sides of a crease
boundary usually have two normals, and the angle between
them can, in one sense, represent the strength of that boundary.
On the other hand, for potentially smooth boundaries, which
are represented by the dotted lines in Fig. 1(c), there is one
normal at every point along a curve. To tackle this problem,
Hoffman and Singh [12] proposed obtaining the measure of
turning in an appropriate region near the boundary. As shown
in Fig. 1(c), the gray region is the so-called locale3 and the
normals on its two sides (i.e., the so-called locale turning) are
used to characterize the strength of the smooth boundary. For
3-D shapes, the principal curvatures can be used to measure the
strength of a part’s boundary.

C. Relative Size of a Part

This factor indicates the size of a part relative to the whole
object. For 2-D silhouettes, it can be defined as the ratio of the
area of a part to the area of the whole object. For 3-D shapes,
the relative volume can be used to measure a part’s relative size.

Having reviewed the factors that may be used to determine
the salience of a part, we now discuss their effects on both vi-
sual and decomposition processes. For simplicity, the following
discussion is based on 2-D silhouettes; however, the concept
can be easily extended to 3-D models. Fig. 2 shows the bound-
aries and cuts of parts of a 2-D silhouette, indicated by isolated
points and dotted lines, respectively. Note that, in Fig. 2(a), the
four boundaries are used to form possible cuts; and, in Fig. 2(b)
and (c), each part is generated by exactly one cut. According to
the visually salient properties of interest, a 2-D silhouette may
have different interpretations. For example, the 2-D silhouette
might be interpreted as an alien’s head with a pair of protrusive
ears when the salience of the part is determined primarily by
its protrusion [(i.e., the part’s cuts in Fig. 2(b)]. On the other
hand, the 2-D silhouette might be interpreted as an unidentified

3By definition [12], a locale is an appropriate region near (but not just in-
finitesimally near) a negative minimum of the curvature, in which we can ex-
plore how the curve evolves.
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(@) (b) (©)
Fig.2. A part’s boundaries and cuts in a 2-D silhouette (re-sketched from [12]).
(a) A part’s boundaries. (b) A part’s cuts. (c) A part’s cuts.

flying object when the part salience is determined primarily by
its relative size [i.e., the part’s cuts in Fig. 2(c)]. As a result,
the part salience would affect not only the high-level visual pro-
cesses that determine the interpretation of a shape, but also the
low-level visual processes that determine how the shape is re-
ally decomposed. In order to precisely determine a part’s cuts,
another independent theory that incorporates a priori knowl-
edge about the shape is usually required. In the early 1980s,
3-D object recognition was a popular research topic [6]. Also,
among the large number of research issues, 2-D perceptual or-
ganization [28] and recognition-by-components (or parts) [1],
[11], [30] were two important directions. However, their de-
velopment was hindered by some ill-posed early vision prob-
lems, such as edge detection and image segmentation. Since
these problems could not be solved, 2-D perceptual organiza-
tion and recognition by 2-D components (or parts) could not
be converted into “complete” computational processes, so they
both failed. Nowadays, there are large numbers of 3-D models
distributed worldwide. Since 3-D models (or meshes) are not
restricted by the limitations of 2-D images, perceptual organi-
zation is now possible in 3-D cases. Furthermore, Hoffman and
Singh’s theory of part salience means that a priori knowledge
may not be necessary in 3-D shape-decomposition processes.
However, the quantitative definitions for part salience proposed
by Hoffman and Singh [12] were made under the assumption
that a part and its boundary are found in advance. In terms of
perceptual organization, this is a drawback that, to some extent,
limits the power of Hoffman and Singh’s theory. In this paper,
we propose a new mesh-decomposition scheme that incorpo-
rates the cognitive psychology theory into the mesh-decompo-
sition process such that the visually significant components can
be extracted from a given 3-D mesh.

