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The origin for the upward curvature of the upper critical field �Hc2� observed in hydrate cobaltate
Na0.35CoO2·yH2O is investigated based on the microscopic gap equation. It is shown that the observed upward
curvature results from the transition between two different pairing symmetries that occur on different energy
bands. Furthermore, different pairing symmetries involved in the transition results in different upward curva-
tures. By considering transitions among all lowest possible pairing symmetries, it is found that the transition of
the pairing symmetry from s-wave at low fields to dx2−y2 + idxy at high fields is the best fit to the experimental
data. Our results provide an important clue to the understanding of the superconductivity in hydrate cobaltate.
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Since the discovery of superconductivity in hydrate cobal-
tate Na0.35CoO2·yH2O,1 extensive theoretical and experi-
mental studies have been devoted to elucidate the mecha-
nism of superconductivity. To unravel the mechanism,
identifying the underlying pairing symmetry would be the
first step. The two-dimensional triangle lattice formed by
CoO2 provides an alternative lattice symmetry to the square
CuO2 lattice in high Tc materials and has led to many pro-
posals for unconventional pairing symmetries. For singlet
pairing, the lowest possible unconventional symmetry with-
out breaking rotational symmetry is dx2−y2 ± idxy, and mecha-
nism based on the correlation effects for such symmetry has
been proposed.2–4 Possible spin-triplet f wave pairing was
also proposed based on ferromagnetic fluctuations.5–7 Ex-
perimentally, however, data reported show contradictory
conclusions,8 indicating the fragility of the superconductivity
in this system. Furthermore, there are evidences indicating
that two pairing symmetries may be involved in this
system.9–11 The issue of whether the pairing symmetry is
conventional or not is still unsettled and needs to be clarified.

In this paper, we shall focus on the data of the upper
critical fields, measured by the specific heat. The specific-
heat technique probes the bulk properties of the samples and
has been proved to be a powerful tool for investigating the
pairing state of many superconductors.12 Specifically, for the
hydrate cobaltate Na0.35CoO2·yH2O, upward curvature �a
kink structure in the slope� of Hc2 was observed.9,10 Similar
structure was also observed in early studies of high Tc

materials.13 Based on the Ginzburg-Landau theory, Joynt14

attributed the upward curvature to the transition between two
different pairing symmetries with different critical tempera-
tures. However, in a later investigation based on microscopic
formulation of the gap equation,15 negative results were
found, indicating that the upward curvature is not due to
mixing of two pairing order parameters. The reason why two
approaches give different results lies in the fact that in the
Ginzburg-Landau theory, Hc2�T−Tc and phenomenologi-
cally, both Tc and slopes of Hc2 are often chosen arbitrarily.

If larger slope of Hc2 is chosen for smaller Tc, Hc2 of two
pairing symmetries near their Tc’s essentially shows the in-
tersection of two straight lines. A kink in the slope thus arises
and the upward curvature can be easily simulated. In real
materials, however, the slope of Hc2 and Tc both depend on
microscopic details and are not independent from each other.
In fact, in the Gorkov’s microscopic derivation of the
Ginzburg-Landau equation,16 the slope is proportional to
m*Tc /�F with m* being the effective mass of the electron and
�F being the Fermi energy. For a single band, m* /�F are the
same for different pairing symmetries, hence smaller Tc goes
with smaller slope, in the opposite trend adopted in the
Ginzburg-Landau equation. Hence in this case, joining two
pairing symmetries with different Tc would not yield the up-
ward curvature. This picture essentially explains why the up-
ward curvature is not reproduced in the calculation of Kim et
al.15 for high Tc materials. Then, what is the origin for the
upward curvature in hydrate colaltate? It is known that mul-
tiorbitals near the Fermi surface might be involved for the
occurrence of superconductivity.17 Hence m* /�F can no
longer be treated as a fixed parameter for different pairing
symmetries if different pairings occur on different bands. In-
deed, our calculation below shows that upward curvature
feature can result from the two-band calculation in which
different values of m* /�F are assumed for different energy
bands where different pairing symmetry occurs. Further-
more, mixing of different pairing symmetries results in cou-
pling of the ground state to different Landau levels in the
presence of magnetic fields and causes different upward cur-
vatures. By direct comparison of experimental data with Hc2

obtained by mixing of the lowest possible pairing symme-
tries, it is possible to pin down the pairing symmetries of the
system. We find that the upward curvature observed in the
experimental data is mostly consistent with a transition of the
pairing symmetry from s to dx2−y2 + idxy.

