An Efficient B-Tree Layer Implementation for
Flash-Memory Storage Systems

CHIN-HSIEN WU and TEI-WEI KUO
National Taiwan University

and

LI PING CHANG

National Chiao-Tung University

With the significant growth of the markets for consumer electronics and various embedded systems,
flash memory is now an economic solution for storage systems design. Because index structures
require intensively fine-grained updates/modifications, block-oriented access over flash memory
could introduce a significant number of redundant writes. This might not only severely degrade
the overall performance, but also damage the reliability of flash memory. In this paper, we propose
a very different approach, which can efficiently handle fine-grained updates/modifications caused
by B-tree index access over flash memory. The implementation is done directly over the flash
translation layer (FTL); hence, no modifications to existing application systems are needed. We
demonstrate that when index structures are adopted over flash memory, the proposed methodology
can significantly improve the system performance and, at the same time, reduce both the overhead
of flash-memory management and the energy dissipation. The average response time of record
insertions and deletions was also significantly reduced.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; H.3.1 [Content Analysis and Indexing]: Indexing Methods;
H.3.3 [Information Search and Retrieval]: Search Process

General Terms: Design, Performance, Algorithm

Additional Key Words and Phrases: Flash memory, B-tree, storage systems, embedded systems,
database systems

ACM Reference Format:

Wu, C.-H., Kuo, T.-W., and Chang, L.-P. 2007. An efficient B-tree layer implementation for flash-
memory storage systems. ACM Trans. Embedd. Comput. Syst. 6, 3, Article 19 (July 2007), 23 pages.
DOI = 10.1145/1275986.1275991 http://doi.acm.org/ 10.1145/1275986.1275991

Authors’ addresses: Chin-Hsien Wu and Tei-Wei Kuo, Department of Computer Science and Infor-
mation Engineering, Graduate Institute of Networking and Multimedia National Taiwan Univer-
sity, Taipei, Taiwan, ROC; email: d90003@csie.ntu.edu.tw; ktw@csie.ntu.edu.tw; Li Ping Chang,
Department of Computer and Information Science, National Chiao-Tung University, Hsin Chu,
Taiwan, ROC; email: Ipchang@cis.nctu.edu.tw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1539-9087/2007/07-ART19 $5.00 DOI 10.1145/1275986.1275991 http://doi.acm.org/
10.1145/1275986.1275991

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

2 3 C.-H. Wu et al.

1. INTRODUCTION

Flash memory is a popular alternative for the design of storage systems because
of its shock-resistant, energy-efficient, and nonvolatile nature. In recent years,
flash-memory technology has advanced along with the wave of consumer elec-
tronics and embedded systems. There are significant technology breakthroughs
in both capacity and reliability. The ratio of cost to capacity has being in-
creasing dramatically. Now, a 16-GB NAND flash-memory chip (SAMSUNG
K9WAGO8U1M flash memory chips) is currently on the market. Flash mem-
ory could be considered as an alternative to hard disks in many applications.
Now, the implementation of index structures, which are very popular in the
organization of data on disks, must be considered regarding flash memory.
However, with the very distinctive characteristics of flash memory, traditional
designs of index structures result in the severe performance degradation of
a flash-memory storage system, significantly reducing the reliability of flash
memory.

There are two major approaches in the implementations of flash-memory
storage systems: the native file-system approach and the block-device emula-
tion approach. For the native file-system approach, JFFS/JFFS2[Woodhouse],
LFM[b:L], and YAFFS [b:Y] were proposed to directly manage raw flash
memory. The file systems under this approach are very similar to the
log-structured file systems (LFS) [Rosenblum and Ousterhout 1992]. This
approach is natural for the manipulation of flash memory because the char-
acteristics of flash memory do not allow in-place updates (overwriting). One
major advantage of the native file-system approach is robustness, because
all updates are appended, instead of overwriting existing data (similar to
LFS). The block-device emulation approach is proposed for a quick deployment
of flash-memory technology. Any well-supported and widely used (disk) file
systems could be easily built over a emulated block device. For example,
FTL/FTL-Lite [b:F bl, [b:R], [b:F al], CompactFlash [b:C 1998], and Smart-
Media [b:S 1999] are popular and transparent block-device emulations for
flash memory. Regardless of which approach is adopted, they share similar
technical issues: How to properly manage garbage collection and wear-leveling
activities.

With the increasing popularity of flash memory for storage systems and the
rapid growth of its capacity, the implementations of index structures could
become a bottleneck in the performance of flash-memory storage systems. In
particular, B-tree is one of the most popular index structures for data access-
ing because of its scalability and efficiency, where a binary tree is a reduced
version of B-tree with a smaller set of search keys and child pointers. We know
B-tree is not only used in many database systems [Ramakrishnan and Gehrke
2003] (e.g., IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase
ASE), but also some journal file systems (e.g., XF'S, JF'S, and ReiserFS *)[b:b].
B-tree indices were first introduced by Bayer and McCreight [1972]. Comer
[1979] later proposed a variation called B+—tree indices. B-tree index struc-
tures are extended to many application domains. Kuo et al. [1999] demonstrated
how to provide a predictable performance with B-tree. Freeston [1995] showed

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 3

multidimensional B-trees, which have good predictable and controllable worst-
case characteristics. For the parallel environment, Yokota et al. [1999] proposed
Fat-B-trees to improve high-speed access for parallel database systems. Becker
et al. [1996] improved the availability of data by a multiversion index structure
that supports insertions, deletions, range queries, and exact match queries for
the current or some past versions.

There are two critical issues that have a significant impact on the efficiency
of index structures over flash memory: (1) write-once with bulk erase and (2)
the endurance. Flash memory could not be overwritten (updated) unless it is
erased. As a result, out-of-date (or invalid) versions and the latest copy of data
might coexist simultaneously over flash memory. Furthermore, an erasable unit
of a typical flash memory is relatively large. Valid data might be involved in
the erasure, because of the recycling of available space. Frequent erasing of
some particular locations of flash memory also quickly deteriorates the overall
lifetime of flash memory (the endurance issue), because each erasable unit has
a limited cycle count on erase operations.

In this paper, we focus on an efficient integration of B-tree index structures
(because of their popularity and practicability) and the block-device emula-
tion mechanism provided by FTL (flash translation layer). We propose a layer
which provides a B-tree index management over flash-memory storage sys-
tems to handle intensive byte-wise operations because of B-tree access. The
layer, referred to as BFTL, could be adopted or removed as needed. In the
baseline solution, BFTL is introduced as a layer between file systems and
FTL. BFTL could be adopted or removed as needed, where BFTL provides
extra considerations for B-tree implementations in eliminating overhead as
a result of B-tree index manipulations. The implementation is done transpar-
ently over FTL so that no modifications to the existing B-tree-related applica-
tions are needed. The overhead of intensive byte-wise operations are caused
by record inserting, record deleting, and B-tree reorganizing. For example,
the insertion of a record results in the insertion of a data pointer at a leaf
node and, possibly, the insertion of tree pointers in the B-tree. Such actions
result in a large number of data copyings (i.e., the copying of unchanged
data and tree pointers in related nodes), because of out-place updates over
flash memory. We demonstrate that the proposed methodology significantly
improves the system performance and, at the same time, reduces the overhead
of flash-memory management and the energy dissipation, when index struc-
tures are adopted for flash memory. We must point out that log-structured file
systems over flash memory (i.e., YAFFS/JFFS) would result in similar over-
head and BFTL could be easily extended and adopted in log-structured file
systems.

