
Windowing is often applied to multicarrier systems to
improve frequency separation among the subcarriers. At the
transmitter side better frequency separation leads to a
smaller out-of-band spectral leakage and also less interfer-
ence to radio frequency transmission. At the receiver side
better separation gives more suppression of radio frequency
interference. As these are frequency based characteristics, a
filterbank representation presents a natural and useful
framework for formulating the problem. In this work, we pro-
pose a unified filterbank approach to the design of windows
for multicarrier systems. The filterbank viewpoint provides
an additional insight into the transmitter design for spectral
leakage reduction as well as to the receiver design for inter-
ference suppression. A better frequency separation among
the subchannels can be achieved.
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Introduction

T
he DFT (discrete Fourier transform) based multi-
carrier systems have found important applications
in DMT (discrete multitone) systems such as ADSL

(asymmetric digital subscriber lines) [1] and VDSL (very
high speed digital subscriber lines) [2], and in OFDM
(orthogonal frequency division multiplexing) systems
such as wireless LAN (local area network) [3] and DVB
(digital video broadcasting) [4]. The transmitter and
receiver perform M -point IDFT (inverse DFT) and DFT
computation, respectively, where M is the number of sub-
channels. At the transmitter side, a cyclic prefix of length
ν is inserted. The channel can usually be assumed to be
an FIR (finite impulse response) filter of order L after
proper time-domain equalization. When the prefix length
ν ≥ L, there will be no inter-block interference. With the
aid of redundant cyclic prefix, an FIR channel is convert-
ed into M zero-ISI subchannels. The subchannel gains are
the M -point DFT of the FIR channel impulse response.

In the conventional DFT based multicarrier system the
transmitting and receiving filters come from rectangular
windows. Rectangular windows are known to have large
spectral sidelobes and the stopband attenuation is insuffi-
cient for many applications. At the transmitter side poor
frequency separation leads to significant spectral leakage.
This could pose a problem in applications where the spec-
trum of the transmitted signal is required to have a large
roll-off in certain frequency bands. For example, in some
wired transmission application, the spectrum of the trans-
mitted signal needs to fall below a threshold in the trans-
mission bands of the opposite direction to avoid
interference [1], [2]. The transmitted spectrum should
also be attenuated in amateur radio bands to reduce inter-
ference or egress emission [2]. On the other hand, poor
frequency separation at the receiver side results in poor
out-of-band rejection. In DMT applications such as ADSL

and VDSL, some of the frequency bands are also shared by
radio transmission systems, e.g., amplitude-modulation
stations and amateur radio. The radio frequency signals
can be coupled into the wires and this introduces radio
frequency interference (RFI) or ingress [5]. Ill frequency
separation means many neighboring tones can be affect-
ed. The signal-to-interference-noise ratio of these tones
are reduced and the total transmission rate decreased.

Many methods have been proposed to improve the fre-
quency characteristics of the transmitter and receiver. To
improve the spectral roll-off of the transmitted signal, a
number of continuous-time pulse shaping filters have
been proposed, [6]–[11]. Usually continuous-time pulse
shapes are designed based on an analog implementation
of transmitters and a digital implementation is not admit-
ted [12]. Discrete-time windows have been considered in
[13]–[15]. The design of overlapping windows for OFDM
with offset QAM (quadrature amplitude modulation)
over ISI free channels are studied fully in [14], [15]. More
recently, transmitting windows with the cyclic-prefixed
property have been considered in [16], [17] for egress
control. Windows that are the inverse of a raised cosine
function are optimized in [16], to minimize egress emis-
sion. To compensate for the transmitter window, the
corresponding receiver requires post-processing equal-
ization [16], [17]. A joint consideration of spectral roll-off
and SNR degradation due to post-processing is given in
[17]. Per-tone windows are proposed in [18] for shaping
transmitted spectrum. The shaping of spectrum allows
more tones to be used for transmission.