III. VISUAL SALIENCE-GUIDED MESH DECOMPOSITION

We now discuss the computational processes for realizing
two of the visually salient features, namely, the protrusion and
the boundary strength. We also describe how to incorporate each
visually salient feature into the mesh-decomposition process.
As to the third salient feature, the relative size of components,
we can easily calculate it once the protrusion and the boundary
strength are known. We shall use the relative size feature in the
mesh retrieval process. This section is organized as follows. In
Section III-A, we present the computational process for char-
acterizing the protrusion of an arbitrary surface mesh. Based
on protrusion characterization, a local maximum approach for
choosing the salient representatives of parts is proposed and
described in Section III.B. In Section III-C, we describe in
detail the proposed computational process for modeling the
boundary strength. The proposed measure of boundary strength
is used as the guideline to find the locale of a part’s boundary. In
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Section III-D, a coarse-to-fine approach is proposed for finding
the locale of a part’s boundary. In Section III-E, Katz and Tal’s
algorithm for determining the boundary of a part (presented in
[15]) is described for the purpose of completeness.

A. Modeling the Protrusion as the Degree of Center

In this section, we propose a suitable way to characterize the
protrusion of a shape. It is intuitive that a protrusion is closely
related to the skeletal structure of a shape. As a result, some
existing skeletonization methods [5], [21], [22], [32] may be
useful for characterizing the protrusion. In our investigations,
however, we found that the integral function proposed by Hi-
laga et al. [14] is more suitable for protrusion characterization.
The main reasons are as follows. First, the integral function
can be constructed on any type of polygonal meshes, including
non-orientable, non-closed, and non-manifold surfaces. Second,
the function is very stable so that there is no initial point selec-
tion problem. Third, the integral can be calculated over the entire
surface. As a result, the protrusion of every vertex is accessible
to any salience-guided process. Finally, the function is not only
invariant to geometrical transformations (such as rotation, trans-
lation, and scaling), but is also resistant to noise added to vertex
coordinates. Therefore, we adopt the integral function described
in [14] to characterize the protrusion of a part.

In [14], the degree of center at the point v on the surface S is
defined as follows [14]:

w(v) = /esg(vvp) ds )

where g(v,p) represents the geodesic distance between v and
p on S. The continuous integral function u(v) is defined as the
total sum of geodesic distance from the point v to all points on
S. In other words, the value of ;(v) can be interpreted as a dis-
tance from the point v to arbitrary points on S. More precisely,
a smaller value of ;(v) indicates that the point v is closer to the
center of the surface S. On the other hand, a larger value of 1(v)
means that the point v is farther from the center of the surface.
It can be seen from (1) that calculating the integral based on
geodesic distance is computationally prohibitive. To trade off
accuracy for computational efficiency, Hilaga et al. employed
Dijkstra’s algorithm to approximate geodesic distance based on
edge length of a 3-D mesh.

Here, in contrast to [14], the integral function is constructed
on the dual graph of a given 3-D mesh, G = (V, F), where V'
and E represent the set of dual vertices and the set of dual edges,
respectively. A dual vertex v € V is referred to as the center of
mass of a face in the original mesh, while a dual edge (u,v) € E
links the center-of-mass of two adjacent faces and intersects at
the midpoint of the edge shared by the two faces. For computa-
tional efficiency, we segment the mesh into small patches of ap-
proximately equal size, which we called base patches. Each base
patch is represented by a single dual vertex, b;, located at its ap-
proximate center. Such a base patch is constructed by a modified
version of Dijkstra’s algorithm such that the shortest distance
between the base vertex and any vertex within the base patch is
less than a radius value. As shown in Fig. 3, the darker region is
the base patch of the radius thr, with the base dual-vertex b; in
its center. Obviously, by increasing the number of base patches,
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Fig. 3. Illustration of the base patch construction for protrusion characteriza-
tion: the darker region is the base patch occupied by b;.

(a) (b) (©)

Fig. 4. Protrusion degree calculated on different 3-D meshes. (a) Cactus. (b)
Dinopet. (c) Hummingbird.

amore accurate integral can be obtained; however, the drawback
is an increase of computation time. Let area(v) denote the area
of the mesh face corresponding to a dual vertex v and area(V')
denote the total area of the object surface. The protrusion degree
at a dual vertex v can be defined as in [14]

p(v) = 3 g(v,bi) - area(P,) )

where {bg, b1, ...} are the base dual-vertices representing the
base patches { Py, P1,...}. In addition, area(F;) is the area
of the entire base patch area(F;) = >, cp area(v;) and
> ;area(P;) = area(V'), while g(v,b;) returns the geodesic
distance between the dual vertex v and the base vertex b;.
Since the function x(v) defined in (2) is not invariant to scaling
transformation, a normalized version of p(v) is defined as in
(14]
p(v) — ming,ey p(u)

