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Boyles (1994) proposed a process measurement called Spk, which provides an
exact measure on the process yield for normal processes. Lee et al. (2002)
considered an asymptotic distribution for the natural estimator of Spk under
a single sample. In this paper, we extend the results for the case of multiple
samples. We first compare the yield index Spk with the most commonly used
index, Cpk, and review some results of Spk under a single sample. Next, we derive
the sampling distribution for the estimator Ŝ 0

pk of Spk under multiple samples
and find that for the same Spk, the variance of Ŝ 0

pk would be largest when the
process mean is on the centre of specification limits. We calculate the lower
bounds for various commonly used quality requirements under the situation with
the largest variance of Ŝ 0

pk for assurance purposes. To assess the normally
approximated distribution of Ŝ 0

pk, we simulate with 10 000 replications to generate
10 000 estimates of Ŝ 0

pk, calculate their lower bounds, compare with the real
(preset) Spk and check the actual type I error. We also compute how many sample
sizes are required for the normal approximation to converge to Spk within
a designated accuracy. Then, we present a real-world application of the one-cell
rechargeable Li-ion battery packs, to illustrate how we apply the lower bounds
to actual data collected from factories.

Keywords: Process yield; Multiple samples; Process capability

1. Introduction

Process capability indices (PCIs), which measure the relationship between the

manufacturing specifications and the actual process performance, have been widely

used in the manufacturing industry providing a numerical measure on whether

a process is capable of reproducing items within the specification limits preset
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in the factory. Some indices have been explicitly defined as follows:

Ca ¼ 1�
��mj j

d
, Cp ¼

USL� LSL

6�
, Cpk ¼ min

USL��

3�
,
�� LSL

3�

� �
¼ CaCp,

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ

2
q , Cpmk ¼ min

USL� �

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ

2
q ,

�� LSL

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� T Þ

2
q

8><
>:

9>=
>;,

Spk ¼
1

3
��1 1

2
�

USL��

�

� ��
þ
1

2
�

�� LSL

�

� ��
,

where � is the process mean, � is the process standard deviation, USL and LSL
are the upper and the lower specification limits, respectively, m¼ (USLþLSL)/2,
d¼ (USL�LSL)/2, T is the target value, �(�) is the cumulative distribution
function of the standard normal distribution N(0, 1), and ��1(�) is the inverse of�(�).

Numerous capability indices have been proposed to measure the process yield
that is an important concern for the manufacturing factories. Process yield is defined
as the percentage of processed product units passing the inspection. That is,
the product characteristic must fall within the manufacturing tolerance. For
processes with two-sided manufacturing specifications, the process yield can be
calculated as %Yield¼F(USL)�F(LSL), where F(�) is the cumulative distribution
function of the process characteristic. If the process characteristic follows the
normal distribution, then the process yield can be alternatively expressed
as %Yield¼�½ðUSL� �Þ=�� ��½ðLSL� �Þ=��. Take Cpk for example, if Cpk¼ c,
then the process yield would be in the range of 2�(3c)� 1 and �(3c), i.e.
2�(3Cpk)�1�%Yield��(3Cpk) (Boyles 1991). To overcome this shortcoming,
Boyles (1994) proposed the yield index, Spk. There is a one-to-one relationship
between Spk and the process yield, %Yield¼ 2�(3Spk)� 1.

Most of the results obtained regarding the statistical properties of estimated
capability indices are based on one single sample. However, a common practice
in process control is to estimate the process capability indices by using past
‘in-control data’ from multiple samples, particularly, when a daily-based or weekly-
based production control plan is implemented for monitoring process stability.
To use estimators based on several small multiple samples and interpret the results
as if they were based on a single sample may result in incorrect conclusions. In order
to use past in-control data from multiple samples to make decisions regarding
process capability, the distribution of the estimated capability index based on
multiple samples should be taken into account. When using multiple samples,
Kirmani et al. (1991) have investigated the distribution of estimators based on
the sample standard deviations of the multiple samples. Li et al. (1990) have
investigated the distribution of estimators of Cp and Cpk based on the ranges of
the multiple samples. Vännman and Hubele (2003) considered the indices in the class
defined by Cpðu,vÞ and derived the distribution of the estimators of Cpðu,vÞ, when
the estimators of the process parameters � and � are based on multiple samples.

In this paper, we investigate the behaviour of an estimator of Spk for multiple
samples. In the second section, we compare the yield index, Spk, with the most
commonly used index, Cpk, and review some results of Spk under single sample.
In the third section, we derive the sampling distribution for the estimator of Spk under
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multiple samples and result in a normal approximation distribution. In the fourth
section, we find that the spread of Ŝ 0

pk would be largest when the process mean is
on the centre of specification limits for the same Spk, so we calculate the lower
bounds of Spk from our deriving distribution of Ŝ 0

pk based on the situation with the
largest variance for conservative. In the fifth section, we show the accuracy of
our normal-approximated distribution of Ŝ 0

pk by displaying the histograms
of lower bounds and the actual type I errors. Finally, we give an application
example to describe how to use the lower bounds as listed in our tables.