Windowing is also often applied at the receiver side. In
[19], Muschallik used Nyquist windows, which have the
property that shifts of the window in the time domain add
to a constant, to improve the reception of OFDM systems.
Optimal Nyquist windows are considered in [20] to miti-
gate the effect of additive noise and carrier frequency off-
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sets. To improve RFI suppression, receiver windowing is
proposed first in [21] by Spruyt et al. For the suppression
of sidelobes without using extra redundant samples, it is
suggested in [22] to use windows that introduced con-
trolled IBI, later removed using decision feedback. Joint
consideration of RFI and channel noise is considered in
[23]; the optimal window can be found using the statistics
of the RFI and noise. Using statistics of channel noise and
RFI, a joint design of the TEQ and the receiving window
for maximizing bit rates is given in [24].

In this work, we propose a unified filterbank 
framework for the design of windows for multicarrier
systems. The approach used here will be more general:
we will introduce the so-called subfilters. The use of sub-
filters will enhance the frequency selectivity of the
transmitting/receiving filters while maintaining the
orthogonality among the subchannels. Correspondingly,
for the transmitter side spectral leakage can be reduced
and for the receiver side RFI can be further suppressed.
When the subfilters form a DFT bank, they can be tied
nicely to the conventional windowing. The windows can
be optimized through the design of subfilters and fre-
quency separation among the subchannels can be con-
siderably improved.

DMT Systems

The block diagram of the DMT system is as shown in 
Figure 1. After proper time-domain equalization (if

necessary), the channel is modeled as an FIR filter C (z) of
order L with additive noise q(n). The modulation symbols
to be transmitted are first blocked into vectors of size M ,
where M is the number of subchannels, usually much larg-
er than the channel order L. The inputs of the transmitter
are modulation symbols. They are passed through an M by
M IDFT matrix. The outputs are converted to a block of M
serial samples by the parallel to serial operation (P/S).
Then a cyclic prefix of length ν is inserted by copying the
last ν samples of the block to the beginning. The length of
the cyclic prefix ν is chosen so that ν ≥ L, which ensures
that inter-block-interference (IBI) can be removed easily by
discarding the prefix at the receiver.

At the receiver, after prefix removal the samples are
blocked into M × 1 vectors (‘serial to parallel’ or S/P
operation) for M -point DFT computation. The scalar mul-
tipliers 1/λk are also called frequency domain equalizers
(FEQ), where λk are the M -point DFT of the channel
impulse response. The transceiver is ISI free and the
receiver is a zero-forcing receiver. The receiver outputs
are identical to the inputs of the transmitter in the
absence of channel noise.

Filterbank Representation

Let us derive the filterbank representation of a DMT sys-
tem, which will be useful for later discussion. In Figure 1,
the operation ‘P/S’ followed by the insertion of a cyclic
prefix can be viewed as the interconnection of the matrix

1. The notation A† denotes transpose-conjugate of A.
2. The notation W is used to represent the M × M normalized DFT matrix given by

[W]kn = 1√
M

Wkn, for 0 ≤ k, n ≤ M − 1, where W = e−j 2π
M .

3. The notation [X(z)]↓N denotes the N-fold decimation of X(z). In the time domain Y(z) = [X(z)]↓N means y(n) = x(Nn).
4. Polyphase identity [25]. The following interconnection is known to be an LTI system with transfer function T(z) = [C(z)]↓N .

5. Noble identities [25]. Identities for exchanging an LTI filter and an expander/decimator.

Table 1. 
Notation and multirate identities.

x(n) y(n)
C(z)

x(n)
T(z)

y(n)
N N

(a)

x(n) x(n)y(n)
C(z N)

y(n)
N C(z) N

(b)

x(n) x(n)y(n)
C(z) C(z N)

y(n)
N N
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(
0 Iν

IM

)
followed by ‘parallel to serial’ for every N = M + ν

parallel samples as shown in Figure 2(a). The ‘P/S’ opera-
tion is represented using expanders and a delay chain in
the figure. On the other hand, the operation ‘discard pre-
fix’ followed by ‘serial to parallel’ and M -point DFT for
every M samples in Figure 1 can be viewed as ‘serial to
parallel’ for every N samples followed by the matrix
( 0 W ) as shown in Figure 2(a), where W is the normal-
ized DFT matrix defined in Table 1. Thus the transmitter
and receiver can be redrawn as in Figure 2(a), where we
have combined the two matrices at the transmitter as one
matrix G.

