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Abstract—For remote control systems, certain human opera-
tions may violate desired requirements and result in catastrophic
failure. For such human-in-the-loop systems, this paper imple-
ments a hierarchical supervision system to guarantee that remote
human-issued commands meet required specifications. In the pre-
sented scheme, Petri nets are applied to model, design, and verify
both the local controller and the remote supervisor. Then, the agent
technology is adopted to implement the supervisor as an intelligent
agent for an online supervision of the remote control system. Hence,
undesired resource conflicts and deadlock states can be avoided. An
application to a flexible manufacturing system controlled over the
Internet is provided to illustrate the developed approach. Imple-
mentation results show that by applying the presented hierarchical
scheme, the supervisor has a more compact model with fewer states.
Moreover, fewer request/response transmissions are consumed so
that the effects of time delays and packet losses across the Internet
could be moderated.

Index Terms—Agent technology, discrete event systems, hierar-
chical supervision, Java, Petri nets, remote monitoring and control.

I. INTRODUCTION

OVER the last decade, due to the rapid development of
Internet technology, several approaches have been pro-

posed to develop Web-based systems for remote monitoring
and control of distributed manufacturing systems [1]–[8]. As
compared with the traditional control, remote control allows
people to monitor the processes of manufacturing systems from
great distances and to perform maintenance functions in haz-
ardous environments without exposure to dangers. Typically, an
Internet-based control system is a “human-in-the-loop” system
since people use a general web browser or specific software
to monitor and control remotely located systems. As shown in
Fig. 1(a), the remote manager is involved in the loop and sends
control commands according to the observed status displayed by
the state and/or image feedback. Research results indicate that
approximately 80% of industrial accidents are attributed to hu-
man errors, such as omitting a step, falling asleep, and improper
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control of the system [9]. However, the Internet-based control
literature provides few solutions for reducing or eliminating the
possibility of human errors. Basically, an Internet-based control
system is a discrete-event system (DES), which is a dynamic
system with state changes driven by occurrences of individual
events. Moreover, supervisory control theory provides a suit-
able framework for analyzing DES [10]–[12] and its hierarchi-
cal scheme is a familiar approach to the design of large-scale
DES to reduce design complexity [13]–[17].

This paper proposes a hierarchical scheme to design such
systems for the supervision of remote-controlled processes. As
shown in Fig. 1(b), we use a three-level architecture. In the com-
mand level, the abstract model is a simplified representation of
the controlled system and is employed by the remote manager
to make decisions for task allocation. Here, a task is a group of
certain steps and the manager can send task requests to control
the remotely located processes according to the displayed sta-
tus. In this way, the manager exercises “virtual” control over the
behavior of the abstract model. Actually, the manager sends a
request for a decided task to the local controller, which really
regulates the detailed operations of the task with event feedback
in the control level. State changes in the system will eventually
be conveyed in a summary form to the abstract model via the
response channel. To avoid resource conflicts and deadlock, an
agent is designed to acquire the system status and then enable
and disable associated tasks so as to advise and guide the man-
ager in issuing commands at the supervisory level. Thus, the
human manager is only allowed to issue the enabled tasks, and
the hierarchical loop is closed in this way.

Most existing design methods for a hierarchical supervision
are based on automata models, which often involve exhaustive
searches of overall system behavior and result in state-space
explosion problems. One way of dealing with these problems is
to model the DES with Petri nets (PNs) [18], [19]. PN model-
ing is normally more compact than the automata approach and
is better suited for modeling concurrent systems. In addition,
PNs have an appealing graphical representation with a powerful
algebraic formulation, and have, therefore, generated intense
interest among many researchers [20]–[24]. In this paper, PNs
are used in designing both the remote supervisor and the lo-
cal controller, yielding compact and graphical models for the
hierarchical supervision.

We have found that the hierarchical supervision literature
merely discusses how to implement various abstract supervisory
models in real applications [13]–[15]. This paper demonstrates
the feasibility and practicability of the proposed hierarchical
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Fig. 1. (a) Basic remote control system over the Internet. (b) Proposed three-level architecture for hierarchical supervision.

supervision model by applying it to a flexible manufacturing
system (FMS), where the local controller is implemented by lad-
der logic diagrams (LLDs) and the supervisory agent is imple-
mented using agent technology on an industrial programmable
logic controller (PLC) [25], [26]. When executing a number of
concurrent operations, our approach ensures that remote control
tasks via the Internet meet the given resource constraints and
deadlock-free requirements with fewer packet transmissions re-
quired. Also, results show that the supervisor synthesis of the
presented hierarchical scheme is less complex by far than a
nonhierarchical one.

II. PN-BASED DESIGN FOR HIERARCHICAL SUPERVISION

This section first introduces the PN concept in production pro-
cesses, and then, shows the different specifications for the com-
mand level and control level, separately, in remote supervisory
control design. Finally, the PN-based design for the supervisor
and the controller is introduced.