Protrusion(v) = maxacy i(w) 3)
ue

The calculation of the integral function has the complexity
O(|V'|log|V]), where |V| is the number of faces on the mesh.
Using the normalized protrusion degree defined in (3), we can
calculate a numeric value (ranging from O to 1) for each dual
vertex located on a 3-D mesh. The farther a dual vertex is from
the center of a 3-D mesh, the larger the protrusion degree will
be. Fig. 4 illustrates the protrusion degree calculated on different
3-D meshes. Note that a darker color represents a protrusion
degree close to 0, while a lighter color means the protrusion
degree is close to 1.

B. Choosing the Salient Representatives of Parts

Here, we describe how to select a set of salient representatives
from a given 3-D mesh. The local maxima of protrusion degrees
is the criterion used to select salient features. After the selection
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process is completed, each identified local maximum can be re-
garded as a salient representative of a part. Given a dual vertex
r € V, the dual vertex is chosen as a salient representative of a
part if the following condition is satisfied:

Protrusion(r) = I%Lx{Protrusion(v)} 4)

where W,. = {v € V|g(r,v) < thr,} is an observation window
for finding a local maximum of protrusion degrees; and thr,
represents the size of the observation window, with which we
can control the range of influence of a protrusive stimulus. The
observation window can be constructed using the modified ver-
sion of Dijkstra’s algorithm mentioned in the previous section.
By replacing b; and thr, in Fig. 3 with r and thr,,, respectively,
the darker region shown in Fig. 3 can be interpreted as the ob-
servation window for choosing the salient representative. More-
over, if the protrusion degree of the vertex r (i.e., the star shown
in Fig. 3) is the largest value within the local window, the vertex
is chosen as the salient representative. Note that since the ob-
servation windows of local maxima are subject to overlap, only
one of them is chosen as a salient representative.

C. Modeling the Boundary Strength Based on the Border Area
Change

In this section, we describe how to convert the concept of
boundary strength into a computational process. Since the
boundary of a part is completely unknown, we start from the
surface mesh and the salient representatives obtained in the
previous section. Motivated by the concept of locale turning
(described in Section II), we use Dijkstra’s algorithm [4] to
explore how the surface evolves in the locale of a boundary.
For clarity, we split the computational process for modeling the
boundary strength into two steps:

1) Step 1. Establishing the Candidate Locales: Given a
salient representative of a part, 7, a set of candidate locales,
{L*} = {L% L}, ...}, is established. For simplicity and later
use, we drop the subscript 7 in subsequent descriptions and
denote the xth candidate locale as

L*={v|VweV,z-e<DWw)<(z+1)-e}
forx € {0,...,1—-1} (5

where e represents the extent of a candidate locale, in which the
boundary evolution is explored; and | = |max,cy D(v)/e] is
the number of candidate locales established. D(v) returns the
shortest distance from the source, r, to a dual vertex, v, in terms
of geodesic distance and protrusive difference. Fig. 5 illustrates
that based on the new distance measure D( - ), the first two can-
didate locales, L° and L', are established using the modified
version of Dijkstra’s algorithm (as in Section III-A). To compute
the shortest distance D( - ), the weight for each edge (u,v) € E
in the dual graph is defined as follows:

+(1-9)

Len(u, v) Prot(u,v)

avg(Prot) ©

Weight =90-

eight(u, v) avg(Len)
where Len(u, v) is the length of a dual edge between u and v.
Here, Prot(u,v) represents the absolute protrusion degree of
difference between two dual vertices, v and v. Also, avg(Len)
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Fig. 5. Illustration of the candidate locales construction: the two darker regions
are the first two candidate locales of the salient representative of a part.

and avg(Prot) represent the average length and the average pro-
trusion degree difference, respectively. In order to fulfill the
proximity and similarity requirement of the Gestalt laws, the
first term on the right-hand side of (6) is usually considered in
Dijkstra’s algorithm to determine the shortest distance (or path)
on a graph in terms of the geodesic proximity. The purpose of
the second term is to balance the effect caused by the geodesic
proximity, while creating the candiate locales containing sim-
ilar protrusion degrees; ¢ is the weighting between the two con-
straints. Moreover, including the protrusive similarity is helpful
in maintaining a locale’s boundaries approximately parallel to a
part’s boundaries.