As G is a constant matrix, we can exchange G and the
expanders; the resulting transmitter is as shown in Figure
2(b). Similarly, we can exchange ( 0 W ) and the decima-
tors to yield the receiver shown in Figure 2(b). Note that
the 1 × M system from p(n) to x(n) is LTI. Let’s call the
1 × M transmitting bank f(z), then f(z) is a row vector
given by ( 1 z−1 · · · z−(N−1) ) G. Each element of the
row vector can be obtained by multiplying out this
expression. Suppose that the k-th element is Fk(z) (k-th
transmitting filter), we have

Fk(z)
1√
M

N−1∑

i=0

W−(i−ν)kz−i, where W = e− j 2π/M . (1)

Then the transmitter in Figure 2(b) can be redrawn as in
Figure 3. Now consider the receiver side. Denote the
M × 1 system from r(n) to v(n) in Figure 2(b) as h(z). We
can write h(z) as h(z) = ( 0 W ) ( 1 z · · · zN−1 )T .
Suppose that the k-th element is Hk(z) (the k-th receiving
filter), then we have

Hk(z) = zν

√
M

M−1∑

i=0

W ikzi. (2)

We can redraw the receiver as the receiving bank struc-
ture in Figure 3.

Having the filterbank representation, we can now
obtain the overall transfer matrix. Using the polyphase
identity described in Table 1, we observe that the trans-
fer function Tk,i(z) from the i-th transmitter input si(n) to
the k-th signal yk(n) at the receiver is given by

Tk,i(z) = [Hk(z)C (z)Fi(z)]↓N ,
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where the notation [A(z)]↓N

denotes the N -fold decimated
version of A(z) as defined in
Table 1. Note that the DMT sys-
tem is ISI free, meaning that there
is zero inter-block and inter-sub-
channel ISI, and the subchannel
gain from the transmitter input
sk(n) to the receiver output ŝk(n)

is one. That is, in the absence of
channel noise, ŝk(n) = sk(n). The
system from si(n) to ŝk(n) is LTI
with transfer function δ(k − i).
As ŝk(n) differs from yk(n) only
in the scalar 1/λk, we can con-
clude that Tk,i(z) = λkδ(k − i).
Summarizing, we can obtain the following lemma.

Lemma 1 For the system in Figure 3, the transfer function
Tk,i(z) from the i-th transmitter input si(n) to the k-th signal
yk(n) at the receiver is given by

Tk,i(z) = λkδ(k − i ), 0 ≤ k, i ≤ M − 1. (3)

The constants λk are the M-point DFT of c(n). The result
holds for any FIR filter C (z) of order L ≤ ν.

So long as the order of C (z) is not larger than ν, the system
is free from inter-block interference and inter-subchannel
interference. Thisimplies that, if we cascade another filter
before or after the channel, as long as the product of this
extra filter and C (z) has order no larger than $\nu$ the
overall system remains ISI free. We will use this observa-
tion later to design transmitters and receivers.

From (1) and (2), we see that the transmitting and
receiving filters are derived from rectangular windows. In
particular, the first transmitting filter F0(z) is a rectangu-

lar window of length N . All the other transmitting filters
are scaled and frequency-shifted versions of the first
transmitting filter (prototype filter),

Fk(z) = W νkF0(zWk ). (4)

Similarly, the first receiving filter is also a rectangular
window, but of length M . All the other receiving filters
are scaled and frequency-shifted versions of the first
receiving filter, Hk(z) = W−νkH0(zW k). As the prototype
filters are rectangular windows, the frequency selectivi-
ty is not good. The first sidelobe has an attenuation of
around 13 dB only and the stopband decays slowly at a
rate inversely proportional to the frequency. Poor fre-
quency selectivity leads to bad frequency separation.
This results in spectral leakage in the transmitted
spectrum and poor RFI suppression at the receiver side.