The rest of this paper is organized as follows: Section 2 discusses related
work. Section 3 provides an overview of flash memory and discussions of the
implementation problems of B-tree over flash memory. Section 4 introduces our
approach and its implementation. Section 5 provides performance analysis of
the approach. Section 6 shows experimental results. Section 7 is the conclusion
and future work.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

4 3 C.-H. Wu et al.

2. RELATED WORK

In recent years, issues of flash memory management have drawn a lot of atten-
tion. Excellent research results and implementations were reported on perfor-
mance enhancement, especially on garbage collection and system architecture
designs [Kawaguchi et al. 1995; Kim and Lee 1999; Chang and Kuo 2002; Wu
and Zwaenepoel 1994; Chang et al. 2004; Wu et al. 2004, 2006a, 2006b; Kim
et al. 2002; Douglis et al. 1994; Han-Joon and Sang-goo 1999; Chang and Kuo
2001; Park et al. 2004, 2003]. In particular, Kawaguchi, et al. proposed a cost—
benefit policy [Kawaguchi et al. 1995] with a value-driven heuristic function
for block recycling. Kim and Lee [1999] proposed to periodically move live data
among blocks so that blocks have more even erase counts. Chang and Kuo
[2002] considered an adaptive striping architecture for multiple banks for per-
formance enhancement. Wu and Zwaenepoel [1994] proposed to adopt SRAM
as write buffers and presented several cleaning policies for garbage collection.
Chang and Kuo [Chang et al. 2004] introduced a real-time garbage collection
mechanism to provide QoS guarantees for performance-sensitive applications.
Wu et al. [2004] proposed an interrupt-emulation mechanism to reduce the in-
terference of I/O activities on the executions of user tasks such that the entire
system performance is improved. Wu et al. [2006a] proposed a method for ef-
ficient initialization and crash recovery over flash-memory file systems. Wu,
Kuo, and Yang [2006b] proposed a space-efficient search-tree like data struc-
ture to accelerate the matching of a given logical address and its corresponding
physical address on flash memory. Kim et al. [2002] proposed a space-efficient
translation layer for compact-flash systems with reasonable memory usage.
Douglis et al. [1994] investigated the performance of some alternative storage
devices (i.e., hard disks and flash memory) for mobile computers. Kwoun et al.
[Han-Joon and Sang-goo 1999] proposed to periodically move live data among
blocks so that blocks have more and even lifetime. Because flash memory also
contributes a significant portion of energy consumption, Chang and Kuo [2001]
introduced an energy-efficient request-scheduling algorithm for flash-memory
storage system to lengthen the operating time of battery-powered portable de-
vices. Park et al. [2004] and Park et al. [2003] presented an energy-aware de-
mand paging technique to lower the energy consumption of embedded systems
and also proposed a low-cost memory architecture, which incorporates NAND
flash memory into an existing memory hierarchy, for code execution. However,
when database or information-processing applications for flash-memory stor-
age systems are considered, the index processing to resolve performance prob-
lems caused by intensive byte-wise updates becomes important. As far as we
know, no previous work has been done in resolving B-tree implementation prob-
lems over flash-memory storage systems.

3. MOTIVATION

In this section, we shall briefly introduce the characteristics of flash memory.
The motivation of this work is to show the very distinctive properties of flash
memory and to address the potential issues of building a B-trees index structure
over NAND flash memory.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 5

3.1 Flash Memory Characteristics

NAND!' flash memory is organized in many blocks and each block is of a fixed
number of pages. A block is the smallest unit of erase operation, while reads
and writes are handled by pages. The typical block size and page size of NAND
flash memory is 16 KB and 512 bytes, respectively. Because flash memory is
write-once, we do not overwrite data on each update. Instead, data are written
to free space and the old versions of data are invalidated (or considered as dead).
The update strategy is called “outplace update.” In other words, any existing
data on flash memory could not be overwritten (updated) unless it is erased.
The pages storing live data and dead data are called “live pages” and “dead
pages,” respectively. Because outplace update is adopted, we need a dynamic
address translation mechanism to map a given LBA (logical block address) to
the physical address where the valid data reside. Note that LBA usually denotes
the logical address of a read/write unit in the flash memory. To accomplish this
objective, a RAM-resident translation table is adopted. The translation table is
indexed by LBA’s and each entry of the table contains the physical address of
the corresponding LBA. If the system reboots, the translation table is rebuilt
by scanning the flash memory.

After a certain number of page writes, free space on flash memory would be
low. Activities then start, which consists of a series of read/write/erase with the
intention to reclaim free spaces. The activities are called “garbage collection,”
which is considered as overheads in flash-memory management. The objective
of garbage collection is to recycle the dead pages scattered over the blocks so
that they become free pages after erasings. How to efficiently choose which
blocks should be erased is the responsibility of a block-recycling policy. The
block-recycling policy tries to reduce the overhead of garbage collection (caused
by live data copyings). Under current technology, a flash-memory block has a
limitation on the erase cycle count. For example, a block of typical NAND flash
memory can be erased 1 million (10%) times. After that, a worn-out block can
suffer from frequent write errors. A “wear-leveling” policy intends to erase all
blocks on flash memory evenly, so that a longer overall lifetime is achieved.
Obviously, wear-leveling activities impose significant overhead to the flash-
memory storage system if the access patterns try to frequently update some
specific data.

3.2 Problem Definition

While the storage capacity of flash memory keeps increasing, many systems,
including mobile devices (e.g., PDA’s, smart phones, Sony VGN-FS500P12 lap-
tops, and IBM X40 laptops), now have flash memory for (additional) secondary
storage devices. Because B-tree is one of the most popular data structures
adopted by database applications or databases systems (such as IBM DB2,
Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE), applications with
file-processing needs (such as those with index sequential files), or even many

IThere are two major types of flash memory in the current market: NAND flash and NOR
flash. NAND flash memory is specially designed for data storage and NOR flash is for EEPROM
replacement.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

6 . C.-H. Wu et al.

Fig. 1. A B-tree (fanout is four).

well-known journaling file systems (such as XF'S, JFS, and ReiserFS *), many
applications that run over disks in the past might now access data stored
on flash memory. Because of the significant overhead in the manipulations
of B-trees ver flash memory, many applications that adopt B-trees will have
serious performance problems in accessing data on flash memory. Such an ob-
servation motivates this research.