Since each salient representative produces a set of candidate
locales and eventually grows into the whole 3-D mesh, certain
of candidate locales must “march” by the potential region of
its corresponding part boundary. However, the sets of candidate
locales will overlap one another. To prevent candidate locales
from marching into the regions occupied by other parts, a con-
strained set of candidate locales is constructed such that the re-
gion-growing process always ends whenever a termination base
is touched. To do so, we first define the termination base, K, as
follows:

K = {v|Vv € V,Protrusion(v) < thry} 7

where thry is the parameter used to collect the set of faces that
forms the termination base. Next, the constrained set of candi-
date locales, L, is defined as the union of (m + 1) consecutive
locales

m<l—1

L= U L* (8)
=0
satisfying the following constraint:

L NK#0, forz € {m — Ap,...,m} 9)

where A} is used to specify that the last (A, + 1) locales in L
overlap with the termination base, K. By the above construc-
tion, the overlap between a constrained set of locales and the
termination base provides a potential region in which to find the
correct boundary of a part.

2) Step 2. Modeling the Boundary Strength: With the con-
strained set of candidate locales established in Step 1, we now

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 1, JANUARY 2007

consider two adjacent locales in L to determine how the surface
evolves in candidate locales. Let V7= denote the set of dual ver-
tices in L**! € L that has a dual edge joining L* € L in the
graph GG. We then associate the following geometric property to
the xth candidate locale in LL :

flx) =) area(v).

veVye

(10)

Since V. is a set of dual vertices that collects the direct
neighbors between L® and L**!, f(z) can be regarded as
the total-area-of-border between two adjacent candidate lo-
cales. Based on the geometric property defined in (10), we
model the boundary strength as the total-area-of-border change
in response to the boundary’s evolution. The modeling is
reasonable because, at the border of two adjacent parts, the
total-area-of-border defined above will usually undergo a sig-
nificant change. Therefore, to judge whether a locale contains a
boundary using the total-area-of-border change is a justifiable
choice. As a consequence, the boundary strength at the xth
candidate locale can be defined as follows:

Boundary_Strength(z) = |f(z + 1) — f(x)|. (11)
By obtaining the measure of boundary evolution for the
boundary strength, we can explore how the surface evolves in
the locale of a part’s boundary. Moreover, by treating f(x)
as a one-dimensional function defined in L, we can make the
process for finding the locale of a part’s boundary analytic.

D. Finding the Locale of a Part’s Boundary

In this section, we describe how to use the previously defined
boundary strength to locate the locale of a part’s boundary.
As mentioned in the previous section, the boundary strength is
quantified in response to the boundary’s evolutionary process.
Hence, the locale of a part’s boundary should possess the max-
imum boundary strength. However, the function f(x) is very
jagged (or noisy), since the faces in the immediate neighbor of
the xth candidate locale can never have a regular area due to the
nature of a mesh-based object. This makes finding the locale
of a part’s boundary very difficult. To overcome this, based on
Haar wavelet representation [23], [25], the function f(z) is
transformed into w different scales, fi(x), fo(x),..., fu(z).
Then, the candidate locale that possesses the most significant
boundary strength is traced from a coarser scale f;(z) to a finer
scale f;_1(x) until a predefined finer scale is reached. In this
way, one can conduct a coarse-to-fine search to identify the lo-
cale that contains a part’s boundary. Let k;_; denote the index
of the candidate locale that possesses the maximum boundary
strength in f;j_q(«). Then, the index k;_, is determined by the
following recursion (see (12), shown at the bottom of the page,
where I; = {2kj,...,2k; + 2} is the search range derived
from the index k; (i.e., the k;th candidate locale in f;(z)).
Boundary Strength;_;(z) is equal to [cj—1241 — ¢j-12],

k., = arg max, Boundary _Strength, (z),
kj_1 = argmax,es, Boundary Strength; (z), if 1 <j<w

initially (12)
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a part's boundary ~ maximum-flow (minimum-cut)

Fig. 6. Illustration of constructing the boundary by solving the maximum-flow
(minimum-cut) problem.

which can be regarded as the boundary strength characterized
in the finer scale f;_i(z). Note that the above recursion is
stopped at the finer scale f; (), since the original function f(x)
is too noisy to correctly find the locale of the part’s boundary.
Furthermore, since the extent of a candidate locale may be too
small to contain a part’s boundary, we can extend it as follows:

2k1+A_

- U

$=2k1—A+

L*, L°elL (13)

where A_ and A, are used to, respectively, control the left
and right extent of the candidate locale found above. After the
region containing a part’s boundary is found, the next step is to
construct the boundary. In [15], Katz and Tal have shown that
by defining an appropriate capacity function, the boundary can
be found by solving a maximum-flow (minimum-cut) problem
[4], [10]. We, therefore, apply Katz and Tal’s method [15] to
construct the boundary.