Receivers with Subfilters

To improve the frequency selectivity of the receiving filters,
we introduce additional FIR Qk(z) to the receiving bank, as
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Figure 4. The receiving bank with subfilters.
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shown in Figure 4. These additional filters will be called sub-
filters as their order α is generally much smaller than M.
With the subfilters, the k-th effective receiving filter
becomes H ′

k(z) = Hk(z)Qk(z) and the frequency responses
of the receiving filters are further shaped by the subfilters.
The transfer function from the i-th transmitter input si(n) to
the k-th signal yk(n) at the receiver in Figure 3 becomes
Tk,i(z) = [Hk(z)(Qk(z)C (z))Fi(z)]↓N ; it is the same expres-
sion except that the channel is replaced by the composite
channel Qk(z)C (z). From Lemma 1, we know that the sys-
tem is free from ISI as long as the order of the composite
channel is not larger than ν. In particular, Tk,i(z) is the same
as in (3) except that the coefficients λk are now the M-point
DFT of the composite channel.

We can choose the subfilters so that λk remain the
same after the subfilters are included. To have this
property, we need Qk(e j 2πk/M ) = 1, i.e., the k-th DFT
coefficient of Qk(z) normalized to one. In the special
case that the subfilters are chosen as shifted versions
of the first subfilter, Qk(z) = Q0(zWk), then Qk(e j 2πk/M )

is equal to Q0(e j 0). That is, we only need the DC value
of the first subfilter to be one. This translates to the
time-domain condition that the sum of the coefficients
is one. Suppose that Q0(z) is a causal FIR filter of order
β , then the condition is

β∑

n =0

q0(n) = 1. (5)

This condition can be easily sat-
isfied by a simple normalization
after q0(n) is designed without
constraint. The normalization in
(5) will be assumed in the fol-
lowing discussions. Further-
more when the other subfilters
are shifted versions of the first
subfilter, the new receiving filter
becomes H ′

k(z) = W−νkH ′
0(zW k).

They are also shifted versions
of the new prototype filter H ′

0(z)

except for some scalars. We will
see below that these receiving
filters form a DFT bank and can
be implemented efficiently. The
complexity is almost the same
as the conventional DMT sys-
tem without subfilters.

Implementation of Receiving

Bank with Subfilters

The new prototype filter is the
product of Q0(z) and the rectan-

gular window H0(z) given in (2). Let the coefficients of
H ′

0(z) be bi/
√

M and we write it as
H ′

0(z) = zν−β√
M

∑M+β−1
i=0 bizi. We will call bi receiver window

coefficients for reasons that will become clear later. Using
the relation H ′

k(z) = W−νkH ′
0(zW k), we can write the

new k-th receiving filter as

H ′
k(z) = zν−β

√
M

M+β−1∑

i=0

biW
k(i−β)zi

= zν−β

√
M

( 1 Wk · · · Wk(M−1) ) g(z),

where

g(z)
( 0

Iβ
IM

)
diag(b0b1 · · · bM+β−1)






1
z
...

zM+β−1




 .

Then the new receiving bank h ′(z) as indicated in Figure
4 can be written as h ′(z) = zν−βWg(z). This expression
gives rise to the implementation of the receiver in Figure
5, where we have moved the decimators to the left by
using the Noble identity for decimators in Table 1. Note
that the first ν − β samples are discarded due to the
advance zν−β .
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Figure 5. Efficient DFT implementation of the receiving bank.
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Window Coefficients bk

The new prototype filter H ′
0(z) is

the convolution of h0(n) and a
much shorter q0(n). As h0(z) is a
rectangular window, each coeffi-
cient bk is a partial sum of the
coefficients of q0(n). With the nor-
malization in (5), most of the win-
dow coefficients are equal to one,
except for those on the two ends.
The middle M − β coefficients are equal to one, and the
remaining coefficients, β coefficients on each side, have
non-unity values. Figure 6(a) gives an example of window
coefficients. Furthermore, we can verify that the time
shifts of bk add up to one, in particular,

∞∑

�=−∞
bk−�M = 1. (6)

This is known as the time-domain Nyquist property [19],
[20]. The subfilter viewpoint allows the time-domain
Nyquist property to be satisfied inherently in the
receiver design.

Connection with the Usual Receiver Windowing
If we observe the implementation in Figure 5, we see that
the samples are first multiplied by bk (i.e., windowed by
bk). The matrix 

( 0
Iβ

IM

)
performs the operation of folding

the first β samples and add to the last β samples as
shown in Figure 6(b). Then the resulting last M samples
are passed over for DFT computation, followed by FEQ.
This is the same as the usual receiver windowing
described in [21].

