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The problem of calculating power and sample size for the Wilcoxon signed-rank test is discussed. The
exact variance large-sample method is examined and explicit formulas are derived for observations
from uniform, normal and Laplace distributions. Numerical results are presented to evaluate the exact
variance procedure and compare its performance with two simplified approximations that have been
suggested in the statistical literature. From the simulation results, it is evident that the exact variance
approach is more accurate than the two approximate methods. To facilitate practical use, tabulated
values of the estimated sample sizes are provided.

Keywords: Large-sample approximation; Nonparametric method; One-sample location problem

1. Introduction

The Wilcoxon signed-rank test is one of the most widely used nonparametric methods for
the one-sample location problem. It provides an important alternative to the parametric t-test
for giving robust results without the restriction of normality assumption in the population.
Generally, the power function of the Wilcoxon signed-rank test is very difficult to express and
only a few special cases have been examined, see Klotz [1] and Arnold [2] for shifts in normal
and t-distributions, respectively. For the purpose of power and sample size calculations for
the Wilcoxon signed-rank test, two simplified methods have been proposed in the statistical
literature: Lehmann [3, p. 167] and Noether [4]. Both procedures are based on some approxi-
mate expressions for the asymptotic normal distribution of the Wilcoxon signed-rank statistic.
Despite the extensive applicability in the planning of one-sample study, no research to date has
compared these two formulas for their finite-sample properties. In fact, they yield markedly
different results according to the findings presented in this article. More importantly, verifica-
tion of the accuracy of their methods under a variety of different distributions would be useful.
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718 G. Shieh et al.

Furthermore, it is important to note that the approximations suggested by Lehmann [3] and
Noether [4] rely on the assumption that the alternatives do not differ too much from the null
hypothesis. It is of great interest to have a rule of thumb that indicates whether the location
shift is small enough so that the results are valid. Unfortunately, no such general guideline is
available. This serious disadvantage renders the limited use of their procedures in practical
situations.

In order to improve the practical usefulness, this article aims to investigate exact variance
large-sample solution to power and sample size determinations for the Wilcoxon signed-rank
test. We concentrate on three prominent situations that represent typical light-, standard- and
heavy-tailed distributions: uniform, normal and Laplace. For these three cases, analytic forms
are derived explicitly and exploited thoroughly to assess the finite-sample adequacy of the
exact variance method. Moreover, the characteristics of the simplified procedures considered
in equation (4.32) of Lehmann [3] and Noether [4] are also examined in an attempt to provide
some guidance in the choice of appropriate method for power and sample size calculations.

The next section presents some of the analytical justification and important details of
the exact variance large-sample method, as well as two related simplified approaches. In
section 3, Monte Carlo simulation studies are conducted to evaluate the exact variance proce-
dure and compare its performance with the approximate approaches under the three prescribed
symmetric distributions. The corresponding sample sizes needed to achieve the specified power
levels are summarized. Finally, section 4 contains some final remarks.

2. Power and sample size calculations

Consider a random sample X1, . . . , XN from an arbitrary continuous and symmetric
cumulative distribution F(x − θ), where θ is the unique median and mean if it exists. It
is desirable to test the hypothesis H0: θ = 0 versus the alternative H1: θ > 0. We focus on the
Wilcoxon signed-rank statistic W in the context of nonparametric methods defined as follows:

W =
N∑

i=1

ϕ(Xi)R(|Xi |),

where ϕ(Xi) = 1 if Xi > 0 and 0 otherwise, and R(|Xi |) is the rank of |Xi | among
|X1|, . . . , |XN |. It was shown in Theorem 2.5.1 of Hettmansperger [5, p. 47] that the mean μ

and variance σ 2 of W are

μ = Np1 + N(N − 1)

2
p2

and

σ 2 = Np1(1 − p1) + N(N − 1)

2
p2(1 − p2) + 2N(N − 1)(p3 − p1p2)

+ N(N − 1)(N − 2)(p4 − p2
2),

(1)

respectively, where

p1 = P(X1 > 0) = F(θ), p2 = P(X1 + X2 > 0) =
∫

F(2θ + x)f (x) dx,

p3 = P(X1 + X2 > 0, X1 > 0) = (p2
1 + p2)/2,

p4 = P(X1 + X2 > 0, X1 + X3 > 0) =
∫

{F(2θ + x)}2f (x) dx,
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Power and sample size determinations for the Wilcoxon signed-rank test 719

and F(·) and f (·) are the cumulative distribution function and probability density function
of X1 under the null hypothesis H0: θ = 0, respectively. Furthermore, Theorem 2.5.4
of Hettmansperger [5, p. 56] shows that (W − μ)/σ has an asymptotic standard normal
distribution. Note that both μ and σ 2 are functions of (p1, p2, p3, p4) and consequently
depend on the value of θ . For the case of θ = 0, it can be easily obtained that μ and σ 2

given in equation (1) reduce to

μ0 = N(N + 1)