2. The yield index Spk

We consider a group of five processes as printed in figure 1. For these processes,
USL¼ 36.0, LSL¼ 24.0, and mean �¼ 30.0, 30.5, 31.0, 31.5, 32.0, standard
deviation �¼ 2.0, 11/6, 5/3, 1.5, 4/3, respectively (from processes A to E). The Cpk

value and calculated yield of these five processes are all the same as in table 1(a),
and the Spk value and its calculated yield in table 1(b). The ‘Actual Yield’ in
table 1(a) and 1(b) is defined by �((USL��)/�) �� ((LSL��)/�). We can see that
for these five processes the calculated yield of Cpk can only guarantee the lower
bound yield; however, the calculated yield of Spk value can truly reveal the actual
yield of each process.

For single sample, Lee et al. (2002) have derived the distribution of an estimator
of Spk. The estimator is defined as

Ŝpk ¼ Spk þ
W

6
ffiffiffi
n

p
�ð3SpkÞ

þOp
1

n

� �

Figure 1. Distribution of five processes with USL¼ 36.0, LSL¼ 24.0.
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where W is normally distributed with a mean of zero and a variance of a2 þ b2,

a ¼
1ffiffiffi
2

p
1� Cdr

Cdp
�

1� Cdr

Cdp

� �
þ
1þ Cdr

Cdp
�

1þ Cdr

Cdp

� �� �
,

b ¼ �
1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �
,

Cdr ¼ ð��mÞ=d, and Cdp ¼ �=d. Therefore, Ŝpk is asymptotically normal-distributed
with mean Spk and variance ða2 þ b2Þ=36n�2ð3SpkÞ. Furthermore, Pearn and Chuang
(2004) investigate the accuracy of the natural estimator of Spk, using a simulation
technique to find the relative bias and the relative mean square error for some
commonly used quality requirement.

Most of the results obtained regarding the statistical properties of estimated
capability indices are based on one single sample. However, to use estimators based
on several small multiple samples and interpret the results as if they were based on
a single sample may result in incorrect conclusions. In order to use past in-control
data from multiple samples to make decisions regarding process capability,
the distribution of the estimated capability index based on multiple samples
should be taken into account. So, in the following we will investigate the sampling
distribution of Spk on multiple samples.

3. Estimating Spk under multiple samples

For the case when the studied characteristic of the process is normally distributed
and we have m multiple samples where the sample size of the ith sample is n.
Let xij, i¼ 1, . . . , m; j¼ 1, . . . , n, be the characteristic value of the m� n samples

Table 1. The Cpk value (a), and Spk value (b), calculated yield, and actual yield
of five different processes in figure 1.

� � Cpk

Calculated
yield

Actual
yield

Process
A 30.0 2.00 1.0 0.9973 0.9973
B 30.5 1.83 1.0 0.9973 0.9985
C 31.0 1.67 1.0 0.9973 0.9986
D 31.5 1.50 1.0 0.9973 0.9986
E 32.0 1.33 1.0 0.9973 0.9987

� � Spk

Calculated
yield

Actual
yield

Process
A 30.0 2.00 1.000000 0.9973 0.9973
B 30.5 1.83 1.055311 0.9985 0.9985
C 31.0 1.67 1.067441 0.9986 0.9986
D 31.5 1.50 1.068365 0.9986 0.9986
E 32.0 1.33 1.068385 0.9987 0.9987
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with mean � and variance �2. Assume that the process is in statistical control

during the time period that the multiple samples are taken. Consider the process

is monitored using a �X-chart together with a S-chart. Then, for each multiple sample,

let �xi and s2i denote the sample mean and sample variance, respectively, of the

ith sample and let N denote the total number of observations, i.e.

�xi ¼
1

n

Xn
j¼1

xij, s2i ¼
1

n� 1

Xn
j¼1

ðxij � �xiÞ
2 and N ¼

Xm
i¼1

n ¼ mn:

As an estimator of �, we use the overall sample mean, i.e.