E. Determining the Boundary of a Part

In this section, for the purpose of completeness, we describe
Katz and Tal’s method [15] for determining a part’s boundary.
As described in [15], the problem of how to construct a part’s
boundary within the region containing the boundary is formu-
lated as a maximum-flow (minimum-cut) in an undirected con-
strained flow network graph problem. To construct the flow net-
work graph, we denote the locale, L, found in the previous sec-
tion by the dual graph Gy = (V, ) and the remaining two
regions A and B, which are separated by i, by Ga = (Va, E4)
and Gg = (Vp, Ep), respectively (i.e., GAUGEUGB =G@G). In
addition, the set of all dual-vertices in V4 whose corresponding
faces in A share an edge with faces in L is denoted by V5 ,
(resp. VEB)' Next, we construct an undirected flow network
graph G’ = (V', E’) by adding two new vertices, s (source)
and ¢ (sink), as in [15]

! — ~ '~ ~
Vi=VeuVe Ve U st

I - Z.
E' = Bz U{(s,v),Yv € V5 , } U{(t,v),Yv € V5 }

U{euv EE|UE VE,’UG {VEAUVEB}} (14)

As illustrated in Fig. 6, the dotted mesh is the region L (i.e., the
nodes 3—11) while the solid lines and circle nodes together form
the constrained flow network graph. In addition, the two nodes
1 and 2 shown in Fig. 6 belong to the region A while the two
nodes 12 and 13 belong to the region B. Note that in (14), the
goal of adding the two sets of vertices, Vf " (i.e., the nodes 1
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TABLE 1
TRIANGULATED MESHES USED IN OUR EXPERIMENTS
Model Number of || Number of Running
name vertices faces time (sec.)
Bunny 3752 7500 5.880
Cactus 620 1236 0.306
Cat 2779 5544 3.355
Cheetah 4704 9404 8.077
Cheetah?2 5027 10050 9.036
Dinopet 2039 3999 2.303
Duck 716 1428 0.462
Female 1792 3572 1.573
Hand 1577 3110 1.472
Horse 2502 5000 3.284
Hummingbird 830 1640 0.611
Manatee 1977 3940 2.043
Santa 2502 5000 3.385
Stingray 997 1990 1.142
Tiger 956 1908 0.727
) it
SR
>V
| R

(a) (b)

Fig. 7. Tllustration of the (a) 32 candidate locales, (b) termination base, and (c)
constrained candidate locales construction.

and 2 in Fig. 6) and VEB (i.e., the nodes 12 and 13 in Fig. 6),
is to consider the case that the boundary is on either side of the
locale, that is either the bouridary between Vf " and L or the
boundary between V-, and L.

After the flow network graph is constructed, the capacity
function Cap on an edge (u,v) € E’ is defined as in [15]

Cap(u,v)
——L . if {u,v # s,t}
— 1+Ang_Dist(auy )avg(Ang_Dist)’ ? ?
0, else

5)

where «,,, represents the angle between the two faces sharing
the same edge (u,v) and Ang_Dist is a conversion function



52

(a)

Original signal f(x)
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x

(e)

The second scale of the original signal
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(d)

The first scale of the original signal

()

The third scale of the original signal

x

(h)

Fig. 8. Each candidate locale is associated with its corresponding geometric property, which can be regarded as a one-dimensional function that defines an object
surface. (a)-(d) Different scaled versions of the function f(z) plotted on the object surface. (e)-(h) Different scaled versions of the function f(z) corresponding
to (a)—(d), respectively. (a)—(e) f(x) € Vo for0 < & < 31, (f) ky = 6,(g) k> = 2and I3 = {4,5,6},(h) k3 = 1,and I; = {2.3,4}.