4
and σ 2

0 = N(N + 1)(2N + 1)

24
,

respectively. Therefore, the aforementioned test of location shift is carried out by rejecting
H0: θ = 0 if the standardized value (W − μ0)/σ0 is greater than zα , where α is the specified
significance level and zα is the 100(1 − α)th percentile of the standard normal distribution.

For the purpose of power and sample size calculations, we proceed to consider that
W ∼̇N(μ, σ 2) under H1. Hence, given distribution F(x − θ) with location θ(>0) and sample
size N , the statistical power achieved for testing hypothesis H0: θ = 0 versus the alternative
H1: θ > 0 with specified significance level α is approximated by the probability

P {W > μ0 + zασ0} .= 1 − �

(
zασ0 + μ0 − μ

σ

)
, (2)

where �(·) is the cumulative distribution function of the standard normal distribution. This
process can be reversed to calculate the sample size needed to test the null hypothesis with
specified significance level α and power 1 − β . However, it usually involves an iterative
process to find the solution because all the parameter values (μ0, σ0, μ, σ ) depend on the
sample size N . More specifically, the resulting sample size, denoted by NE , is the minimum
N which satisfies the inequality

(μ − μ0) ≥ (zασ0 + zβσ ).

In general, there are no simple closed-form expressions for the preceding equations given in
equation (1) except in some special cases. Essentially, the numerical computation requires the
one-dimensional integration with respect to the probability density function f (x). However,
it is prudent to examine the exact variance large-sample method described earlier for some
special F(x − θ) distributions that possesses potentially important implications. Hence, the
following three cases ranging from light-tailed to heavy-tailed distributions are presented.

1. Uniform (−1/2, 1/2):

p1 = 1

2
+ θ, p2 = 1

2
+ 2θ(1 − θ) and p4 = 1

3
+ 2θ − 8θ3

3
for θ ≥ 1

2
.

2. Standard normal N(0, 1):

p1 = �(θ), p2 = �(
√

2θ) and p4 = E[{�(2θ + Z)}2], where Z ∼ N(0, 1).

3. Laplace (0, 1):

p1 = 1 − 1

2
e−θ , p2 = 1 − 1

2
(1 + θ)e−2θ and p4 = 1 −

(
7

12
+ θ

)
e−2θ − 1

12
e−4θ .

These explicit expressions are employed to illustrate the distinct features of the exact variance
method in the subsequent section.
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720 G. Shieh et al.

Along the same line of power and sample size calculations within the framework ofWilcoxon
signed-rank test, two simplified approximations to the exact variance large-sample result have
been proposed. Based on the asymptotic normal distribution described earlier, Lehmann [3,
p. 167] and Hettmansperger [5, p. 60] suggested to approximate the power by

1 − �

(
zα − Nθf (0) + N(N − 1)θf ∗(0)

σ0

)
, (3)

where f (0) is f (x) evaluated at x = 0, and f ∗(0) = ∫
f 2(x)dx. Correspondingly, Noether [4]

proposed the power function

1 − �

(
zα − (3N)1/2

(
p2 − 1

2

))
. (4)

Just as in the case of the exact variance method, both (3) and (4) can be applied to construct
respective sample size estimates NL and NN required for testing the specified hypothesis with
significance level α and power 1 − β. Nevertheless, it is worthwhile to note that these two
simplified procedures are valid for small values of θ . Failing to account for this nature may
distort power analysis and lead to a poor choice of sample size. This phenomenon will be
demonstrated in the following numerical illustrations.

3. Simulation study

As all the three approaches considered here use large-sample justifications, simulation studies
are conducted to assess their adequacy for finite-sample and robustness for various configu-
rations. For illustration, the three distributions of uniform, normal and Laplace are exploited
as the bases for the numerical examinations.

To help clarify similarities and differences for the competing procedures in performing
power and sample size calculations, the sample sizes (NE, NL, NN) needed to achieve the
power levels: 0.80, 0.90 and 0.95 are computed for the three methods defined in equations
(2)–(4). We assume throughout the demonstration that type I error rate α = 0.05. In each
case, a total of six values of location shift are evaluated for F(x − θ) in terms of � = θ/σ .
The results for the three power levels of 0.80, 0.90 and 0.95 are summarized in tables 1–3,
respectively. SAS codes for the calculation of the exact variance large-sample method are
available upon request.