Transmitters with Subfilters

Similar to the case of the receiving end, we can also intro-
duce subfilters to the transmitter side to improve the fre-
quency selectivity of the transmitting filters. Figure 7
shows the transmitting bank with subfilters. Suppose the
subfilters are FIR filters Pk(z) with order α. The k-th new
transmitting filter is F ′

k (z) = Fk(z)Pk(z). The new trans-
mitting filters are of length N + α, as Fk(z) are of length N .
Now the transfer function from the i-th transmitter input
si(n) to the k-th signal yk(n) at the receiver (Figure
3(b)) becomes Tk,i(z) = [Hk(z)(Pi(z)C (z))Fi(z)]↓N . We
can also apply the result in Lemma 1 here. The overall
system remains ISI free if the order of the subfilters α sat-

isfies α + L ≤ ν. The transfer function Tk,i(z) is the same
as in (3), except that now the coefficients λk are the M -
point DFT of pk(n) ∗ c(n). As in the receiver case, we can
choose the subfilters to be shifted versions of the first
subfilter, i.e., Pk(z) = P0(zW k). In this case we can have λk

remain the same after subfilters are included by normal-
izing the DC value of P0(z) like that in (5). (Without loss of
generality, such a normalization will be assumed in the
following discussion.) Furthermore, as we will derive
next, the resulting transmitting filters form a DFT bank,
which can be implemented very efficiently.

Implementation of the Transmitting Bank 

with Subfilters

When the subfilters are frequency shifted versions of
the first subfilter, the new transmitting filters are also
frequency shifted versions of the new prototype
except for some scalars. In particular,
F ′

k (z) = W νkF ′
0 (zW k). Let the coefficients of the proto-

type be ai/
√

M and F ′
0 (z) = 1√

M

∑N+α−1
i=0 aiz−i . Like the

case of receiver windowing, we call these ai window
coefficients. As there is a frequency shifting relation
among the transmitting filters, given the coefficients
of the prototype, we can obtain the coefficients of all

ν0 ν

M−ββ
1

β

N

Discarded

ν−β β M

+

N

(a) (b)

0

Figure 6. (a) An example of receiver window; (b) receiver windowing.
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Figure 7. The transmitting bank with subfilters.

Better separation among the transmitting filters translates to less spectral leakage 
in the transmitted spectrum while better separation among the receiving filters leads 
to improved RFI suppression.



the other transmitting filters. The new transmitting
bank f ′(z) = ( F ′

0 (z) F ′
1 (z) · · · F ′

M−1(z) ) as indiciat-
ed in Figure 7 can be expressed as

f ′(z) = ( 1 z−1 · · · z−N+1 ) G(zN ), where

G(z) =
(

D0
D1z−1

0

)



0 Iν

IM

Iα 0



W†. (7)

The matrices D0 and D1 are diagonal matrices, 
respectively, diag ( a0 a1 · · · aN−1 ), and
diag ( aN aN+1 · · · aN+α−1 ).

Such an expression gives rise to the implementa-
tion in Figure 8, where we have used the Noble identi-
ty for exchanging LTI filters and expanders in Table 1
to move G(zN ) to the left of the expanders. The coeffi-
cients ai come from the convolution of an N -point rec-

tangular window with a much
shorter p0(n) of length α. When
the sum of the coefficients of
p0(n) is normalized to one, most
of the coefficients ai are equal
to one. The middle N − α coeffi-
cients are equal to one. Only the
remaining 2α coefficients, α on
each end, can have non-unity
values and only for these coeffi-
cients multiplications are need-
ed.

Connection with the Usual
Transmitter Windowing
Observing the DFT bank imple-
mentation in Figure 8, we see
that for each input block, M -
point IDFT is performed, fol-
lowed by the insertion of cyclic
prefix of length ν and also the
insertion of suffix of length α.
The resulting vector p(n), as
shown in Figure 8, is of size
N + α. The window coefficients
are applied to each vector. Then
the last α samples of the previ-
ous block are added to the first
α samples of the current block,

as shown in Figure 9. This is the same as the usual
transmitter windowing [2].

Transmitted Power Spectrum

The filterbank representation allows us to express the
power spectrum of the transmitted signal x(n) in terms of
the transmitting filters and thus in terms of the subfilters
to be optimized. No assumption will be made on the
length of the transmitting filters and the result is also
applicable to the cases with subfilters.