�̂ ¼ ��x ¼
1

m

Xm
i¼1

�xi ¼
1

mn

Xm
i¼1

Xn
j¼1

xij:

We consider two ways to compute the variance estimator in estimating Spk

(Hubele and Vänman 2004). One estimator of �2 is the pooled variance estimator

defined as

�̂2 ¼ s2p ¼
1

mn

Xm
i¼1

ðn� 1Þs2i ¼
1

mn

Xm
i¼1

Xn
j¼1

ðxij � �xiÞ
2:

The other is an un-pooled variance estimator defined as

�̂2 ¼ s2u ¼
1

mn

Xm
i¼1

Xn
j¼1

ðxij � ��xÞ2:

A natural estimator of Spk is

Ŝpk ¼
1

3
��1 1

2
�

USL� �̂

�̂

� �
þ
1

2
�

�̂� LSL

�̂

� �� �
:

It is obviously that the sampling distribution of Ŝpk is a very complex function

of �̂ and �̂. However, a useful approximation could be obtained by the

following expansion of Spk. For deriving convenience, we use the notations in

Lee’s paper:

Cdr ¼
��m

d
, Cdp ¼

�

d
, Ĉdr ¼

�̂�m

d
, Ĉdp ¼

�̂

d
,

and then the estimator of Spk can be rewritten as

Ŝpk ¼
1

3
��1 1

2
�

1� Ĉdr

Ĉdp

 !
þ
1

2
�

1þ Ĉdr

Ĉdp

 !( )
:

Let

Z ¼
ffiffiffiffiffiffiffi
mn

p
�̂� �ð Þ and Y ¼

ffiffiffiffiffiffiffi
mn

p
�̂2 � �2
� �

:

We note that �̂ is a complete sufficient statistic and �̂2 (for either s2p or s2u) is

an ancillary statistic, so by Basu’s theorem Z and Y are independent. Since the first

two moments of �̂ and �̂2 exists, by the Central Limit Theorem, Y converges
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to N(0, 2�4) under both estimators, s2p and s2u, and Z converges to N(0, �2)
as mn goes to infinity. Consequently, by the Taylor’s expansion Ŝpk can be

expressed as

Ŝpk ¼ Spk þ
W

6
ffiffiffiffiffiffiffi
mn

p
�ð3SpkÞ

þOp
1

mn

� �
,

where

W ¼ �
1

2�2
Y

1� Cdr

Cdp
�

1� Cdr

Cdp

� �
þ
1þ Cdr

Cdp
�

1þ Cdr

Cdp

� �� 	

�
1

�
Z �

1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �� 	

which is normally distributed with mean zero and variance a2þ b2,

a ¼
1ffiffiffi
2

p
1� Cdr

Cdp
�

1� Cdr

Cdp

� �
þ
1þ Cdr

Cdp
�

1þ Cdr

Cdp

� �� �
,

b ¼ �
1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �

and � is the pdf of the standard normal distribution (see Appendix I for explicit

derivation). We let

Ŝ 0
pk ¼ Ŝpk �Op

1

mn

� �

Thus, our Ŝ 0
pk is normally distributed, i.e.

Ŝ 0
pk � N Spk,

a2 þ b2

36mn�2ð3SpkÞ

� �
:

For testing process performance, we consider the following null and alternative

hypotheses:

H0 : Spk � c, c is a specified value: ðProcess is incapable:Þ

H1 : Spk > c: ðProcess is capable:Þ

The testing statistic is

T ¼ Ŝpk � c

 � 6 ffiffiffiffiffiffiffi

mn
p

�ð3ŜpkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b̂2

p
where â and b̂ are estimates of a and b, with Cdr and Cdp replaced by Ĉdr and Ĉdp,

respectively. The null hypothesis H0 is rejected at � level if T>z�, where z� is

the upper 100�% point of the standard normal distribution. An approximate 1��
confidence interval for Spk is

Ŝpk � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b̂2

p
6
ffiffiffiffiffiffiffi
mn

p
�ð3ŜpkÞ

, Ŝpk þ z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b̂2

p
6
ffiffiffiffiffiffiffi
mn

p
�ð3ŜpkÞ

 !
:
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4. Lower bounds of Spk

We note that, for the same Spk, the variance of Ŝ 0
pk increases as the process mean

closes to the centre of the specification limits, and would be largest when the process
mean is at the centre of the specification limits. For two processes with the same Spk,
i.e. the same process yield, one with process mean away from the centre of the
specification limits must have smaller variance in order to have process yield equal
to the other. Also, the process with smaller variance would have smaller variance
of Ŝ 0

pk. Table 2 shows some different processes and corresponding mnVarðŜ 0
pkÞ with

LSL¼ 2.0, USL¼ 14.0, and Spk¼ 1.0.
The following lower bounds displayed in table 3 are calculated under the

condition that process mean is on the centre of specification limits for assurance
purpose. This approach ensures that the conclusions made based on the lower
bounds have the smallest type I error, �, the risk of wrongly concluding an incapable
process as capable. When the practitioner wants to know what the least process yield
(or say Spk) is, necessary samples could be taken from the ‘stable’ process to calculate
the Ŝpk and check the lower bound. The lower bound represents the minimal Spk

of the process with 1� � confidence level.
For the convenience of practitioners, we also develop a Matlab program to

calculate the lower bounds (see Appendix II). Table 3 shows the lower bounds LB
computed from the normal approximation for Ŝpk ¼ 1.0, 1.33, 1.5, 1.67, 2.0,
n¼ 5(5)50, m¼ 3, 6, and �¼ 0.05, 0.025, 0.01. For example, sampling with number
of multiple samples m¼ 3 and each of sample size n¼ 50, resulting in sampling
estimate Ŝpk ¼ 1.67, we then conclude that the process has at least Spk¼ 1.5221 with
95% confidence level.