A B-tree consists of a hierarchical structure of data. It provides efficient op-
erations to find, delete, insert, and traverse the data. There are two kinds of
nodes in a B-tree: internal nodes and leaf nodes. A B-tree internal node con-
sists of a ordered list of key values and linkage pointers, where data in a subtree
have key values between the ranges defined by the corresponding key values.
A B-tree leaf node consists of pairs of a key value and its corresponding record
pointer. In most cases, B-trees are used as external (outside of RAM) index
structures to maintain a very large set of data. Traditionally, B-tree is imple-
mented in disk-storage systems for reducing the I/O fetchings due to B-tree’s
bigger fanout. As the size of flash memory rapidly grows, the flash memory
could replace the disk-storage systems. However, a direct adoption of B-tree
index structures over flash-memory storage systems could exaggerate the over-
head of flash-memory management. Let us first consider usual operations done
over B-tree index structures: Figure 1 shows an ordinary B-tree. Suppose that
six different records are to be inserted. Let the primary keys of the records
be 20, 45, 85, 130, 185, and 250, respectively. As shown in Figure 1, the 1st,
2nd, 3rd, 4th, 5th, and 6th records are inserted to nodes D, E, F, H, I, and J,
respectively. Six B-tree nodes are modified. Now, let us focus on the files of in-
dex structures, because we usually store index structures separately from the
records. Suppose that each B-tree node is stored in one page, then up to six
page writes are needed to accomplish the updates. If rebalancing is needed,
more updates of internal nodes are needed.

Compared with operations on hard disks, updating (or writing) data over
flash memory is a very complicated and expensive operation. Since outplace
update is adopted, a whole page (512 bytes), which contains the new version
of data is written to flash memory and previous data must be invalidated.
The page-based write operations introduce a sequence of negative effects. Free

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems

Table I. Performance of a Typical NAND Flash Memory [b:s 1*

Page Read | Page Write | Block Erase
512 B 512 B 16 KB
Performance(us) 348 909 1,881
Energy Consumption(ujoule) 929 237.6 422.4

¢Samsung K9F6408UOA 8MB NAND flash memory.

space on flash memory is consumed very quickly. As a result, garbage collection
happens frequently to reclaim free space. Furthermore, because flash mem-
ory is frequently erased, the lifetime of the flash memory is reduced. Another
problem is energy consumption. Outplace updates result in garbage collection,
which must read and write pages and erase blocks. Because writes and erases
consume much more energy than reads, as shown in Table I, outplace updates
eventually consume more energy. For portable devices, because the amount of
energy provided by batteries is limited, energy-saving is a major concern. In
this paper, we will propose a layer implementation over existing flash memory
implementations, i.e., FTL, to not only provide a compatible solution to exist-
ing systems, but also present an implementation design to significantly reduce
overhead because of B-tree manipulations.

4. THE DESIGN AND IMPLEMENTATION OF BFTL

In this section, we present an efficient B-tree layer for flash-memory storage
systems (BFTL) with a major objective of reducing the redundant data written
because of the hardware restriction of NAND flash memory. We illustrate the
architecture of a system, which adopts BFTL, and present the functionalities
of the components inside BFTL in the following subsections.

4.1 Overview

In our approach, we propose a layer we have called BFTL (an efficient B-tree
layer for flash-memory storage systems) over the original flash translation layer
(FTL). BFTL is devoted to the efficient implementation of B-tree index struc-
tures over FTL and provides file systems functions to create and maintain
B-tree index structures. In this paper, BFTL is considered as a part of the op-
erating system. Figure 2 illustrates the architecture of a system that adopts
BFTL. BFTL consists of a small reservation buffer and a node translation table.
B-tree index services requested by the upper-level applications are handled and
translated from file systems to BFTL and then block-device requests are sent
from BFTL to FTL. When the applications insert, delete, or modify records, the
newly generated records (referred as “dirty records” for the rest of this paper)
would be temporarily held by the reservation buffer of BFTL. Since the reserva-
tion buffer only holds an adequate amount of records, the dirty records should
be timely flushed to flash memory. Note that record deletions are handled by
adding “invalidation records” to the reservation buffer.

To flush out the dirty records in the reservation buffer, BFTL constructs a
corresponding “index unit” for each dirty record. Index units are used to reflect
primary-key insertions and deletions to the B-tree index structure caused by the

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

8 . C.-H. Wu et al.

B-Tree-Related Applications Other Applications

10000 400 =
i

AN
Node Translation Reservation <-| S Fl?Sh PEIS-
tabl 9 stem Layer
able Buffer z Flle y y
-
| The Commit Policy Dj SYStemS

Block-Device
Emulation Layer

Flash Memory Translation Layer (FTL)

E‘:IT:‘:II EDLFE DDII Hardware
Layer

Flash Memory

Fig. 2. Architecture of a system which adopts BFTL.

dirty records. The storing of the index units and the dirty records are handled
in two different ways. The storing of the records is relatively simple; the records
are written (or updated) to allocated (or the original) locations. On the other
hand, because an index unit is very small (compared with the size of a page),
the storing of the index units is handled by a commit policy. Many index units
could be efficiently packed into a few sectors to reduce the number of pages
physically written. Note that the “sectors” are logical items, which are provided
by the block-device emulation of FTL. We try to pack index units belonging to
different B-tree nodes in a small number of sectors. During this packing process,
although the number of sectors updated is reduced, index units of one B-tree
node could now exist in different sectors. To help BFTL to identify index units
of the same B-tree node, a node translation table is adopted.

In the following subsections, we present the functionality of index units, the
commit policy, and the node translation table. In Section 4.2, we illustrate how a
B-tree node is physically represented by a collection of index units. The commit
policy, which efficiently flushes the dirty records, is presented in Section 4.3.
The design issues of the node translation table are discussed in Section 4.4.

4.2 The Physical Representation of a B-Tree Node: Index Units

BFTL constructs a corresponding “index unit” to reflect the primary-key inser-
tion/deletion to the B-tree index structure caused by a dirty record. In other
words, an index unit is treated as a modification of the corresponding B-tree
node, and a B-tree node is logically constructed by collecting and parsing all
relevant index units. Since the size of a index unit is relatively small (compared
to the size of a page), the adopting of index units prevents redundant data from
frequently being written to flash memory. To save space needed by the storing

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 9

of index units, many index units are packed into a few sectors even though the
packed index units might be belonging to different B-tree nodes. As a result,
the index units of one B-tree node could exist in different sectors over flash
memory, and the physical representation of the B-tree node are different from
the original one.

To construct the logical view of a B-tree node, relevant index units are col-
lected and parsed. An index unit has several components: data_ptr, parent_node,
primary key, left_ptr, right_ptr, an identifier, and an op_flag; where, data_ptr,
parent_node, left_ptr, right_ptr, and primary_key are the elements of a original
B-tree node. They represent a reference to the record body, a pointer to the par-
ent B-tree node, a pointer to the left B-tree node, a pointer to the right B-tree
node, and the primary key, respectively. Beside the components originally for
a B-tree node, an identifier is needed. The identifier of an index unit denotes
to which B-tree node the index unit belongs. The op_flag denotes the operation
done by the index unit. The operation could be an insertion, a deletion, or an
update. In addition, time-stamps are added for each batch flushing of index
units to prevent BFTL from using stale index units. Note that BFTL uses FTL
to store index units. Index units could be scattered over flash memory. The log-
ical view of the B-tree node is constructed through the help of BFTL. However,
scanning flash memory to collect the index units of the same B-tree node is very
inefficient. A node translation table is adopted to handle the collection of index
units and is presented in Section 4.4.