Ang Dist(a,) = n(1 — cos(@us)). The conversion function
is used to map the dihedral angle «,, to a positive value;
avg(Agn_Dist) represents the average angle distance over the
entire mesh. In addition, a small positive value for 7 is used for
convex angles while n = 1 is used for concave angles. In [15],
Katz and Tal have shown that by the definition of Cap(u,v),
the minimum cut found in the flow network graph tends to
pass through edges having highly concave dihedral angles.
As shown in Fig. 6, the thicker line represents the boundary
corresponding to the maximum-flow (minimum-cut) in the flow
network graph.

With the proposed measures for the protrusion and the
boundary strength, the significant components of an arbitrary

3-D mesh can be identified and extracted according to their vi-
sual salience (i.e., visual significance). In terms of efficiency, the
total complexity of the proposed method is O(|V |?log|V'|). The
protrusion characterization can be performed in O(|V'|log|V])
[14]. In addition, the process for choosing a part’s salient
representative costs O(|V |*log|V']). The process for modeling
the boundary strength can be performed in O(R|V|log|V]),
where R denotes the number of salient representatives.

IV. EXPERIMENTAL RESULTS

A series of experiments were conducted to test the effec-
tiveness of the proposed method. We used the set of triangu-
lated meshes listed in Table I as the data set in our experiments.
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Moreover, all the parameters used in our experiments were the
same and set as follows. To choose the salient representatives
of parts, we found that most of the salient representatives could
be properly chosen by assigning thr, = 5 - thr,, where thr,
was used to generate the base patches for protrusion character-
ization (as mentioned in Section III-A). In the implementation
process, we adopted the radius value thr,, = 1/0.005 - area(V')
described in [14] to generate the set of base patches. Note that
since the parameter, thr,, is related to the total area of a mesh
surface, the number of salient representatives depends on the
mesh itself. As shown in Fig. 10, different meshes have dif-
ferent numbers of salient representatives. (i.e., the balls on the
surfaces). To generate the constrained set of candidate locales,
the threshold value thr, = 0.05 was adopted to generate the ter-
mination base. To perform Dijkstra’s algorithm, the parameter
6 = 0.5 was used to balance the weighting between the geodesic
proximity and the protrusive similarity. To obtain the wavelet
transform of f(z), a fixed number of candidate locales [ = 32
was adopted. As a result, we assigned the extent of a locale as
e = |max,ey D(v)/32] during the process of collecting can-
didate locales. In addition, forx € {m+1,...,l—1} the value
of f(x) was padded with f(m).

A. Results of Finding the Locale of a Part’s Boundary

This experiment was comprised of two parts. The intent of
the first part was to show how to construct the candidate lo-
cales, the termination base, and the constrained set of candi-
date locales. As shown in Fig. 7(a), 32 candidate locales were
collected by applying Dijkstra’s algorithm to the source (i.e.,
the ball near the dinopet’s mouth). Meanwhile, Fig. 7(b) shows
the termination base extracted from the dinopet model. Based
on the results of Fig. 7(a) and (b), the constrained set of candi-
date locales was collected such that the consecutive candidate
locales (starting with L°) were gathered together and the last
three candidate locales overlapped with the termination base.
As shown in Fig. 7(c), these constrained candidate locales were
effective in localizing the visual part. The intent of the second
part of this experiment was to show the effectiveness of the
proposed method in finding the locale of a boundary. As men-
tioned in Section III-C, the change of total-area-of-border be-
tween two adjacent locales is utilized to judge how a part’s
boundary evolves in the candidate locales. For visualization pur-
poses, the measure of total-area-of-border (i.e., f(x)) is con-
verted into a grayscale; thus, the darker the grayscale, the larger
the total-area-of-border. Fig. 8(a) shows the original function
f(z), shown in Fig. 8(e), plotted on the surface of the dinopet
model. More precisely, the grayscale of the xth candidate lo-
cale on the surface mesh corresponds to the total-area-of-border
f(z). It can be seen from Fig. (e) that the shape of the orig-
inal function is rough and uneven. Fig. 8(f)—(h) show three dif-
ferent scales of the original function, fi(z), f2(x), and f3(x),
respectively. Their corresponding plots on the surface mesh are
shown in Fig. 8(b)-(d), respectively. To find the locale of a
part’s boundary, we started from the coarsest scale f3(z) and
then found the most significant boundary strength within this
scale (i.e., k3 = 1). This shows that the locale of the boundary
can be found within the 8th-16th candidate locales. Next, within
the second scale, fo(x), the most significant boundary strength
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Fig. 9. Locale of the part’s boundary and its decomposition result: (a) the
region that contains a part’s boundary was found by applying the proposed
method; (b) the nearly concave boundary was constructed within the region in
(a) using the method proposed by Katz and Tal [15]. (a) Locale of the part’s
boundary (i.e., L** U L2 U L*3). (b) Visual part and its boundary.