5. Accuracy of the normal approximation

In order to assess the normally approximated distribution of Ŝ 0
pk, we simulate with

10 000 replications togenerate 10 000 estimatesof Ŝpk, calculate their lowerbounds, and
compare with the real (preset), Spk, for various commonly used quality requirement.

Table 2. Some different processes and corresponding mnVarðŜ
0

pkÞ with Spk¼ 1.0.

� � Cdr Cdp a b mnVarðŜ 0
pkÞ

8.0000 2.0000 0.0000000 0.3333333 0.0188027 0.0000000 0.499999935
8.0452 1.9995 0.0075315 0.3332483 0.0187932 0.0006001 0.499999793
8.0908 1.9979 0.0151253 0.3329907 0.0187643 0.0012004 0.499995833
8.1371 1.9953 0.0228474 0.3325531 0.0187158 0.0018014 0.499978579
8.1846 1.9915 0.0307724 0.3319220 0.0186472 0.0024033 0.499930778
8.2339 1.9865 0.0389895 0.3310765 0.0185575 0.0030066 0.499826688
8.2857 1.9799 0.0476115 0.3299852 0.0184455 0.0036117 0.499628976
8.3407 1.9716 0.0567897 0.3286013 0.0183095 0.0042190 0.499284463
8.4004 1.9611 0.0667404 0.3268532 0.0181470 0.0048292 0.498717347
8.4668 1.9478 0.0777965 0.3246260 0.0179547 0.0054431 0.497816042
8.5431 1.9303 0.0905222 0.3217203 0.0177273 0.0060618 0.496407586
8.6361 1.9065 0.1060173 0.3177420 0.0174563 0.0066871 0.494199792
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Figure 2(a)–(d) shows histograms of lower bounds each of 10 000 replications

with �¼ 0.05, m¼ 3, n¼ 50, Spk¼ 1.00, 1.33, 1.50, and 1.67, respectively. Table 4

displays the actual type I errors for various m, n, Spk, and each with 10 000 simulated

lower bounds.
The results in table 4 show that when m¼ 12, n¼ 50, the confidence level of

the normal approximation is almost equal to the preset 1�� (the confidence

levels are all greater than 94%). As we know, the simulation results are in large

variation, and by Central Limit Theorem the average is in small variation, so we

calculate the average of the lower bounds and compare to the real Spk. Table 5

shows the ratios of the average lower bounds relative to the real Spk. It is noted

that no matter what the real Spk is, the ratios of LB=Spk are almost equal

with the same m and n. Thus, it is reasonable to estimate the true Spk from

the ratios. For example, when m¼ 3 and n¼ 200, practitioners can repeat the

sampling procedure, obtain the average lower bound, and estimate the real Spk

by LB/0.9558.
We further consider how many sample size n should be taken to ensure that

the sampling estimator is closed enough to the real Spk within a designated

accuracy " (Pearn et al. 2004b). Table 6 displays the sample sizes required for

the normal approximation to converge to the real Spk within a designated accuracy

" less than 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, respectively,

Figure 2. Histogram of 10 000 lower bounds with (a) Spk¼ 1.00; (b) Spk¼ 1.33; (c) Spk¼ 1.50;
(d) Spk¼ 1.67.

Estimating process yield based on Spk for multiple samples 57

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
57

 2
6 

A
pr

il 
20

14
 



and the derivation is briefly done as follows:

Pr Ŝ 0
pk � Spk

��� ��� � "
n o

� 1� � ) Pr
Ŝ 0
pk � Spkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ŝ 0

pk


 �r �
"ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ŝ 0
pk


 �r
8>><
>>:

9>>=
>>; � 1�

�

2

)
"ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ŝ 0
pk


 �r � ��1 1� �=2ð Þ

)
a2 þ b2

36mn�2ð3SpkÞ
�

"2

��1ð1� �=2Þ½ �
2

) mn �
a2 þ b2
� �

��1 1� �=2ð Þ

 �2

36�2ð3SpkÞ"2
,

Table 4. Simulated type I errors � for various m, n, and Spk with 10 000 lower bounds.