Table 1. Sample size required to attain power level 0.80.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Exact variance 653 172 47 23 14 10
Lehmann 620 157 41 19 12 8
Noether 656 175 50 26 17 13

Standard normal
Exact variance 649 164 42 20 12 9
Lehmann 649 163 42 19 11 8
Noether 652 167 45 23 15 12

Laplace (0, 1)
Exact variance 419 109 31 16 11 8
Lehmann 412 103 26 11 6 4
Noether 422 112 34 19 14 12

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
00

 2
6 

A
pr

il 
20

14
 



Power and sample size determinations for the Wilcoxon signed-rank test 721

Table 2. Sample size required to attain power level 0.90.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Exact variance 903 236 63 30 17 12
Lehmann 858 216 55 26 15 10
Noether 909 242 69 35 23 17

Standard normal
Exact variance 898 225 57 26 15 11
Lehmann 898 225 57 26 15 10
Noether 903 231 63 32 21 17

Laplace (0, 1)
Exact variance 580 150 42 21 14 10
Lehmann 571 143 36 16 9 6
Noether 585 156 47 27 19 16

Preliminary inspection of the tables yield the expected general relations: the computed
sample size increases as the location shift decreases for all three approaches. Also, it is inter-
esting to note that the ordering of sample size estimates is consistently NN > NE ≥ NL except
in the case of standard normal distribution for power level 0.95 where NN > NL ≥ NE in
table 3. However, the discrepancy between NL and NE in the last situation is never larger than
1. Although these values of sample sizes allow comparison of relative efficiencies of the meth-
ods, the magnitude of the sample size affects the accuracy of the asymptotic distribution and
the resulting formula. A fair comparison among these approaches must adjust for this factor.

In order to identify the most reliable method, we need to evaluate their actual or simulated
power with the nominal power for a given sample size. Hence, we unify the sample sizes in
the following simulations by choosing the sample size NE in tables 1–3 as the benchmark
to re-calculate the nominal powers for all competing approaches. Accordingly, the nominal
powers for the exact variance method are slightly greater than 0.8, 0.90 and 0.95 in tables 4–6,
respectively.

Estimates of the true power associated with the given sample size and distribution
configuration are then computed through Monte Carlo simulation of 10,000 independent data
sets. For each replicate, NE observations are generated from the selected distribution. Then
the Wilcoxon signed-rank test statistic is computed and the simulated power is the proportion
of the 10,000 replicates whose standardized test statistic values exceed the critical value zα .
The simulation results are presented in tables 4–6. The adequacy of the sample size formula

Table 3. Sample size required to attain power level 0.95.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Exact variance 1139 296 78 36 21 13
Lehmann 1084 273 70 32 19 13
Noether 1148 305 87 44 29 22

Standard normal
Exact variance 1133 283 71 32 18 12
Lehmann 1134 284 72 33 19 12
Noether 1141 291 79 40 27 21

Laplace (0, 1)
Exact variance 731 189 52 25 16 11
Lehmann 721 180 45 20 11 7
Noether 739 196 59 33 24 20
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722 G. Shieh et al.

Table 4. Simulated power at specified sample size when nominal power of exact
variance method is about 0.80.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Sample size 653 172 47 23 14 10
Nominal power

Exact variance 0.8001 0.8012 0.8022 0.8111 0.8171 0.8458
Lehmann 0.8180 0.8332 0.8541 0.8733 0.8843 0.9028
Noether 0.7986 0.7958 0.7825 0.7686 0.7445 0.7273

Simulated power
Error 0.8055 0.8064 0.8091 0.8123 0.8360 0.8593
Exact variance −0.0054 −0.0052 −0.0069 −0.0012 −0.0189 −0.0135
Lehmann 0.0125 0.0268 0.0450 0.0610 0.0483 0.0435
Noether −0.0069 −0.0106 −0.0266 −0.0437 −0.0915 −0.1320

Standard normal
Sample size 649 164 42 20 12 9
Nominal power

Exact variance 0.8001 0.8015 0.8001 0.8088 0.8074 0.8478
Lehmann 0.8005 0.8031 0.8074 0.8251 0.8395 0.8823
Noether 0.7985 0.7953 0.7762 0.7561 0.7195 0.7070