4.3 A Commit Policy

A technical issue is how to efficiently pack index units into a few sectors. In
this section, we shall provide discussions on a commit policy for index units.
First, a reservation buffer for the commit policy is defined as follows: The reser-
vation buffer is a write buffer residing in main memory. When a B-tree node
is inserted, deleted, or modified, any newly generated records would, first, be
temporarily held by the reservation buffer. Records in the reservation buffer
represent operations which have not yet been applied to a B-tree. For each
record r in the reservation buffer, there exists a corresponding B-tree node to
which r belongs. The relationship of records in the reservation buffer and B-tree
nodes is maintained for the commit policy.

The buffering of dirty records prevents B-tree index structures on flash mem-
ory from being intensively modified. However, the capacity of the reservation
buffer is not unlimited. Once the reservation buffer is full, some dirty records
in the buffer are committed (written) to flash memory. We propose to flush out
all dirty records because a better analysis of dirty records is possible in order
to reduce updates of leaf nodes (We will demonstrate the approach later in the
performance evaluation.) Beside the storing of records, BFTL constructs index
units to reflect modifications to the B-tree index structure. On the other hand,
we also hope that index units of the same B-tree node will not be scattered
over many sectors so that the collection of the index units is more efficient. A
commit policy is proposed to achieve both of the objectives. The commit policy
is illustrated by an example:

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

10 o C.-H. Wu et al.

Logical view of a B-Tree
Index Structure

10 | 120 | | 180 | |220 | | |
\—l-Jr'L e ,r ; 7

A record

Reservation
‘- u - - - _ m Buffer
& = Contents (lIl RAM)
" == = Primary key
Index 20 25 Record
units contents 4J
| Sector 1 U | Sector2 D le‘mlt

Policy

=

Flash Memory Translation Layer (FTL)

Flash Memory

Fig. 3. The commit policy packs and flushes the index units.

The handling of a B-tree index structure in Figure 3 is divided into three
parts: the logical view of a B-tree index structure, BFTL, and FTL. Suppose
that the reservation buffer could hold six records, whose primary keys are 20,
25, 85, 180, 185, and 250, respectively. When the buffer is full, the records
should be written to flash memory. BFTL first generates six index units (I11-16)
for the six records. Based on the primary keys of the records and the value
ranges of the leaf nodes (D, E, F, G, H, I, and J in the figure), the index units
could be partitioned into five disjoint sets: {I1, 12} € D, {I3} € F', {I4} € H, {I5} €
I, {I6} € J. The partitioning prevents index units of the same B-tree node from
being fragmented. Suppose that a sector provided by FTL stores three index
units. Therefore, {I1, 12} and {I3} are put in the first sector and {I4}, {I5}, and
{I6} are put in the second sector, since the first sector is full. Finally, two sectors
are written to commit the index units. If the reservation buffer and the commit
policy are not adopted, up to six sector writes might be needed to handle the
modifications of the index structure.

However, the packing problem of index units into sectors is inherently
intractable. A problem instance is as follows: given disjoint sets of index units,
how are the number of sectors minimized in packing the sets into sectors?

TuEOREM 4.3.1. The packing problem of index units into sectors is NP-Hard.

Proor. The intractability of the problem is shown by a reduction from the
bin packing [Garey and Johnson 1979] problem. Let an instance of the bin

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 11

packing problem be defined as follows: suppose B and K denote the capacity of
a bin and the number of items, where each item has a size. The problem is to
put items into bins such that the number of bins is minimized.

The reduction is done as follows: let the capacity of a sector be the capacity of
abin B, and each item a disjoint set of index units. The number of disjoint sets is
as the same as the number of items, i.e., K. The size of a disjoint set is the size
of the corresponding item. (Note that although the sector size is determined
by systems, the sector size is normalized to B. The sizes of disjoint sets are,
accordingly, in the same ratio.) If there exists a solution for the packing problem
of index units, then the solution is also one for the bin-packing problem. O

Algorithm 1. The FIRST-FIT-based Commit Policy

Let ® denote the set of the disjoint sets of index units
Let © denote the set of the sectors
while @ is not empty do
Let ds be a disjoint set in ®
if there exists a used sector sec in © that has available free space for ds then
ds is stored in sector sec
else
create a new sector nsec to store ds
® <« O + nsec
end if
D «— d-ds
: end while

: flush out ® to flash memory

—

There exists many excellent approximation algorithms for bin packing. We
propose to adopt the well-known FIRST-FIT approximation algorithm [Vazirani
2001] so as to bound the number of pages written, because of the policy. The
pseudocode of the FIRST-FIT-based commit policy is shown in Algorithm 1.
Here, let a B-tree node fit in a sector so that the size of a disjoint set is not
beyond that of a sector.

4.4 The Node-Translation Table

Since the index units of a B-tree node are scattered over flash memory because
of the commit policy, a node translation table is adopted to maintain a collection
of the index units of a B-tree node so that the collecting of index units is efficient.
This section presents the design and related implementation issues of the node
translation table.

Since the construction of the logical view of a B-tree node requires all in-
dex units of the B-tree node, collecting the needed index units must be effi-
cient when a B-tree node is accessed. A node translation table is introduced
as an auxiliary data structure to make the collecting of the index units ef-
ficient. A node-translation table is very similar to the logical address trans-
lation table mentioned in Section 3.1, which maps a LBA (the address of a
sector) to a physical page number. However, different from the logical address
translation table, the node-translation table maps a B-tree node to a collection

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

12 o C.-H. Wu et al.

A A -

B C
1] !

(a) Logical view of a B-tree (b) Node translation table

Fig. 4. The node translation table.

of LBA’s where the related index units reside. In other words, all LBA’s of
the index units of a B-tree node are chained after the corresponding entry
of the node-translation table. In order to form a correct logical view of a B-
tree node, BFTL visits (reads) all sectors where the related index units reside
and then construct an up-to-date logical view of the B-tree node. The node-
translation table is rebuilt by scanning the flash memory when the system is
powered-up.

Figure 4a shows a B-tree with nine nodes. Figure 4b is a possible config-
uration of the node-translation table. Figure 4b shows that each B-tree node
consists of several index units, which come from different sectors. The LBA’s
of the sectors are chained as a list after the corresponding entry of the table.
When a B-tree node is visited, all the index units belonging to the visited node
are collected by scanning the sectors whose LBA’s are stored in the list. For
example, to construct a logical view of B-tree node C in Figure 4a, LBA 23 and
LBA 100 are read by BFTL (through FTL) to collect the needed index units.
Conversely, a LBA has index units, which belong to different B-tree nodes. Fig-
ure 4b shows that LBA 100 contains index units of B-tree nodes B, C, and I.
Therefore, when a sector is written, the LBA of the written sector is appended
accordingly to some entries of the node-translation table.