was located at ko = 2. The search range for the locale of the
boundary was then shrunk (i.e., within the 8th-12th candidate
locales). Finally, we stopped at the finer scale, f1(x),and k1 = 6
was found within this scale. The locale of the boundary was
then formed by the union of the 11th-13th candidate locales. As
shown in Fig. 9, the proposed method described in Section III-D
is effective in finding the locale of a part’s boundary.

B. Visual Salience-Guided Mesh Decomposition for Extracting
Significant Components

This experiment was comprised of three parts. The intent
of the first part of this experiment was to show the effective-
ness of the proposed method in decomposing a 3-D mesh into
parts. In this experiment, each model listed in Table I was de-
composed into a set of parts using the proposed decomposition
method#. The last column of Table I lists the running time of
decomposing the 15 test models into parts, on a Pentium IV,
1.98-GHz, 1-GB RAM PC. Each individual part of a model
was then associated with its visually salient features so that
the significant component could be identified. Fig. 10 shows
the 15 test models decomposed into visual parts after the vi-
sual salience-guided mesh-decomposition method was applied.
Since protrusion characterization was used to choose the salient
representatives, it can be seen from Fig. 10 that most of the rep-
resentatives were located at the tips of parts. On the other hand,
as shown in Fig. 10, the boundaries between the parts and the
main “body” were constructed precisely according to boundary
strength.

Since human visual perception of parts is insensitive to noise
and small undulations applied to the vertex coordinates of a 3-D
object, the proposed method mimics the same visual processes.

“Note that in the proposed mesh-decomposition scheme, each part is individ-
ually decomposed from a 3-D mesh. As a result, it is possible that a part can be
covered by other parts. To deal with this issue, the overlapped faces can be sep-
arated according to their geodesic distance to the salient representatives. On the
other hand, the overlapped parts may be merged in the case where the amount
of the overlapped area is larger than a predefined threshold. Currently, these two
features are implemented by our system. However, a more intelligent process for
merging parts should be developed to deal with the situation where the salient
representatives are chosen incorrectly.
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Fig. 10. Visual salience-guided mesh-decomposition results, where the salient representatives of parts chosen from different meshes are indicated by balls on
the surfaces: (a) bunny—three representatives; (b) cactus—four representatives; (c) cat—six representatives; (d) cheetah—six representatives; (e) cheetah two to
six representatives; (f) dinopet—six representatives; (g) duck—two representatives; (h) female—five representatives; (i) hand—six representatives; (j) horse—five
representatives; (k) hummingbird—four representatives; (I) manatee—four representatives; (m) santa—five representatives; (n) stingray—three representatives;

(0) tiger—six representatives.

Thus, the intent of the second part of this experiment was to
show the robustness of the proposed method under the random-
ization of vertex coordinates. The randomization was controlled
by means of the noise strength, which is defined as the ratio
of the largest displacement to the longest edge of the object’s
bounding box. Fig. 11(a)—(c) show the effects of different levels
of noise on the randomization applied to vertex coordinates of
the object’s surface. It is obvious that the proposed method still
succeeds in decomposing the dinopet model into its component
parts.