m Spk n¼ 10 n¼ 20 n¼ 30 n¼ 50 n¼ 100 n¼ 150 n¼ 200

1 1.00 0.1520 0.1156 0.1015 0.0812 0.0788 0.0680 0.0695
1.33 0.1593 0.1147 0.0987 0.0839 0.0750 0.0680 0.0694
1.50 0.1634 0.1161 0.1015 0.0869 0.0707 0.0677 0.0656
1.67 0.1629 0.1132 0.1053 0.0842 0.0764 0.0673 0.0663
2.00 0.1691 0.1188 0.1012 0.0845 0.0737 0.0701 0.0684

2 1.00 0.1126 0.0897 0.0817 0.0748 0.0655 0.0628 0.0602
1.33 0.1124 0.0901 0.0823 0.0715 0.0677 0.0632 0.0614
1.50 0.1148 0.0940 0.0842 0.0706 0.0684 0.0692 0.0663
1.67 0.1158 0.0939 0.0823 0.0754 0.0702 0.0588 0.0584
2.00 0.1223 0.0904 0.0844 0.0715 0.0639 0.0613 0.0641

3 1.00 0.1017 0.0838 0.0742 0.0692 0.0629 0.0579 0.0563
1.33 0.1011 0.0825 0.0726 0.0651 0.0671 0.0560 0.0556
1.50 0.1016 0.0791 0.0784 0.0638 0.0632 0.0600 0.0567
1.67 0.1048 0.0854 0.0681 0.0681 0.0624 0.0586 0.0556
2.00 0.1063 0.0805 0.0772 0.0693 0.0664 0.0644 0.0576

6 1.00 0.0816 0.0693 0.0705 0.0634 0.0619 0.0573 0.0555
1.33 0.0831 0.0750 0.0669 0.0576 0.0624 0.0545 0.0578
1.50 0.0832 0.0727 0.0677 0.0634 0.0599 0.0611 0.0555
1.67 0.0861 0.0744 0.0673 0.0576 0.0609 0.0603 0.0575
2.00 0.0763 0.0741 0.0699 0.0681 0.0626 0.0568 0.0558

9 1.00 0.0739 0.0675 0.0687 0.0573 0.0583 0.0561 0.0553
1.33 0.0752 0.0655 0.0652 0.0546 0.0590 0.0546 0.0550
1.50 0.0762 0.0671 0.0610 0.0628 0.0528 0.0561 0.0535
1.67 0.0804 0.0688 0.0616 0.0623 0.0597 0.0577 0.0554
2.00 0.0748 0.0713 0.0641 0.0636 0.0609 0.0533 0.0498

12 1.00 0.0707 0.0643 0.0593 0.0569 0.0553 0.0534 0.0557
1.33 0.0751 0.0657 0.0559 0.0570 0.0625 0.0568 0.0521
1.50 0.0671 0.0652 0.0641 0.0590 0.0559 0.0559 0.0545
1.67 0.0728 0.0682 0.0625 0.0597 0.0587 0.0577 0.0554
2.00 0.0705 0.0599 0.0645 0.0575 0.0542 0.0538 0.0520
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where �(�) is the cumulative distribution function of the standard normal
distribution N(0, 1), ��1(�) is the inverse of � (�), and �(�) is the probability density
function of N(0, 1).

For example, for m¼ 9, Spk¼ 1.33 with risk �¼ 0.05, a sample size of n� 3795
ensures that the difference between the sampling Ŝpk and the real Spk is smaller
than 0.01. Thus, if the sampling Ŝpk ¼ 1.33, then we can conclude that the actual
performance Spk>1.32 with 95% confidence level. This convergence investigated
is not for practical purpose, but to illustrate the behaviour and the rate of
convergence for the normal approximation.

6. An application example

The integrated circuits (IC) industry has been the most popular industry of previous
years. Products of integrated circuits are various types such as office automation
equipment (copiers, facsimile machines, printers, etc.), vending machines, banking
terminals, CD or DVD players, battery chargers, etc. We investigated a company

Table 5. Ratios of the average of 10 000 lower bounds and the real Spk, i.e. LB=Spk.

m Spk n¼ 10 n¼ 20 n¼ 30 n¼ 50 n¼ 100 n¼ 150 n¼ 200

1 1.00 0.8056 0.8286 0.8483 0.8726 0.9030 0.9178 0.9275
1.33 0.8122 0.8287 0.8487 0.8729 0.9032 0.9179 0.9273
1.50 0.8156 0.8302 0.8505 0.8730 0.9029 0.9178 0.9271
1.67 0.8171 0.8312 0.8511 0.8732 0.9032 0.9186 0.9274
2.00 0.8239 0.8341 0.8510 0.8739 0.9038 0.9177 0.9278