However, the lists in the node-translation table can grow unexpectedly. For
example, if a list after a entry of the node-translation table has 100 slots,
the visiting of the corresponding B-tree node might read 100 sectors. On the
other hand, the node-translation table stores 100 LBA’s in the list. If the node-
translation table is handled in an uncontrolled manner, it will not only severely
deteriorate the performance, but also consume many resources (such as RAM).
To overcome the problem, we propose to compact the node-translation table
when necessary. A system parameter C is used to control the maximum length
of the lists of the node-translation table. When the length of a list grows be-
yond C, the list is compacted. To compact a list, all related index units are
collected into RAM and then written back to flash memory with the smallest
number of sectors. As a result, the size of the table is bounded by O(N x C),
where N denotes the number of B-tree nodes. On the other hand, the number of

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 13

Algorithm 2. A Revised Commit Policy with the Considerations of the Node-
Translation Table

1: Let ® denote the set of the disjoint sets of index units

2: Let © denote the set of the sectors

3: Let ntt denote a node-translation table

4: while ® is not empty do

5: Let ds be a disjoint set in ®

6: Let en be the corresponding entry of ntt of a B-tree node that ds would update
7 if the length of the list of the corresponding entry en is beyond C then

8 execute the compaction of the list

9

end if
10: if there exists a used sector sec in © that has available free space for ds then
11: ds is stored in sector sec
12: record the LBA of sec in the list after the corresponding entry en of nitt
13: else
14: create a new sector nsec to store ds
15: record the LBA of nsec in the list after the corresponding entry en of n¢t
16: ® <« O + nsec
17: end if

18: O «— d-ds
19: end while

20: flush out © to flash memory

sector reads needed to visit a B-tree node can be bounded by C. Obviously, there
is a trade-off between the overhead of compaction and of performance. The
experimental results presented in Section 6 provide more insights for system
parameter configuring. The pseudocode of the commit policy is revised to handle
the operation of the node-translation table, as shown in Algorithm 2.

5. SYSTEM ANALYSIS

This section provides the analysis of the behaviors of FTL and BFTL. We de-
rived the numbers of sectors read and written by FTL and BFTL to handle the
insertions of n records.

Suppose that we already have a B-tree index structure residing on flash
memory. Without losing the generality, let a B-tree node fit in a sector (provided
by FTL). Suppose that n records are to be inserted. That is, n primary keys
will be inserted into the B-tree index structure. Assume that the values of the
primary keys are all distinct.

First, we shall investigate the behaviors of FTL. A B-tree node under FTL
is stored in exactly one sector. One sector write is needed for each primary key
insertion when no node overflow (node splitting) occurs. If a node overflows, one
primary key in the node is promoted to its parent node, and the node is then split
into two new nodes. On the other hand, if a node is not half full, the node could
be merged with other half-full sibling nodes or rotated one primary key from
the other sibling nodes. The splitting is handled by three sector writes under
FTL (Two sector writes are for the two new nodes and one sector write is for the
parent node). The merging or rotating is also handled by, at most, three sector

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

14 o C.-H. Wu et al.

writes under FTL. Let H denote the current height of the B-tree, and Ny,;; and
Npergerotate denote the number of nodes which are split and merged/rotated
during the handling of the insertions, respectively. The numbers of sectors
read and written by FTL to handle the insertions could be represented as
follows:

Ry, = O(n+ H)

(1
Wrrr, = O(n + 3 * Nsplit + 3% Nmerge/rotate)

Suppose that the sector size remains the same under BFTL (note that BFTL
is above FTL), and the height of the B-tree is H. Let us consider the numbers
of sectors read and written over flash memory when n records are inserted.
Because BFTL adopts the node-translation table to collect index units of a B-
tree node, the number of sectors that are read to construct a B-tree node depends
on the length of lists of the node-translation table. Let the length of the lists
be bounded by C (as mentioned in Section 4.4), the number of sectors that are
read by BFTL to handle the insertions could be represented as follows: (note
that C is a control parameter, as discussed in the previous section.)

Rprr, = O(n+« H % C) (2)

Equation 2 shows that the BFTL reads more sectors in handling the inser-
tions. In fact, BFTL trades the number of reads for the number of writes. The
number of sectors written by BFTL are calculated as follows. Because BFTL
adopts the reservation buffer to hold records in RAM and flushes them in a
batch, modifications to B-tree nodes (i.e., the index units) are packed in a few
sectors. Let the capacity of the reservation buffer of BFTL be of b records. As a
result, the reservation buffer is flushed by the commit policy at least [n/b] times
during the handling of the insertion of n records. Let N, and Ny, ... o0z de-
note the number of nodes, which are split and merged/rotated, to handle the ith
flushing of the reservation buffer, respectively. Obviously, Zi[i/lb] N ;plit = Ngpiit
and Zi[i/llﬂ N fnerge Jrotate = N pnerge /rotate ecause the B-tree index structures under
FTL and BFTL are logically identical. For each single step of the reservation
buffer flushing, we have b+ Nsiplit x fanout + N ,"nerge Jrotate * fanout dirty index
units to commit. N slplit times fanout in the formula because each splitting re-
sults in an updating of the parent node and two new nodes in which the number
of index units required is fanout. Then, N fner ce/rotate times fanout in the formula
because each merging/rotating results in fanout index units, at most (i.e. each
merging results in a full new node and an updating of its parent node in which
the number of index units required is fanout). Similar to FTL, suppose that a
B-tree node fits in a sector. That means a sector holds (fanout-1) index units.
Let A = (fanout — 1). The number of sectors written by the ith committing of

the reservation buffer is about (% +N! . +Ni). To completely flush the

split merge [rotate
: : n/bl (b i i —
reservation buffer, we have to write at least 3, 1" (3 + Ny, + Ny oo rrotare) =

(Zfl/lb] %) + Nopiit + Nmerge/rotate S€Ctors. Since BFTL adopts the FIRST-FIT ap-

proximation algorithm (as mentioned in Section 4.3), the number of sectors

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 15

written by BFTL is bounded by the following formula:

[n/b]
Werr, = O (2 * (Z X + Nsplit + Nmerge/rotate))

i=1

2
0] < ;k\n + 2% Nsplit + 2% Nmerge/rotate) 3)

By putting Wgrp, with Weppp, together, we have:

2xn
Warrr, = O (A +2x% NSplit +2% Nmerge/rotate)

Wrrr, = O(n + 3 Nsplit + 2% Nmerge)

4)

Equation (4) shows that Wgpyy, is far less than Wgypy, since A (the number
of index units a sector could store) is usually larger than two. The deriving of
equations provide a low bound for Wggrr,. However, the compaction of the node
translation table (mentioned in Section 4.4) introduces some run time overhead.
We later show that when A = 20, the number of sectors written by BFTL is
between 1/5 and 1/26 of the number of sectors written by FTL.

6. PERFORMANCE EVALUATION

BFTL was implemented and evaluated to verify the effectiveness and to show
the benefits of our approach. By eliminating redundant data written to flash
memory, we surmise that the performance of B-tree operations is significantly
improved.

6.1 Experiment Setup and Performance Metrics

A NAND-based system prototype was built to evaluate the performance of BFTL
and FTL. The prototype was equipped with a 4 MB NAND flash memory, where
the performance of the NAND flash memory is included in Table I. To evaluate
the performance of FTL, a B-tree was directly built over the block-device emu-
lated by FTL. The greedy block-recycling policy [Kawaguchi et al. 1995; Chang
et al. 2004] was adopted in FTL to handle garbage collection.