A. PN in Production Processes

A PN is identified as a particular kind of bipartite directed
graph populated by three types of objects, which are places,
transitions, and directed arcs connecting places and transitions.
Formally, a PN can be defined as

PN = (P, T, I,O,M0)

where
P = {p1, p2, . . . , pm} is a finite set of places, where m >

0;
T = {t1, t2, . . . , tn} is a finite set of transitions with P ∪

T �= � and P ∩ T = �, where
n > 0;

I : P × T → N is an input function that defines a
set of directed arcs from P to T ,
where N = {0, 1, 2, . . .};

O : T × P → N is an output function that defines a
set of directed arcs from T to P ;

M0 : P → N is the initial marking.

A transition t is enabled if each input place p of t contains at
least the number of tokens equal to the weight of the directed arc
connecting p to t. When an enabled transition fires, it removes
the tokens from its input places and deposits them on its out-
put places. PN models are suitable to represent the systems that
exhibit concurrency, conflict, and synchronization. Some impor-
tant PN properties in manufacturing systems include boundness
(no capacity overflow), liveness (freedom from deadlock), con-
servativeness (conservation of nonconsumable resources), and
reversibility (cyclic behavior). The concept of liveness is closely
related to the complete absence of deadlocks. A PN is said to be
live if, no matter what marking has been reached from the initial
marking, it is possible to ultimately fire any transition of the
net by progressing through some further firing sequences. This
means that a live PN guarantees deadlock-free operation, no
matter what firing sequence is chosen [20]. Validation methods
of these properties include reachability analysis, invariant anal-
ysis, reduction method, siphons/traps-based approach, and sim-
ulation [22]. Among them, simulation is often used in real-world
cases due to its convenience and effectiveness for engineers to
validate the desired properties of manufacturing systems.

At the modeling stage, one needs to focus on the major oper-
ations and their sequential or precedent, concurrent, or conflict-
ing relationships. The basic relations among these processes or
operations can be classified as follows.

1) Sequential: As shown in Fig. 2(a), if one operation follows
the other, then the places and transitions representing them
should form a cascade or sequential relation in PNs.

2) Concurrent: If two or more operations are initiated by an
event, they form a parallel structure starting with a tran-
sition, i.e., two or more places are the outputs of a same
transition. An example is shown in Fig. 2(b). The pipeline
concurrent operations can be represented with a sequen-
tially connected series of places/transitions in which mul-
tiple places can be marked simultaneously or multiple
transitions are enabled at certain markings.

3) Cyclic: As shown in Fig. 2(c), if a sequence of operations
follow one after another and the completion of the last
one initiates the first one, then a cyclic structure is formed
among these operations.
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Fig. 2. Basic PN models for (a) sequential, (b) concurrent, (c) cyclic,
(d) conflicting, and (e) mutually exclusive relations.

4) Conflicting: As shown in Fig. 2(d), if either of two or
more operations can follow an operation, then two or more
transitions form the outputs from the same place.

5) Mutually exclusive: As shown in Fig. 2(e), two processes
are mutually exclusive if they cannot be performed at
the same time due to constraints on the usage of shared
resources. A structure to realize this is through a common
place marked with one token plus multiple output and
input arcs to activate these processes.

B. Specification Separation

The objective of the hierarchical supervision is to restrict the
behavior of the system so that it is contained within the desired
states, called the specifications. The specifications are separated
into two levels as follows.

1) Command-level specifications for recipes, resources, and
liveness: These specifications require that the logical order of
each recipe, resource constraints, and liveness requirement are
satisfied throughout all operations of the system. The recipe
specification indicates the sequence of tasks to be executed, and
it can be modeled as a sequential flow. The resource specification
presents the physical constraints of the limited resources, and
shared resources can be adequately expressed in terms of mutual
exclusion conditions. The liveness specification ensures that a
given behavior is deadlock-free and repeatable, and it can be
preserved by deadlock analysis with avoidance policies [24].
In the proposed hierarchical architecture, the supervisory agent
enforces these specifications by restricting the task commands
available to the remote manager.

2) Control-level specifications for detailed operations:
These specifications are the detailed logical operations of each
task. In the proposed hierarchical architecture, the control-level
specifications are enforced by a local controller, which accom-
plishes certain operations of the requested task for the physical
plant in a desired logical order.

To summarize, the system requirements are separated into the
command-level specification, which results in nondeterministic
sequences of tasks, and the control-level specification, which

leads to detailed deterministic operations of each task. The pro-
posed separation not only reduces the design complexity of the
supervisor synthesis, as shown latter, but also makes the system
design more flexible, since it avoids the need to redesign the
local controller, as only the command-level specification varies.

C. Design of Supervisor to Meet Command-Level
Specifications

PNs have been used to model, analyze, and synthesize control
laws for DES. Zhou and DiCesare [27], moreover, addressing
the shared resource problem, recognized that mutual exclusion
theory plays a key role in synthesizing a live, bounded, and
reversible PN. In mutual exclusion theory, parallel mutual ex-
clusion consists of a place marked initially with one token to
model a single shared resource, and a set of pairs of transitions.
Each pair of transitions models a unique task that requires the
use of the shared resource. In this paper, we adopt mutual exclu-
sion theory to build the resource specification models and then
compose them with the recipe models to design the supervisor.
The supervisor design procedure consists of the following steps.