2 1.00 0.8283 0.8611 0.8810 0.9030 0.9274 0.9388 0.9460
1.33 0.8314 0.8636 0.8802 0.9025 0.9276 0.9396 0.9472
1.50 0.8319 0.8627 0.8817 0.9021 0.9285 0.9400 0.9469
1.67 0.8304 0.8628 0.8815 0.9037 0.9277 0.9391 0.9466
2.00 0.8358 0.8629 0.8816 0.9020 0.9277 0.9394 0.9471

3 1.00 0.8496 0.8820 0.8982 0.9179 0.9390 0.9493 0.9552
1.33 0.8493 0.8806 0.8979 0.9170 0.9402 0.9497 0.9555
1.50 0.8484 0.8810 0.8983 0.9179 0.9390 0.9494 0.9555
1.67 0.8506 0.8815 0.8976 0.9176 0.9393 0.9493 0.9558
2.00 0.8516 0.8812 0.8987 0.9185 0.9401 0.9498 0.9556

6 1.00 0.8807 0.9095 0.9241 0.9394 0.9563 0.9632 0.9682
1.33 0.8803 0.9100 0.9239 0.9388 0.9559 0.9634 0.9684
1.50 0.8810 0.9106 0.9241 0.9394 0.9561 0.9636 0.9683
1.67 0.8825 0.9096 0.9241 0.9387 0.9556 0.9635 0.9685
2.00 0.8819 0.9102 0.9240 0.9400 0.9563 0.9635 0.9679

9 1.00 0.8988 0.9245 0.9369 0.9499 0.9630 0.9697 0.9734
1.33 0.8994 0.9236 0.9357 0.9495 0.9637 0.9700 0.9735
1.50 0.8988 0.9248 0.9361 0.9499 0.9634 0.9699 0.9736
1.67 0.8995 0.9244 0.9363 0.9500 0.9638 0.9702 0.9737
2.00 0.8996 0.9247 0.9369 0.9499 0.9635 0.9697 0.9735

12 1.00 0.9104 0.9329 0.9442 0.9561 0.9681 0.9736 0.9770
1.33 0.9100 0.9330 0.9434 0.9558 0.9683 0.9736 0.9769
1.50 0.9093 0.9333 0.9441 0.9557 0.9682 0.9738 0.9771
1.67 0.9095 0.9337 0.9441 0.9560 0.9682 0.9736 0.9773
2.00 0.9106 0.9323 0.9446 0.9556 0.9677 0.9735 0.9772
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in Taiwan manufacturing one-cell rechargeable Li-ion battery packs which have
advantages of low current consumption, high withstand voltage, high accuracy
voltage detection, over current and short circuit protection, and wide operating
temperature range. Among the advanced features, the most important one is the
high accuracy voltage detection. Once the voltage detector falls down, the lifetime
or reliability of the Li-ion battery pack will be discounted. The preset upper
and lower specification limits of the over charge detector are USL¼ 4.40V,
LSL¼ 4.30V, and target value is set to T¼ 4.35V.

The electrical characteristic data of 12 multiple samples each of size 50 are
collected. The sample mean, �xi, and sample standard deviation, si, for the 12 samples
are listed in table 7. To make the estimate of Ŝpk meaningful, we first check if the
characteristic data collected from the process is in control and normally distributed.
For those 12 samples of size 50 each, the Kolmogorov–Smirnov test confirms the
sample normal with a P value>0.15. That is, it is reasonable to assume that the data
collected from the process is normally distributed. Then, we construct the �X� S
charts to check if the process is under statistical control. Figure 3 shows the �X� S

Table 6. Sample sizes required for the normal approximation to converge with �¼ 0.05.

Designated accuracy, "

m Spk 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

1 1.00 193 238 301 392 534 769 1201 2135 4802 19208
1.33 342 422 534 697 949 1366 2135 3795 8537 34147
1.50 433 534 676 882 1201 1729 2702 4802 10805 43217
1.67 534 659 834 1089 1483 2135 3335 5929 13339 53354
2.00 769 949 1201 1568 2135 3074 4802 8537 19208 76830

2 1.00 97 119 151 196 267 385 601 1068 2401 9604
1.33 171 211 267 349 475 683 1068 1898 4269 17074
1.50 217 267 338 441 601 865 1351 2401 5403 21609
1.67 267 330 417 545 742 1068 1668 2965 6670 26677
2.00 385 475 601 784 1068 1537 2401 4269 9604 38415

3 1.00 65 80 101 131 178 257 401 712 1601 6403
1.33 114 141 178 233 317 456 712 1265 2846 11383
1.50 145 178 226 294 401 577 901 1601 3602 14406
1.67 178 220 278 363 495 712 1112 1977 4447 17785
2.00 257 317 401 523 712 1025 1601 2846 6403 25610