Because we focused on the behavior of B-tree index structures in this paper,
we did not consider the writing of data records over flash memory. Only the
performance of index operations was considered and measured. The fanout of
the B-tree used in the experiments was 21 and the size of a B-tree node fits in a
sector. To evaluate the performance of BFTL, BFTL was configured as follows:
the reservation buffer in the experiments was configured to hold 60 records
(unless we explicitly specified the capacity) and the bound of the lengths of lists
in the node translation table was set as four (unless we explicitly specified the
bound).

In the experiments, we measured the average response time of record in-
sertions and deletions. A smaller response time denotes a better efficiency in
handling requests. The average response time also implicitly reflected the over-
head of garbage collection. If there was a significant number of live page copy-
ings and block erasings, the response time would be increased accordingly. To

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

16 o C.-H. Wu et al.

further investigate the behaviors of BFTL and FTL, we also measured the num-
bers of pages read, pages written, and blocks erased in the experiments. Note
that sector reads/writes were issued by an original B-tree index structure and
BFTL. FTL translated the sector reads/writes into page reads/writes to physi-
cally access the NAND flash memory. Live data copyings and block erases were
generated accordingly to recycle free space when needed. (Readers can refer to
Figure 2 for the system architecture.) The energy consumption of BFTL and
FTL were measured to evaluate their power-efficiency levels. Different work-
loads were used to measure the performance of BFTL and FTL. The details are
illustrated in later sections.

6.2 Performance of B-Tree Index Structures Creation

In this part of experiments, we measured the performance of FTL and BFTL
in the creating of B-tree index structures. B-tree index structures were created
by record insertions. In other words, the workloads consisted of insertions only.
For each run of experiments, we inserted 30,000 records. Although a B-tree
constructed by the 30,000 record insertions under FTL occupied 1197 KB space
on flash memory, the total amount of data written by FTL was 14 MB. Be-
cause 4 MB NAND flash memory was used in the experiments, the activities of
garbage collection were started soon to recycle free space. Note that the ratio-
nale behind the experiment setup of 4 MB NAND flash memory was to provide
better observations on garbage collection behaviors. In the experiments, a ra-
tio rs was used to control the value distribution of the inserted keys: when rs
equals zero, all of the keys were randomly generated. If rs equals 1, the value
of the inserted keys were in an ascending order. Consequently, if the value of s
equals 0.5, the values of one-half of the keys were in an ascending order, while
the other keys were randomly generated. In Figures 5 and 6, the x axes denote
the value of rs.

Figure 5a shows the average response time of the insertions. We can see
that BFTL greatly outperformed FTL: The response time of BFTL was about
one-third of FTL when the values of the keys were completely in an ascending
order (rs = 1). BFTL still outperformed FTL even if the values of the keys
were randomly generated (rs = 0). When the keys were sequentially generated
(rs = 1), the number of sectors written was decreased because index units of
the same B-tree node were not severely scattered over sectors. Furthermore,
the length of the lists of the node translation table would be relatively short
and the compaction of the lists would not introduce significant overheads.
As mentioned in the previous sections, writing to flash memory is relative
expensive because writes would wear flash, consume more energy, and intro-
duce garbage collection. Figures 5b and 5¢ show the number of pages written
and the number of pages read in the experiments, respectively. The numbers
reflect the usages of flash memory by FTL and BFTL in the experiments. If
we further investigate the behaviors of BFTL and FTL by putting Figure 5b
together with 5c, we can see that BFTL efficiently traded extra reads for the
number of writes by adopting the commit policy. On the other hand, the extra
reads come from the visiting of sectors to construct a logical view of a B-tree
node, as mentioned in Section 4.4.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems

17

45

; 4| DFTL lBFTL'i

80000

Average Response Time (ms)
]

35
3
25
15
1
05
0
0 02 0.4

18

0.6 0.8 1

70000

—| @FIL mBFIL |7

60000
50000
40000
30000
20000
10000

Number of Pages Written (Pages)

0.4 0.6

18

0.8

(a) Average Response Time of Insertion after
Inserting 30,000 Records

(b) Number of Pages Written after Inserting 30,000

Records

300000

2000

250000
200000
150000
100000

50000

Number of Pages Read (Pages)

18

OFTL BBFTL
0
0 02 04 06 08 1

1500

1000

500

Number of Erased Blocks

O FTL @ BFTL|

0.4 0.6

18

0.8

(c) Number of Pages Read after Inserting 30,000
Records

Fig. 5.

(d) Number of Erased Blocks after Inserting 30,000

Records

Experimental results of B-tree index structures creation.

8000

[@BrTL]

7000

=

6000

5000
4000
3000
2000
1000

Number of Executions of
Compact Function

1

0.4 0.6

s

Fig. 6. Number of executions of compact function.

For the garbage collection issue, in Figure 5d, we can see that BFTL certainly
suppressed the garbage collection activities when compared with FTL. In all
experiments of BFTL, garbage collection did not even start yet. As a result,
a longer lifetime of flash memory could be promised by BFTL. We must point
out that experiments on a 512 MB NAND flash memory would result in very
similar results observed in the experiments, even though garbage collection
might come later, compared to the current experiments with a 4 MB NAND
flash memory. Figure 6 shows the overhead introduced by the compaction of
the node translation table. In Figure 6, we can see that the number of execu-
tions of compacting was reduced when the values of the inserted keys were in

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

18 o C.-H. Wu et al.

4 . 1800 —{—4—FTL1=0 = BFTL1s=0
g 35 A % 1600 || —a—FTLs=1 BFTL rs=1
T 3 — el 2 1400
| el 2 1000 —
£ 25 — g —_—
2 -~ B 1000 —
o] 2 =
& g 800 — —
2 15 3 /
~ 2 600
g o1 S 400 ~—
o
2 s | [—*FILn=0 —#—BFILr=0 2
« O —a—FTL s=1 BFTL rs=1 E 200
0 n n n L z ol v wo = s
50/50 40/60 30170 20/80 10/90 50/50 40/60 30170 20/80 10/90
Ratio of Deletions to Insertions Ratio of Deletions to Insertions
(a) Average Response Time under Different (b) Number of Block Erased under Different
Ratios of Deletions/Insertions Ratios of Deletions and Insertions

Fig. 7. Experimental results of B-tree index structures maintenance.

an ascending order. On the other hand, BFTL frequently compacted the node
translation table if the values of the inserted keys were randomly generated,
since the index units of a B-tree node were also randomly scattered over sec-
tors. Therefore, the length of the lists could grow rapidly and the lists would be
compacted frequently.