Simulated power
Error 0.8054 0.7970 0.7990 0.8084 0.8235 0.8468
Exact variance −0.0053 0.0045 0.0011 0.0004 −0.0161 0.0010
Lehmann −0.0049 0.0061 0.0084 0.0167 0.0160 0.0355
Noether −0.0069 −0.0017 −0.0228 −0.0523 −0.1040 −0.1398

Laplace (0, 1)
Sample size 419 109 31 16 11 8
Nominal power

Exact variance 0.8002 0.8003 0.8047 0.8079 0.8308 0.8185
Lehmann 0.8061 0.8208 0.8653 0.9097 0.9530 0.9726
Noether 0.7976 0.7907 0.7708 0.7409 0.7225 0.6755

Simulated power
Error 0.8050 0.7954 0.8099 0.8117 0.8265 0.8196
Exact variance −0.0048 0.0049 −0.0052 −0.0038 0.0043 −0.0011
Lehmann 0.0011 0.0254 0.0554 0.0980 0.1265 0.1530
Noether −0.0074 −0.0047 −0.0391 −0.0708 −0.1040 −0.1441

Table 5. Simulated power at specified sample size when nominal power of exact
variance method is about 0.90.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Sample size 903 236 63 30 17 12
Nominal power

Exact variance 0.9002 0.9008 0.9014 0.9090 0.9011 0.9290
Lehmann 0.9127 0.9219 0.9322 0.9408 0.9351 0.9470
Noether 0.8986 0.8944 0.8777 0.8582 0.8138 0.7937

Simulated power
Error 0.9047 0.8982 0.8928 0.8986 0.8862 0.9203
Exact variance −0.0045 0.0026 0.0086 0.0104 0.0149 0.0087
Lehmann 0.0080 0.0237 0.0394 0.0422 0.0489 0.0267
Noether −0.0061 −0.0038 −0.0151 −0.0404 −0.0724 −0.1266

Standard normal
Sample size 898 225 57 26 15 11
Nominal power

Exact variance 0.9003 0.9005 0.9024 0.9054 0.9036 0.9355
Lehmann 0.9002 0.9001 0.9013 0.9045 0.9064 0.9337
Noether 0.8986 0.8940 0.8762 0.8465 0.8007 0.7810

(continued)
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Power and sample size determinations for the Wilcoxon signed-rank test 723

Table 5. Continued.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Simulated power
Error 0.9027 0.9011 0.8988 0.8940 0.8988 0.9163
Exact variance −0.0024 −0.0006 0.0036 0.0114 0.0048 0.0192
Lehmann −0.0025 −0.0010 0.0025 0.0105 0.0076 0.0174
Noether −0.0041 −0.0071 −0.0226 −0.0475 −0.0981 −0.1353

Laplace (0, 1)
Sample size 580 150 42 21 14 10
Nominal power

Exact variance 0.9004 0.9005 0.9053 0.9073 0.9236 0.9212
Lehmann 0.9042 0.9131 0.9393 0.9609 0.9814 0.9898
Noether 0.8980 0.8913 0.8714 0.8364 0.8097 0.7590

Simulated power
Error 0.8971 0.8937 0.9002 0.8990 0.9101 0.9059
Exact variance 0.0033 0.0068 0.0051 0.0083 0.0135 0.0153
Lehmann 0.0071 0.0194 0.0391 0.0619 0.0713 0.0839
Noether 0.0009 −0.0024 −0.0288 −0.0626 −0.1004 −0.1469

Table 6. Simulated power at specified sample size when nominal power of exact
variance method is about 0.95.

� = θ/σ 0.1 0.2 0.4 0.6 0.8 1.0

Uniform (−1/2, 1/2)
Sample size 1139 296 78 36 21 13
Nominal power

Exact variance 0.9501 0.9502 0.9509 0.9538 0.9602 0.9537
Lehmann 0.9580 0.9631 0.9681 0.9701 0.9710 0.9612
Noether 0.9487 0.9449 0.9306 0.9085 0.8799 0.8212

Simulated power
Error 0.9496 0.9496 0.9481 0.9431 0.9433 0.9277
Exact variance 0.0005 0.0006 0.0028 0.0107 0.0169 0.0260
Lehmann 0.0084 0.0135 0.0200 0.0270 0.0277 0.0335
Noether −0.0009 −0.0047 −0.0175 −0.0346 −0.0634 −0.1065

Standard normal
Sample size 1133 283 71 32 18 12
Nominal power

Exact variance 0.9501 0.9503 0.9522 0.9559 0.9552 0.9599
Lehmann 0.9499 0.9494 0.9488 0.9493 0.9466 0.9507
Noether 0.9488 0.9452 0.9307 0.9055 0.8603 0.8114