6 1.00 33 40 51 66 89 129 201 356 801 3202
1.33 57 71 89 117 159 228 356 633 1423 5692
1.50 73 89 113 147 201 289 451 801 1801 7203
1.67 89 110 139 182 248 356 556 989 2224 8893
2.00 129 159 201 262 356 513 801 1423 3202 12805

9 1.00 22 27 34 44 60 86 134 238 534 2135
1.33 38 47 60 78 106 152 238 422 949 3795
1.50 49 60 76 98 134 193 301 534 1201 4802
1.67 60 74 93 121 165 238 371 659 1483 5929
2.00 86 106 134 175 238 342 534 949 2135 8537

12 1.00 17 20 26 33 45 65 101 178 401 1601
1.33 29 36 45 59 80 114 178 317 712 2846
1.50 37 45 57 74 101 145 226 401 901 3602
1.67 45 55 70 91 124 178 278 495 1112 4447
2.00 65 80 101 131 178 257 401 712 1601 6403
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charts based on the collected samples. Since all sample points are within the control

limits without any special pattern, we can conclude that the process is in control.

Therefore, we consider the process stable and then proceed to the capability

measurements.
Suppose the minimal precision requirement for this process is set to Spk¼ 1.0.

We calculate the overall sample mean ��xi ¼ 4.35154, the pooled sample standard

deviation sp¼
ffiffiffiffi
s2p

q
¼ 0.01192, the un-pooled sample standard deviation su¼ffiffiffiffi

s2u
p

¼ 0.01225, and

Ŝpk ¼
1

3
��1 1

2
�

USL� �̂

�̂

� �
þ
1

2
�

�̂� LSL

�̂

� �� �

¼
1

3
��1 1

2
�

4:40� 4:35154

0:01192

� �
þ
1

2
�

4:35154� 4:30

0:01192

� �� �

or

1

3
��1 1

2
�

4:40� 4:35154

0:01225

� ��
þ
1

2
�

4:35154� 4:30

0:01225

� ��
¼ 1:3871 or 1:3503:

Table 7. The collected electrical characteristic data of 12 samples each of size 50.

Sub-

sample 1 2 3 4 5 6 7 8 9 10 11 12

�xi 4.3526 4.3483 4.3544 4.3490 4.3563 4.3542 4.3482 4.3537 4.3535 4.3505 4.3476 4.3502

si 0.0133 0.0120 0.0124 0.0093 0.0104 0.0114 0.0119 0.0174 0.0126 0.0112 0.0104 0.0102

Figure 3. The �X�S charts based on the collected 12 samples each of size 50.
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We run the program in Appendix II to find the lower bound as 1.3242 (or 1.2890).

Thus, we conclude that the true value of the process capability Spk would be no less

than 1.3242 (or 1.2890) with 95% confidence level.
To estimate the real Spk, the factory manager could implement a weekly based

control system by repeating the sampling procedure for consecutive, say 10 weeks,

then calculate the average lower bounds. For example, the 10 weeks lower

bounds result LB¼ 1.4527. Refer to table 5, the biggest ratio of LB=Spk for m¼ 12

and n¼ 50 is 0.9561, then he can estimate the real Spk¼ 1.4527/0.9561¼
:
1.52.

The corresponding process yield then could be estimated as 0.999994885, or equally,

fraction of defectives is 5.115 ppm.

7. Conclusion

How to measure process performance in the manufacturing industries is a major

concern for the factory managers, and process yield is the most common and

standard criteria. The capability index, Spk, provides an exact yield measure (rather

than yield range) for normal processes. Many researches supporting the use of

capability indices have focused on processes with a single large representative

sample. However, in practice the process performance is monitored by collecting

multiple samples periodically. Our paper considered this type of realistic data

structure and investigated the sampling distribution of Ŝ 0
pk based on multiple

samples.
We note that for processes with the same specification limits and process yield,

the variance of Ŝ 0
pk would be largest while process mean is on the centre of the

specification limits, so we compute the lower bounds of Spk under such condition

for assurance purpose. It is noted that the lower bounds calculated by normal

approximation distribution have larger risk of � especially for smaller total sample

size m� n. As mentioned before, sampling with number of multiple samples m¼ 12,

and number of sample size n¼ 50 is suggested to use the lower bounds from

normal approximation to have the almost 1�� confidence level. Furthermore,

if the sampling replications are allowed, practitioners can even estimate the

real process capability from the average of lower bounds dividing by the ratio

(i.e. Spk ¼
:
LB/ratio).