6.3 Performance of B-Tree Index Structures Maintenance

In this part of the experiment, we measured the performance of BFTL and FTL
to maintain B-tree index structures. Under the workloads adopted in this part
of experiment, records were inserted, modified, or deleted. To reflect realistic
usages of index services, we varied the ratio of the number of deletions to the
number of insertions. For example, a 30/70 ratio denotes that the 30% of total
operations are deletions and the other 70% of total operations are insertions.
For each run, 30,000 operations were performed on the B-tree index structures
and the ratio of deletion/insertion was among 50/50, 40/60, 30/70, 20/80, and
10/90. Besides the deletion/insertion ratios, rs = 1 and rs = 0 (see Section 6.2
for the definition of rs) were used as two representative experiment settings.
The x axes of Figures 7a and 7b denote the ratios of deletion/insertion. Figure
7a shows the average response time under different ratios of deletion/insertion.
The average response time shows that FTL outperformed BFTL when the ratio
of deletions/insertions changed from 50/50 to 20/80 with rs = 0 (the keys were
randomly generated). Since the inserted keys were already randomly gener-
ated and then randomly deleted, more index units were chained in the node-
translation table so that the visiting of a B-tree node was not very efficient.
When the ratio of deletions/insertions was beyond 20/80 with rs = 0, BFTL
outperformed FTL because the number of insertions was increased so that
FTL could incur more pages written. With rs = 1, when the ratio of dele-
tions/insertions changed from 50/50 to 10/90, the performance of BFTL greatly
improved. The reason was that BFTL could have less pages written, when the
values of the inserted keys were in an ascending order. As a result, when the
ratio of deletion/insertion changed from 50/50 to 10/90 with rs = 1, BFTL could
have better performance than FTL. Figure 7b shows the number of block erased

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 19

35 O FTL mBFIL

Average Response Time (ms)

0 0.2 0.4 0.6 0.8 1

s

Fig. 8. Experimental results of B-tree index structures search.

in the experiments. The garbage collection activities were substantially reduced
by BFTL; they had even not started yet in all experiments of BFTL.

6.4 Performance of B-Tree Index Structures Search

In this part of the experiment, we measured the performance of FTL and BFTL
in the search of B-tree index structures. B-tree index structures were created
by inserting 30,000 records under different values for rs. For each run of exper-
iments, 3000 searches were randomly issued for different keys and the average
response time of the searches was measured, as shown in Figure 8. Since the
index units of B-tree nodes could be scattered over flash memory because of the
commit policy, BFTL would need to read more sectors for the construction of
B-tree nodes so that BFTL had longer response time in search operations than
FTL did. The lengths of lists in the node-translation table had to be bounded
to avoid lengthy searching time over BFTL. In the experiments, the worst case
of the average response time of the searches over BFTL would be no more than
four times that of FTL, because the length bound of the lists was set as four in
the experiments. However, the experimental results in Figure 8 show that the
average response time of the searches over BFTL was no more than twice that of
FTL. In the meantime, BFTL did effectively reduce the number of pages writes
and the number of erased blocks for applications with a lot of small updates
over B-tree index structures.

6.5 The Size of the Reservation Buffer and the Energy Consumption Issues

In this part of experiments, we evaluated the performance of BFTL under differ-
ent sizes of the reservation buffer so that we could have more insights into the
configuring of the reservation buffer. We also evaluated the energy consump-
tions under BFTL and FTL. Because BFTL could have a reduced number of
writes, energy dissipations under BFTL is surmised to be lower than under FTL.

There is a trade-off to configure the size of the reservation buffer. A large
reservation buffer benefits from buffering/caching records, however, it damages
the reliability of BFTL because of power-failures. Reservation buffers with dif-
ferent size were evaluated to find a reasonably good setting. The experiment
setups in Section 6.2 were used in this part of the experiment, but the value
of rs was fixed at 0.5. The size of the reservation buffer was set between 10

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

20 o C.-H. Wu et al.

2.8 \\

| m—
. —

22

Average Response Time (ms)

10 20 30 40 50 o0 70 80 90 100 110 120

Size of Reservation Buffer (Records)

Fig. 9. Experimental results of BFTL under different sizes of the reservation buffer.

Table II. Energy Dissipations of

BFTL and FTL (joule)
Creation
BFTL | FTL

rs=0 | 27.09 | 28.33
rs=1 | 14.79 | 32.65

Maintenance

BFTL | FTL
50/560,rs =0 | 25.28 | 18.52
50/50,rs =1 | 21.56 | 23.24
10/90,rs =0 | 26.15 | 26.25
10/90,rs =1 | 15.53 | 30.47

and 120 records; the size was incremented by 10 records. Figure 9 shows the
average response time of the insertions. The average response time was signif-
icantly reduced when the size of the reservation buffer was increased from 10
to 60 records. After that, the average response time was linearly reduced and
no significant improvement was observed. Since further increasing the size of
the reservation buffer can damage the reliability of BFTL, the recommended
size of the reservation buffer for the experiments was 60 records.

Energy consumption is also a critical issue for portable devices. According
to the numbers of reads/ writes/ erases generated in the experiments, we cal-
culated the energy consumption contributed by BFTL and FTL. The energy
consumptions of reads/ writes/ erases are included in Table I. The calculated
energy consumption of the experiments are listed in Table II. The energy con-
sumed by BFTL was clearly less than FTL. Since page writes and block erases
consume relatively more energy than page reads, the energy consumption was
reduced when BFTL efficiently traded extra reads for the number of writes.
Furthermore, energy consumption contributed by garbage collection was also
reduced by BFTL, since BFTL consumed free space slower than FTL.

6.6 Performance for Different Bounds

In this part of the experiment, we evaluated the performance of BFTL under
different bounds of the lengths of lists (referred to as C hereafter) in the node
translation that was 1, 2, 4, 6, 8, and 10. For each run of experiments, we

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 21

6 —| @EBS=20 MBS=60 0O BS=100 |7 140000 —| @BS=20 WBS=60 [BS=100 I—

120000

100000

80000

60000

40000

Number of Pages Written (Pages)

Average Response Time (ms)
w

20000

0 1 . . .) 0 J:.]...Eh:...:-:...:-:....:-:..

c=1 c=2 c=4 c=6 c=8 c=10 C=1 C=2 C=4 C=6 C=8 C=10
(a) Average Response Time under Different (b) Number of Pages Written under Different
Bounds Bounds

Fig. 10. Average response time and number of pages written under different bounds.

I O fanout =21 H fanout =42 I

4 6 8 10

C (The bound of the length of lists in the node
translation table)

(ms)
w k
W R

Average Response Time

Fig. 11. Average response time under different fanouts.

inserted 30,000 records, s was set to 0.5, and BS was among 20, 60, and 100.
Figure 10a shows that the response time of record insertions under different C.
We can see that when C was set to 1, the average response time was the worst,
because the number of executions of compact function was increased dramat-
ically. We could observe that when C was set to 2, the average response time
showed the best performance. However, as shown in Figure 10b, when C was
set to four, the number of pages written was reduced significantly compared to
C = 2. Furthermore, when C was larger than four, no significant improvement
were observed. As a result, for a longer lifetime of flash memory and reasonable
response time, C was set to four in the experiments.