For OFDM systems in wireless applications, the inputs
sk(n) can be assumed to be uncorrelated and the trans-
mitted power spectrum has been derived in [12]. The
assumption of uncorrelated input symbols is not valid for
DMT systems in wired applications. This is because the
DMT system uses baseband transmission and the signal
to be transmitted is real. This requires that the inputs of
the IDFT matrix have the conjugate symmetric property,
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The filterbank representation allows us to express the power spectrum of the 
transmitted signal x(n) in terms of the transmitting filters and thus in terms of the
subfilters to be optimized.
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sk(n) = s∗
M−k(n), k = 1, 2, · · · , M − 1, and s0(n) is real. For

even M , usually the case in practice, sM/2(n) is also real.
This conjugate symmetric property means that the sym-
bols assigned to the second half and the first half of the
subchannels are strongly correlated and thus we can no
longer assume that the inputs are uncorrelated.

For those inputs sk(n) that are in conjugate pairs, let
the real part be s(r)k (n) and the imaginary part be s(i)k (n).
We can treat these real parts and imaginary parts as
random processes and assume, reasonably, that these
random processes are white, uncorrelated, jointly
wide-sense stationary with zero mean and variance
Es,k/2. (The scalar 1/2 is included so that the variance
of sk(n) is Es,k.) For the k-th and (M − k)-th subchannels,
the inputs are a complex conjugate pair. When the
transmitting filters are shifted versions of the proto-
type filter as in (4) and the prototype has real coeffi-
cients, the coefficients of the transmitting filters are
also in conjugate pairs, fM−k(n) = f ∗

k (n). As the result,
the outputs of each pair are also the conjugates of
each other. Now instead of considering the output of
an individual subchannel, let us consider the sum of
the outputs of each pair. Let the output of the k-th
transmitting filter be wk(n) as indicated in Figure 3 and
define w ′

k(n) = wk(n) + wM−k(n) . Then w ′
k(n) can be

written as

w ′
k(n) = 2

∑

�

(
s(r)k (�)f (r)

k (n − N�) − s(i)k (�)f (i)
k (n − N�)

)
,

where f (r)
k (n) and f (i)

k (n) are, respectively, the real and
imaginary part of fk(n). As the real and imaginary parts of
the transmitter inputs are uncorrelated, the power spec-
trum of w ′

k(n) is

Sw ′
k
(e jω) = 2Es,k

N

(∣∣∣F (r)
k (e jω)

∣∣∣
2 +

∣∣∣F (i)
k (e jω)

∣∣∣
2
)

,

where F (r)
k (e jω) and F (i)

k (e jω) are respectively the
Fourier transforms of f (r)

k (n) and f (i)
k (n). It turns out that

2
(∣∣∣F (r)

k (e jω)

∣∣∣
2+

∣∣∣F (i)
k (e jω)

∣∣∣
2
)

=|Fk(e
jω)|2+|FM−k(e

jω)|2).

We can obtain the transmitted power spectrum by sum-
ming up the contributions from w ′

k(n), plus w0(n) and
wM/2(n) (if M is even). We arrive at the following simple
expression for the transmitted spectrum

Sx(e jω) = 1
N

M−1∑

k=0

Es,k|Fk(e
jω)|2. (8)

We can further observe that if an equal power allocation is
used, the inputs of all the subchannels have the same vari-

ance Es and the transmitted power spectrum becomes the
same as that of the OFDM system derived in [12].

Now let us consider the transmitted spectrum when
there are subfilters. Assume that the other subfilters are
frequency shifted versions of the first subfilter. When the
first subfilter has real coefficients, the coefficients of the
k-th and (M − k)-th new transmitting filters also form a
conjugate pair. The above derivation can also be carried
out for the case with subfilters. The transmitted power
spectrum can be easily obtained by replacing the trans-
mitting filters in (8) by F ′

k (e jω).