The intent of the third part of this experiment was to compare
the proposed scheme against the method of Katz and Tal [15].
As mentioned in [15], there are two versions of Katz and Tal’s
method: the (recursive) binary decomposition and the fuzzy
k-means decomposition. Since the proposed method is type of
k-way decomposition, we implemented Katz and Tal’s fuzzy
k-means decomposition method for the purpose of comparison.
Fig. 12 shows two different results of decomposing the donkey
model used in [15] into parts using the k-means based method
and the proposed method, respectively. As shown in Fig. 12(a),
seven representatives were chosen in order to generate the
corresponding patches. Fig. 12(b) shows that six salient repre-

sentatives chosen using the method described in Section I1I-B
were located at the tips of the donkey’s four legs, the tip of the
donkey’s head, and the tip of the donkey’s tail, respectively. In
the proposed decomposition scheme, contrary to the k-means
based method [15], the termination base represents the main
body of the model while each feature point represents the
part that protrudes from the main body. As a result, the total
number of patches generated by the proposed method is equal
to the number of salient representatives plus one main body.
Moreoever, as shown in Fig. 12(b), the proposed decomposition
algorithm favors the boundaries between the protrusive parts
and the main body. With regard to efficiency, the running time
of decomposing the donkey model using the k-means based
approach, which required four iterations to converge, was 2.707
s while that of using the proposed method was 0.452 s. Ob-
viously, the proposed decomposition scheme is more efficient
than the k-means scheme. However, the proposed method,
like other decomposition techniques, has its limitations. In
the following paragraph, we describe the limitations of the
proposed method.

One limitation of the proposed method is that the method
failed in decomposing the models containing complex topology
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(b)

Fig. 11. Robustness of the proposed visual salience-guided mesh-decomposi-
tion method under the randomization of vertex coordinates, which is controlled
by means of the noise strength ns (i.e., the ratio of the largest displacement to
the longest edge of the object’s bounding box). (a) ns = 0.3. (b) ns = 0.4. (c)
ns = 0.5

back view

£d
"c

S r'd

(@ (b)

Fig. 12. Results of decomposing the donkey model used in [15] into parts
using (a) the fuzzy k-means clustering method (as in [15]) and (b) the proposed
method, respectively.

(b)

Fig. 13. Situations in which the proposed method failed to decompose a 3-D
mesh into parts: (a) the coffee mug model, which has genus-1 topology, and
(b) the Venus head model, which contains more highly concave features than
protrusive features.

and more concave features. As shown in Fig. 13(a), the proposed
method succeeded in detecting the three feature points repre-
senting the handle, the interior, and the exterior of the coffee
mug model; however, the proposed method failed to decompose
the three parts because of the failure in boundary strength char-
acterization. Fig. 13(b) shows that the proposed method failed to
decompose the Venus head model since the head model contains
less protrusive features but more concave features. According to
Hoffman and Singh’s theory [12], to decompose the model con-
taining highly concave features, the boundary strength would be
more useful for guiding the decomposition process than the pro-
trusion-based features. As a result, Katz and Tal’s method would
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properly decompose the models containing highly concave fea-
tures into parts while the proposed scheme would be more effi-
cient and effective in extracting the elongated parts from a given
mesh. Another limitation of the proposed method is the ambi-
guity in parts decomposition. For example, the cactus shown in
Fig. 10(b) should be divided into three parts, that is one trunk
and two branches; however, as shown in Fig. 10(b), the proposed
method cannot solve the problem. Finally, it may be useful to de-
velop an optimization scheme that simultaneously incorporates
all the three visually salient factors. Our current implementa-
tion is based on the two visually salient features: the protrusion
and the boundary strength of a part. However, as mentioned in
Section II, human visual perception determines a part’s salience
by three factors: the protrusion, the boundary strength, and the
relative size of a part. Although the relative size feature was not
used in the mesh-decomposition process, it can be easily calcu-
lated and used in the 3-D mesh retrieval process.

V. CONCLUSION

We have presented a visual salience-guided mesh-decom-
position scheme based on Hoffman and Singh’s theory of part
salience [12] for extracting significant components from 3-D
meshes. More specifically, the protrusion and the boundary
strength are modeled as the degree of center on the surface and
the total-area-of-border change, respectively. To extract the
visually significant components from a given 3-D mesh, these
salient features are incorporated into the mesh-decomposition
process. The proposed scheme has three remarkable features:
1) the protrusion characterized over the entire surface is used
as a guide to choose the salient representatives of the parts; 2)
the total-area-of-border change characterized over the entire
surface is used as a guide to find the locale of a part’s boundary;
and 3) the robustness against randomization of vertex coordi-
nates benefits greatly from the incorporation of visual salience
into the decomposition process. To the best of our knowledge,
this is the first 3-D mesh-decomposition scheme that not only
identifies the part’s boundaries defined by the minima rule, but
also associates the part with its visual salience.
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