Appendix

Appendix I. Taylor’s expansion of Ŝpk

Before our derivation, we need to define some notations:

Cdr ¼
��m

d
, Cdp ¼

�

d
, Ĉdr ¼

�̂�m

d
, Ĉdp ¼

�̂

d
,

Z ¼
ffiffiffiffiffiffiffi
mn

p
�̂� �ð Þ and Y ¼

ffiffiffiffiffiffiffi
mn

p
�̂2 � �2
� �
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By the Central Limit Theorem, Y converges to N(0, 2�4) under both estimators,

s2p and s2u, and Z converges to N(0, �2) as mn goes to infinity.

Ĉdr ¼ Cdr þ
Z

�
ffiffiffiffiffiffiffi
mn

p ðCdpÞ, 1� Ĉdr ¼ ð1� CdrÞ �
Z

�
ffiffiffiffiffiffiffi
mn

p ðCdpÞ,

1þ Ĉdr ¼ ð1þ CdrÞ þ
Z

�
ffiffiffiffiffiffiffi
mn

p ðCdpÞ,

Ĉdp ¼ Cdp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Y

�2
ffiffiffiffiffiffiffi
mn

p

s
,

1

Ĉdp

¼
1

Cdp
1�

Y

2�2
ffiffiffiffiffiffiffi
mn

p þOp
1

mn

� �� 	
,

1� Ĉdr

Ĉdp

¼
1� Cdr

Cdp
þ

1ffiffiffiffiffiffiffi
mn

p
�Z

�
�

1� Cdr

Cdp

� �
Y

2�2

� 	
þOp

1

mn

� �
,

1þ Ĉdr

Ĉdp

¼
1þ Cdr

Cdp
þ

1ffiffiffiffiffiffiffi
mn

p
Z

�
�

1þ Cdr

Cdp

� �
Y

2�2

� 	
þOp

1

mn

� �
,

�
1� Ĉdr

Ĉdp

 !
¼ �

1� Cdr

Cdp

� �
þ

1ffiffiffiffiffiffiffi
mn

p �
1� Cdr

Cdp

� �
�Z

�
�

1� Cdr

Cdp

� �
Y

2�2

� 	
þOp

1

mn

� �

�
1þ Ĉdr

Ĉdp

 !
¼ �

1þ Cdr

Cdp

� �
þ

1ffiffiffiffiffiffiffi
mn

p �
1þ Cdr

Cdp

� �
Z

�
�

1þ Cdr

Cdp

� �
Y

2�2

� 	
þOp

1

mn

� �

�
1� Ĉdr

Ĉdp

 !
þ�

1þ Ĉdr

Ĉdp

 !
¼ �

1� Cdr

Cdp

� �
þ�

1þ Cdr

Cdp

� �

þ
1ffiffiffiffiffiffiffi
mn

p
�Z

�
�

1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �� 	

þ
1ffiffiffiffiffiffiffi
mn

p
�Y

2�2

1� Cdr

Cdp

� �
�

1� Cdr

Cdp

� �
þ

1þ Cdr

Cdp

� �
�

1þ Cdr

Cdp

� �� 	

þOp
1

mn

� �

Since the estimator of Spk can be rewritten as

Ŝpk ¼
1

3
��1 1

2
�

1� Ĉdr

Ĉdp

 !
þ
1

2
�

1þ Ĉdr

Ĉdp

 !( )
,

applying the Taylor’s expansion

��1ðxþ yÞ ¼ ��1ðxÞ þ
y

� ��1ðxÞð Þ
þOp y2

� �
,

we can obtain

3Ŝpk ¼ 3Spk þ
W

2
ffiffiffiffiffiffiffi
mn

p
�ð3SpkÞ

þOp
1

mn

� �
,
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where

W ¼�
Y

2�2

1� Cdr

Cdp
�

1� Cdr

Cdp

� �
þ
1þ Cdr

Cdp
�

1þ Cdr

Cdp

� �� 	

�
Z

�
�

1� Cdr

Cdp

� �
� �

1þ Cdr

Cdp

� �� 	
:

Thus

Ŝpk ¼ Spk þ
W

6
ffiffiffiffiffiffiffi
mn

p
�ð3SpkÞ

þOp
1

mn

� �
:

Appendix II. Calculation of lower bounds

�¼0.05;
m¼12; % number of sub-samples
n¼50; % number of sample size
S¼1.0; % value of Spk head
Spk=S;
for i¼1:1:100000
Spk¼Spk�0.0001;
Cdp¼1/(3*Spk);
a¼sqrt(2)*3*Spk*normpdf(3*Spk);
p¼normcdf((S�Spk)/sqrt(a*a/

(36*m*n*normpdf(3*Spk)*normpdf(3*Spk))));
if p>(1.��) break;
end; end
fprintf(‘The true value of the process capability Spk is no less

than%g’,Spk)
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