6.7 Performance for Different Fanouts

In this part of the experiment, we evaluated the performance of BFTL under
different fanouts of a B-tree node. In the previous experiments, the fanout was
set to 21, because the size of a B-tree node could fit into a sector. In this experi-
ment, the fanout was 21 and 42, which would occupy one sector and two sectors
for a B-tree node, respectively. For reflecting the variation of size of a B-tree
node, we also varied the bound of the lengths of lists (referred to as C hereafter)
in the node translation that was 4, 6, 8, and 10. For each run of experiments,
we inserted 30,000 records and rs was set to 0.5. Figure 11 shows that the
response time of record insertions under different fanouts and C. We can see

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

22 o C.-H. Wu et al.

that when C was set to four, the average response time with fanout = 42 was
longer than that with fanout = 21. Because the bigger fanout would result in
the larger size of a B-tree node, the larger size of a B-tree node soon was beyond
C. The number of executions of compact function then increased accordingly.
On the other hand, when C was increased to 6, 8, and 10, the average response
time also increased, because the larger C alleviated the number of executions
of compact function, but it also increased the number of pages read for
constructing a B-tree node. We also can see that the larger fanout did not show
significant improvement in Figure 10. Although the larger fanout provided the
reduced height of a B-tree index structure, it also increased the size of a B-tree
node, which resulted in the more pages read, and increased the number of
executions of compact function under BFTL. As a result, we set the fanout to 21
and C to 4 in the previous experiments for obtaining a reasonable performance.

7. CONCLUSION

Flash-memory storage systems are very suitable for embedded systems such
as portable devices and consumer electronics. As a result of hardware restric-
tions, the performance of NAND flash memory could deteriorate significantly
when files with index structures, such as B-tree, are stored. In this paper, we
propose a methodology and a layer design to support B-tree index structures
over flash memory. The objective is not only to improve the performance of
flash-memory storage systems but also to reduce the energy consumption of
the systems, where energy consumption is an important issue for the design of
portable devices. BFTL is introduced as a layer over FTL to achieve the objec-
tives. BFTL reduces the amount of redundant data written to flash memory. We
conducted a series of experiments over a system prototype, for which we have
very encouraging results.

There are many promising research directions for future work. With the ad-
vance of flash-memory technology, large-scaled flash-memory storage systems
may become very much affordable in the near future. How to manage data
records and their index structures, or even simply storage space, over huge
flash memory might not have a simple solution. The overhead in flash-memory
management could introduce a serious performance in system designs.

REFERENCES

Baver, R. anD McCreicaT, E. M. 1972. Organization and maintenance of large ordered indices.
Acta Informatica 1, 173-189.

BECKER, B., GscHwIND, S., OHLER, T., SEEGER, B., AND WiDMAYER, P. 1996. An asymptotically optimal
multiversion B-tree. VLDB Journal 5, 4, 264-275.

CHANG, L. P. anp Kvo, T. W. 2001. A dynamic-voltage-adjustment mechanism in reducing the
power consumption of flash memory for portable devices. In Conference on Consumer Electronic
(ICCE). IEEE, LA.

CHang, L. P. anp Kvo, T. W. 2002. An adaptive striping architecture for flash memory storage
systems of embedded systems. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS). San Jose, CA. IEEE, Washington, D.C.

Cuang, L. P, Kvo, T. W, anDp Lo, S.-W. 2004. Real-time garbage collection for flash-memory
storage systems of real-time embedded systems. ACM Transactions on Embedded Computing
Systems 3, 4.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

Efficient B-Tree Layer Implementation for Flash-Memory Storage Systems . 23

CoMER, D. 1979. The ubiquitous b-tree. ACM Computing Surveys 11, 2, 121-1317.

Doucus, F., Caceres, R., F. KaasHoEk, K., L1, B. M., AND TAUBER, J. A. 1994. Storage alternatives
for mobile computers. In Symposium on Operating Systems Design and Implementation (OSDI).
USENIX. 25-37.

Freeston, M. 1995. A general solution of the n-dimensional b-tree problem. In SIGMOD Confer-
ence. San Jose, CA. ACM, New York.

Ftl logger exchanging data with ftl systems.

Garey, M. R. anND Jounson, D. S. 1979. Computers and Intractability. Freeman, San Francisco,
CA.

Han-Joon, K. AND SanG-coo, L. 1999. A new flash memory management for flash storage sys-
tem. In Proceedings of the Computer Software and Applications Conference (COMPSAC). IEEE,
Washington, D.C.

http:/www.linuxgazette.com/issue55/florido.html.

http://www.samsung.com/products/semiconductor/flash/index.htm.

KawagucHr, A., NISHIOKA, S., AND MoTopa, H. 1995. A flash-memory based file system. In USENIX
Technical Conference on Unix and Advanced Computing Systems.

K, H. J. anp LEg, S. G. 1999. A new flash memory management for flash storage system. In
Annual International Computer Software and Applications Conference. Phoenix, AZ. IEEE.

Ky, J., Kiv, J. M., Nog, S. H., My, S. L., anp CHo, Y. 2002. A space-efficient flash translation
layer for compact-flash systems. IEEE Transactions on Consumer Electronics 48, 2 (May).

Kuo, T. W., WEy, J. H., aND Lam, K. Y. 1999. Real-time data access control on b-tree index struc-
tures. In International Conference on Data Engineering (ICDE). Sydney, IEEE, Washington, D.C.

Lfs file manager software: Lfm.

1998. compact flash™ 1.4 specification.

1999. smartmedia™ specification.

Parg, C., Kang, J., Pagrg, S. Y., anp Kiv, J. 2004. Energy-aware demand paging on nand flash-
based embedded storages. In International Symposium on Low Power Electronics and Design
(ISLPED,).

Parg, C., Sko, J., Bag, S., Kiv, H., Kiv, S., anp Kmv, B. 2003. A low-cost memory architecture
with nand xip for mobile embedded systems. In International Conference on Hardware [Software
Codesign and System Synthesis (CODES+ISSS). IEEE/ACM/IFIP, CA.

RAMAKRISHNAN AND GEHRKE. 2003. Database Management Systems. McGraw-Hill, New York.

RosenBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured
file system. ACM Transactions on Computer Systems 10, 1 (Feb.), 26-52.

Software concerns of implementing a resident flash disk.

Understanding the flash translation layer(ftl) specification.

Vazirani, V. V. 2001. Approximation Algorithm. Springer, New York.

WoopHousE, D. Jffs: The journaling flash file system.

Wu, C. H., Kuo, T. W, aND YaNng, C. L. 2004. Energy-efficient flash-memory storage systems with
interrupt-emulation mechanism. In International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). IEEE/ACM/IFIP, Stockholm, Sweden.

Wu, C. H., Kuo, T. W,, anp CHANG, L. P. 2006a. Efficient initialization and crash recovery for
log-based file systems over flash memory. In Proceedings of the ACM Symposium on Applied
Computing (SAC). Dijon, France. ACM, New York.

Wuy, C. H., Kuo, T. W,, anD Yang, C. L. 2006b. A space-efficient caching mechanism for flash-
memory address translation. In International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC). Gyeongju, Korea. IEEE, Washington, D.C.

Wu, M. aND ZWAENEPOEL, W. 1994. envy: A non-volatile, main memory storage system. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, New York.

Yet another flash filing system.

Yokota, H., KaNEMASA, Y., AND M1vazaki, J. 1999. Fat-btree: An update-conscious parallel directory
structure. In International Conference on Data Engineering (ICDE). 448-457. IEEE, Washington,
D.C.

Received March 2003; revised July 2005 and February 2006; accepted May 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 3, Article 19, Publication date: July 2007.