Simulated power
Error 0.9504 0.9459 0.9489 0.9455 0.9361 0.9449
Exact variance −0.0003 0.0044 0.0033 0.0104 0.0191 0.0150
Lehmann −0.0005 0.0035 −0.0001 0.0038 0.0105 0.0058
Noether −0.0016 −0.0007 −0.0182 −0.0400 −0.0758 −0.1335

Laplace (0, 1)
Sample size 731 189 52 25 16 11
Nominal power

Exact variance 0.9500 0.9506 0.9531 0.9505 0.9571 0.9503
Lehmann 0.9523 0.9579 0.9716 0.9805 0.9902 0.9939
Noether 0.9482 0.9437 0.9259 0.8885 0.8533 0.7932

Simulated power
Error 0.9491 0.9509 0.9491 0.9390 0.9405 0.9283
Exact variance 0.0009 −0.0003 0.0040 0.0115 0.0166 0.0220
Lehmann 0.0032 0.0070 0.0225 0.0415 0.0497 0.0656
Noether −0.0009 −0.0072 −0.0232 −0.0505 −0.0872 −0.1351
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724 G. Shieh et al.

is determined by the difference between the nominal power and simulated power. For ease of
comparison, the discrepancy between nominal power and simulated power is also reported and
is termed as error = nominal power − simulated power. In general, the absolute errors increase
with decreasing nominal powers for all competing methods. The results suggest that the exact
variance method performs consistently well with respect to all distribution and location speci-
fications. For the two approximate procedures, the nominal powers of Lehmann’s [3] approach
tend to be higher than the simulated powers while Noether’s [4] method shows the opposite
pattern that the nominal powers are generally lower than the simulated powers. In addition,
both approximations give accurate results for small values of � = 0.1 and 0.2. However,
Lehmann’s method is slightly inferior. As expected, larger values of � appear to degrade the
two approximate approaches, especially, this phenomenon is more pronounced for Noether’s
approximation. Their performances also vary with the structure of distribution. In the case of
normal distribution, it is interesting to note that Lehmann’s approximation maintains a rea-
sonable agreement between the simulated power and the nominal power for all values of �.
Nevertheless, Lehmann’s approximation incurs substantially larger errors for heavy-tailed
Laplace distribution than the light-tailed uniform distribution. Also, Noether’s approximation
seems to deteriorate progressively from light- to heavy-tailed cases. Overall, the exact variance
large-sample method has a clear advantage over the two approximate counterparts.

4. Conclusion

The purpose of this article is to present power and sample size determinations for the Wilcoxon
signed-rank test that have not previously been discussed in literature, especially, the exact
variance large-sample method for obtaining accurate results. Analytical formulas are provided
for the three prominent situations of light-, standard- and heavy-tailed distributions: uniform,
normal and Laplace that researchers are likely to encounter with real data. In addition, we exam-
ine two approximations that are valid only for small values of location shift. Particular emphasis
is devoted to the demonstration of their differences that arise in power function considerations.
According to our findings, the accuracy of the two approximate approaches not only varies with
the underlying distributions but also decreases considerably for � = θ/σ > 0.2. One clear
advantage of the exact variance approach is that it circumvents the restriction of small values
of location shift, however, the formulation and computation is slightly more involved. In sum-
mary, the exact variance large-sample method is recommended according to its remarkable
accuracy under the range of distributions and location configurations considered here.

Acknowledgement

The authors wish to thank the associate editor and a referee for their suggestions for improving
the clarity of the exposition. The research of the second author was partially supported by
National Science Council grant NSC-93-2118-M-033-002.

References
[1] Klotz, J., 1963, Small sample power and efficiency for the one sample Wilcoxon and Normal scores tests. Annals

of Mathematical Statistics, 34, 624–632.
[2] Arnold, H.J., 1965, Small sample power of the one sample Wilcoxon test for non-normal shift alternatives. Annals

of Mathematical Statistics, 36, 1767–1778.
[3] Lehmann, E.L., 1998, Nonparametrics: Statistical Methods Based on Ranks (Upper Saddle River,

NJ: Prentice-Hall).
[4] Noether, G.E., 1987, Sample size determination for some common nonparametric tests. Journal of the American

Statistical Association, 82, 645–647.
[5] Hettmansperger, T.P., 1984, Statistical Inference Based on Ranks (New York: Wiley).

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
00

 2
6 

A
pr

il 
20

14
 