We start by first considering pairing that occurs in two
bands. The two-dimensional BCS-like Hamiltonian can be
written as
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which was first investigated by Suhl, Matthias, and Walker.18

Here k1 and k2 are wave vectors on two Fermi surface sheets
indexed by 1 and 2. The electron-electron interaction Vk1k1�
and Vk2k2�

are the intrasheet contributions and Vk1k2�
is an

intersheet contribution. In general, the superconducting pair-
ing symmetry is different for different band. Hence we can
write the projection of the interaction in the form Vk1k1�

=V��̂��k1��̂�
*�k1��, Vk2k2�

=V��̂��k2��̂�
*�k2��, and Vk1k2�

=VI�̂��k1��̂�
*�k2��. Here � and � are indices for the pairing

symmetry. �̂��k� is an operator that projects out the corre-
sponding pairing symmetry �. For the lowest possible pair-
ings, we shall consider possible mixing of p and f waves for
triplet pairing and mixing of s and d for singlet pairing. For
the triangle lattice, assuming that the rotational symmetry is
not broken, the appropriate p and d pairing amplitudes are
px± ipy and dx2−y2 ± idxy. The corresponding projection opera-

tors are �̂s�k�=1, �̂p±ip�k�= k̂x± ik̂y, �̂d±id�k�= k̂x
2− k̂y

2±2ik̂xk̂y,

and �̂ f�k�= k̂x
3−3k̂xk̂y

2. Note that there are two possible f
waves; however, since they are related by a rotation of � /6
and it suffices to consider one of them �see below for de-
tails�. Following Kim et al.,15 the real-space linearized gap
equation in the presence of the magnetic field �	A can be
written as15


��R� = V��
�
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*����̂����K̂1�r,��
��R�

+ VI�
�
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and
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�
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��R�
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�
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*����̂����K̂1�r,��
��R� . �3�

Here R represents the position for the center of mass of the
Cooper pair, r is the displacement of the Cooper pair, and �
is the corresponding angle of r. 
’s are pairing amplitudes in
real space and �̂���� are the projection operators in real
space, �s���=1, �p±ip���=e±i�, �d±id���=e±2i�, and � f���
=cos3 �−3 cos � sin2 �=cos 3�. K̂i�r ,�� is the kernel op-
erator, given by

K̂i�r,�� = Ki
0�r,��exp�r · ��R +

2ie

�c
A�R��� �4�

with

Ki
0�r,�� = kBTNi�0�22�

kFi

exp�− 2r	�	
vFi

�
r

, �5�

where kFi, vFi, and Ni�0� are the Fermi wave number, Fermi
velocity and the two-dimensional density of state for the ith
band. In the absence of VI, Eqs. �2� and �3� decouples, and
their solutions for constant 
 and A=0 yield relations be-
tween Tc and V�,19

1
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T
, �6�

where i=� or � with Tc
i being the corresponding transition

temperature in zero field and i=
0
2� d�

2� 	�̂i���	2. Dividing
Eqs. �2� and �3� by V� and V�, respectively, and using Eq.
�6�, V� and V� can be eliminated. Following Ref. 19, if we
further adopt dimensionless variables, ti=T /Tc

i , r
=� /�2eH /�c and hi=2eH /�c��vFi /2�kBTc

i �2, the gap equa-
tions become

���
�

1

	2� + 1	
− ln

1

t�
�
��R� = K̂��
��R� − ���K̂��
��R� ,

�7�

���
�

1

	2� + 1	
− ln

1

t�
�
��R� = K̂��
��R� −

��

�
K̂��
��R� ,

�8�

where �i=VI /Vi and �=N� /N�. The operators K̂ are given by
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1
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where ��
m=

�2eH�c
2	�	 vFm and â±=� �c

4eH ���+2ie��x± i��
+2ie��y.

Equations �7� and �8� are the governing equations for the
situation when two pairing symmetries occur on different
energy bands. However, it also covers the case when the two
pairing symmetries occur in the same energy band. In that
case, one simply sets �=1, �i=1, and drop the index i. Equa-
tions �7� and �8� can be solved by expanding 
� and 
� in
terms of the set of eigenfunctions 	�n� of the two-
dimensional Schrodinger equation in the presence of A
= �0,Hx ,0�,


i = �
n=0

�

An
i 	�n� , �10�

where i=� or i=�. Note that the eigenfunctions 	�n� are

essentially the Landau levels. The operators K̂ couple differ-
ent Landau levels. The detailed coupling is determined by
the by-product projection operator, �̂n

*����̂m���, in Eq. �9�,
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which, after being integrated, selects the correct combina-
tions of â+ and â− that survive. The selected combination of
â+ and â− then determines how An

i couple. For the mixing of
s-wave and d+ id, �An

s� couples with �An+2
d+id�; while for the

mixing of s wave and d− id, �An
s� couples with �An−2

d+id�. On
the other hand, for the mixing of p± ip and f wave, because
�̂ f��� contains both e3i� and e−3i�, in addition to the cou-
pling between An

p±ip and An
f , there are also couplings among

�An
f �. Since the by-product projection operator in K̂f f,

�̂ f
*����̂ f���, contains e±i6�, An

f couples with An+6
f for each n;

while because the by-product projection operators in off-

diagonal K̂�� �����, contains e±i4� and e±i2�, we found that
�An

f � couple with �An+4
p+ip� and �An

f � couple with �An+2
p−ip�. The

coupling coefficients are most conveniently expressed in
terms of the following functions15
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�
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2
�
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where i is the index for the pairing symmetry, Ln�x� is the
Laguerre polynomial and Ln