Design of Receiver Subfilters

The frequency selectivity of the receiving filters are
important for RFI suppression. The radio interference is
known to be of a narrowband nature. For the duration of
one DMT symbol, it can be considered as a sum of sinu-
soids. To analyze the effect of interference, we can apply
an interference-only signal v(n) to the receiver in Figure
4. Suppose that there are J interference sources, and the
interference is modelled as
v(n) = ∑ J−1

�=0 µ� cos(ω�n + θ�). The interference term at
the output of the k-th receiving filter H ′

k(z) is

uk(n) = 1
2

J−1∑

�=0

µ�[H ′
k(e jω�)e j(ω�n+θ�)

+ H ′
k(e− jω�)e− j(ω�n+θ�)].

Minimization of interference terms requires the knowl-
edge of µ�, ω� and θ�.

First let us consider the case when the information of
the interference is not available. In this case, we can alle-
viate the effect of interference in the k-th subchannel by
minimizing the stopband of the receiving filters. When the
receiving filters are frequency shifted versions of the pro-
totype, we only need to consider the stopband energy of
the prototype,

φh =
∫

ω∈Oh

|H ′
0(e jω)|2dω, (9)

where Oh denotes the stopband of the prototype filter.
Note that H ′

0(z) is the product of Q0(z) and H0(z). We can
write its Fourier transform as H ′

0(ejω) = H0(ejω)τβ(ω)q0,

where τβ(ω) is the 1 × β row vector
( 1 e− jω · · · e− jβω ) and q0 is the column vector
(q0(0) q0(1) · · · q0(β) )T . The stopband energy is

φh = q†
0Bq0, where

B =
∫

ω∈Oh

|H0(e
jω)|2τ†

β (ω)τβ(ω)dω. (10)

To avoid a trivial solution, we can fix the energy of the
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first subfilter to be one, q†
0q0 = 1.The matrix B is pos-

itive definite because the objective function repre-
sents the stopband energy of the prototype filter,
which is always positive. To minimize φh , we can
choose q0 as the eigenvector associated with the
smallest eigenvalue of B. Such an approach does not
depend on the RFI statistics or the channel; it has the
advantage that the subfilters need to be designed
only once. The subfilters need not be redesigned
when the interference changes.

If the information of the interference sources is avail-
able to the receiver, the subfilters can be individually opti-
mized. The amplitude of the k-th interference signal uk(n)

is a nonlinear function of the k-th subfilter coefficients. To
simplify the problem, note that the interference due to the
�-th source will be small if µ2

�(|H ′
k(e jω�)|2 + |H ′

k(e− jω�)|2) is
small. The k-th subchannel interference can be mitigated

by designing Qk(z) to minimize φk,h,

φk,h =
J−1∑

�=0

µ2
�(|H ′

k(ejω�)|2 + |H ′
k(e− jω�)|2. (11)

We can write φk,h in a quadratic form similar to that in
(10) and find the optimal subfilters. Such an optimization
requires only the amplitudes and frequencies, but not the
phases, of the interference sources. When the subfilters
are so designed, the receiving bank does not have the
DFT bank structure in Figure 5. Nonetheless, the receiver
can be implemented with a much reduced complexity
using the sliding window approach in [26]. When the sub-
filters Qk(z) are shifted versions of Q0(z), we can design
Q0(z) to minimize the total interference 

∑
k φk,h [27].

Example 1.
Receiver Subfiltering
In this example, we design the subfilters for RFI reduction
at the receiver. The DFT size is M = 512 and cyclic prefix
length is ν = 40. The order of the subfilters is β = 10. The
channel used in this example is VDSL loop#1 (4500 ft) [2]
and the channel noise is AWGN of −140 dBm. Model 1 dif-
ferential mode RFI interference is considered [2]. Four RFI
sources are assumed in the simulations, at respectively
660, 710, 770 and 1050 KHz, of strength −60, −40, −70, and
−55 dBm, respectively.

We will consider two different subfilter designs. In the
first design, the subfilters Qk(z) are shifted versions of
Q0(z) and only Q0(z) needs to be designed. The subfilter
Q0(z) is the solution to the minimization problem in (10). In
this case the receiving filters form a DFT bank and can be
implemented as in Figure 5. In the second design, the RFI
source is known to the receiver and the subfilters Qk(z) are
individually optimized by minimizing the objective function
φk,h in (11). The SINRs (signal-to-noise-interference ratio) of
the subchannels are as shown in Figure 10. The first case is
labelled ‘subfilter (DFT bank)’ while the second case ‘sub-
filter (RFI known)’. For comparison, we have also shown the
subchannel SINRs for the cases of rectangular, Hanning win-
dows, and also the window from [23]. The receivers with
subfilters enjoy higher SINRs for the tones that are close to
the RFI frequencies, especially when the statistics of the RFI
source is known and the subfilters are optimized individu-
ally. As a result, higher transmission rates can be achieved.
The transmission rate of the first case is 7.44 Mbits/sec, and
that of the second case is 8.54 Mbits/sec. The transmission
rates for the cases of rectangular, Hanning windows, and
[23] are 6.84, 7.16, and 7.27 Mbits/sec, respectively.

Design of Transmitter Subfilters

For the transmitter side, let us first consider the case
when the transmitting filters are constrained to be shift-
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ed versions of one prototype. From the expression in (8),
we see that spectral leakage can be minimized by mini-
mizing the stopband energy of the prototype filter F ′

0 (z).
Following a procedure similar to the design of receiver
subfilters, we can write the stopband energy φf of the pro-
totype F ′

0 (z) as

φf = p†
0Ap0, where

A =
∫

ω∈Of

|F0(e
jω)|2τ†

α (ω)τα(ω)dω. (12)

We can see that φf can be minimized by choosing p0 to be
the eigenvector associated with the minimum eigenvalue
of A.

Now consider the case when the subfilters are not con-
strained. The total spectral leakage is

∫

ω∈Ou

Sx(e jω)dω, (13)

where Ou denotes the band in which leakage is undesired.
The total leakage can be minimized if we can minimize the
individual contribution φk,f from each subchannel,

φk,f =
∫

ω∈Ou

|F ′
k (e jω)|2dω.

We can write φk,f in a quadratic form like that in (12) and
find the optimal subfilters. In this case the subfilters do
not form a DFT bank, and neither do the new transmitting
filters. An efficient implementation of the resulting trans-
mitting bank can be found in [18].

Example 2. Transmitter Subfiltering
The block size M = 512 and prefix length ν = 40. The sub-
filters are shifted versions of the first subfilter and thus
the transmitting filters form a DFT bank. The order α of the
subfilters is 20. We form the positive definite matrix A and
compute the eigenvector corresponding to the smallest
eigenvalue to obtain p0. Figure 11 shows the spectrum of
the transmitter output. The subcarriers used are 38 to 90
and 111 to 255. The subcarriers with indices smaller than
38 are reserved for voice band and upstream transmis-
sion, and those with indices between 91 and 110 are for
egress (interference of DMT signals to wireless radio fre-
quency transmission) control. Also shown in the figure is
the output spectrum when the transmitter window of [16]
is used, which requires no extra cyclic prefix but addi-
tional post-processing is needed at the receiver. We see
that the spectrum with the subfilters has a much smaller
spectral leakage in unused bands.

Implementation and Complexity

For the conventional DMT system in Figure 1, the main
computations of the transceiver are those of the IDFT

and DFT matrices, for which fast algorithms can be
applied. The complexity of the transmitter is simply
that of an IDFT matrix and the complexity of the receiv-
er is that of a DFT matrix plus M multiplications for
FEQs. Moreover, except for the FEQs, the computations
are channel independent. For a system with receiver
subfilters, we can observe the implementation com-
plexity from Figure 5. Compared with the conventional
case, the new receiver needs only 2β more multiplica-
tions (due to the non-unity window coefficients) and β
more additions for every block of outputs. Similarly,
the complexity of the transmitter with subfilters in Fig-
ure 8 requires 2α more multiplications and α more
additions per output block. As α and β are usually
much smaller than M , in either case the overhead of
subfiltering is very small.

Conclusions

In this work, we have presented a filterbank approach
to the design of transmitter/receiver by introducing
subfilters. The frequency separation among the sub-
channels can be considerably improved. Better separa-
tion among the transmitting filters translates to less
spectral leakage in the transmitted spectrum while bet-
ter separation among the receiving filters leads to
improved RFI suppression. As these are frequency
based characteristics, the filterbank transceiver repre-
sentation provides a natural and useful framework for
formulating the problem. The transmitter/receiver
designs are converted to simple eigen-problems and
closed form solutions can be obtained.
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