2k is the associated Laguerre poly-
nomial in Rodrigues representation. For triplet pairing, we
find that recursion relations for the mixing of f wave with
px± ipy are given by

− 1

2
��n − 6�!

n!
� f�6,n − 6�An−6

f + �ln
1

tf
+ �n

f�An
f

−
1

2
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f

+ � f���n � 2�!
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p±ip

− � f���n ± 4�!
n!

�p±ip��4,n ± 4�An±4
p±ip = 0, �13�

and

�ln
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1f

+
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On the other hand, for singlet pairing, recursion relations for
the mixing of s wave with dx2−y2 ± idxy are given by

�ln
1

ts
+ �n

s�An
s +

�s

�
��n ± 2�!

n!
�d±id��2,n ± 2�An±2

d±id = 0

�15�

and

�ln
1

td
+ �n

d�An
d±id + �d±id���N � 2�!

n!
�s�±2,n � 2�An�2

s = 0.

�16�

When applying the above analysis to the calculation of
Hc2 with mixing of two pairing symmetries, � and �, one
assumes that the pairing symmetries are associtaed with dif-
ferent Tc’s with Tc

��Tc
�. In other word, the pairing symmetry

� is the stable bulk pairing state at low fields while � is the
stable pairing state at high fields. Therefore, one starts from

�=A0

�	�0�. Mixing to the other symmetry, �, then couples
A0

� to An
� with n�1. Since �An

s� couples with �An±2
d±id�, this

analysis implies that one can only have the transitions from
high-temperature s wave to low temperature d+ id or from
high-temperature d− id to low-temperature s wave. On the
other hand, for the mixing of p± ip and f wave, because
�̂ f��� contains both e3i� and e−3i�, both transitions from
high-temperature p± ip to low-temperature f wave and from
high-temperature f wave to low-temperature p± ip are pos-

sible. Note that there are two possible f waves, k̂x
3−3k̂xk̂y

2 and

k̂y
3−3k̂yk̂x

2. Since the two f-waves are related by exchanging

k̂x and k̂y which simply exchanges px+ ipy and px− ipy, it
suffices to consider one of them.

When solving Hc2, it is important to note that there are
many eigenvalues H�T� satisfying Eqs. �7� and �8� and only
the largest one defines Hc2. To compare the calculated Hc2
with experimental data, one needs to fix scales of tempera-
tures and magnetic fields. The transition temperature Tc of
the most stable bulk pairing state determines the temperature
scale. On the other hand, the scale of magnetic fields can be

FIG. 1. The comparison of experimental data of Hc2 �Ref. 9�
with numerical results based on the transition from s wave at low
fields to d+ id at high fields.
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fixed by the data points with lower magnetic fields. The re-
maining parameters are the ratio of Fermi velocities, the ratio
of Tc, �i, and �. At this point, it is important to note that
according to Eqs. �13�–�16�, for different mixing scheme,
different Landau levels are mixed. As a result, different mix-
ing scheme results in different upward curvature. To find the
best fit to the experimental data, after fixing scales of tem-
peratures and magnetic fields, we vary the remaining param-
eters to find the best. We find that the transition from s wave
at low fields to d+ id at high fields is the best fit to the data.
In Fig. 1, we show numerical results of Hc2 for the transition
from s wave at low fields to d+ id at high fields in compari-
son with experimental data obtained by specific-heat mea-
surement. The fitting parameters are the ratio of Fermi ve-
locities vF

s /vF
d+id=0.8, Tc

d+id /Tc
s =0.5, �s=4.3, �d+id=0.89, and

�=1.1. These values are in reasonable regime. The close
fitting to the experimental data clearly shows that singlet

pairing dominates in hydrate cobaltate, which is also consis-
tent with recent NMR data.20 Furthermore, it implies that
two energy bands are involved and supports results based on
LDA calculations17 where two bands constructed from the
three Co t2d orbitals intersect the Fermi level.

In conclusion, we have investigated the origin for the up-
ward curvature of the upper critical field �Hc2� observed in
hydrate cobaltate Na0.35CoO2·yH2O. Analysis based on the
microscopic gap equation shows that the observed upward
curvature results from the transition between two different
pairing symmetries that occur on different energy bands. Fur-
thermore, it is found that the transition of the pairing sym-
metry from s wave at low fields to dx2−y2 + idxy at high fields
is the best fit to the experimental data.
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