Step 1: Construct the PN model of the recipe specifications in
the command level using the task-oriented approach.

Step 2: Build the PN model of the resource specifications using
the mutual exclusion concept.

Step 3: Compose the recipe and resource models to yield the
basic supervisor model.

Step 4: Analyze and refine the supervisor model to obtain a
deadlock-free, bounded, and reversible model.

The PN recipe model is constructed using the task-oriented
concept. Each task is modeled with a start transition, an end tran-
sition, a progressive place, and a completed place. Note that the
start transition, as the “command” input is a controllable event,
while the end transition, as the “response” output is an uncon-
trollable event. Obviously, the presented hierarchical scheme is
endowed with task-based modularity in the command level.

D. Design of Local Controller to Meet Control-Level
Specifications

The logical behavior of each task in the control level is a de-
terministic process. For the local controller design, the detailed
PN models of each controllable task in the recipe are built to
describe the detailed operations and follow the deterministic se-
quences in this stage. Applying the PN to design the controller
leads to a unified PN-based approach to develop the hierarchi-
cal supervision, and thus facilitates the use of established PN
analysis and implementation methods.

III. IMPLEMENTATION OF HIERARCHICAL SUPERVISION

This section first describes the agent concept, and then shows
the implementation architecture and interactive modeling of the
hierarchical supervisory control system. Finally, the reasons
of choosing implementation methods in Java technology are
mentioned.
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Fig. 3. Implementation architecture of the remote hierarchical supervision system.

A. Agent Technology

The agent technology is a new and important technique in re-
cent novel researches of the artificial intelligence. Using agent
technology leads to a number of advantages, such as scalability,
event-driven actions, task-orientation, and adaptivity [28]. The
concept of an agent as a computing entity is very dependent on
the application domain in which it operates. As a result, there
exists many definitions and theories on what actually constitutes
an agent and the sufficient and necessary conditions for agency.
Wooldridge and Jennings [29] depict an agent as a computer
system that is situated in some environment and that is capable
of autonomous actions in this environment to meet its design
objectives. From a software technology point of view, agents
are similar to software objects, which, however, run upon call
by other higher-level objects in a hierarchical structure. On the
contrary, in the narrow sense, agents must run continuously and
autonomously. In addition, the distributed multiagent coordina-
tion system is defined as the agents that share the desired tasks
in a cooperative point of view, and they are autonomously exe-
cuting at different sites. For our purposes, we have adopted the
description of an agent as a software program associated with
the specific function of remote supervision for the manufactur-
ing system. A supervisory agent is implemented to acquire the
system status and then enable and disable associated tasks so as
to advise and guide the manager in issuing commands.

B. Client/Server Architecture

Fig. 3 shows the client/server architecture for implementing
the remote hierarchical supervision system. On the remote client
side, the manager uses a Java-capable Web browser, such as
Netscape Navigator or Microsoft Internet Explorer, to connect
to the local controller through the Internet. On the server side, a
Java servlet handles user authentication, while a Java applet pro-
vides a graphical human/machine interface (HMI) and invokes
the supervisory agent. In this paper, we use Java technology to
implement the supervisory agent on an industrial PLC, with a
built-in Java-capable Web server assigned to handle the client
requests [25], [26]. In addition, the LLD is used to implement the
local controller on the same PLC so as to perform the detailed
operations of the requested tasks. Our choice of using LLD to
implement the local controller is due to its wide use in indus-
try, while using Java to implement the supervisory agent is due
to its object-orientation, portability, safety, and built-in support
for networking and concurrency [30], [31]. The object-oriented

programming is one where each small part of the program is
considered as a separate object that can interact with other ob-
jects. The advantage of object-oriented software is that blocks
of code can easily be reused in different parts of the program,
or even in different programs. This reduces development time,
and therefore, costs [32].

C. Interactive Modeling

A sequence diagram of the unified modeling language (UML)
[33] is applied to model client/server interaction in the proposed
remote hierarchical supervision system. Within a sequence dia-
gram, an object is shown as a box at the top of a vertical dashed
line, called the object’s lifeline and representing the life of the
object during the interaction. Messages are represented by hori-
zontal arrows and are drawn chronologically from the top of the
diagram to the bottom.

Fig. 4 shows the sequence diagram of the implemented remote
hierarchical supervision system. At the first stage, the Remote
Manager sends a hypertext transfer protocol (HTTP) request
to the Local Controller. Next, the Local Controller sends an
HTTP response with an authentication Web page, on which
the Remote Manager can login to the system by sending a re-
quest with user/password. The Local Controller then invokes a
Java servlet to authenticate the user. If the authentication fails,
the Java servlet will respond with the authentication Web page
again. On the other hand, if the authentication succeeds, the Java
servlet’s response will be a control Web page with a Java applet.
The Java applet first builds a graphical HMI and constructs a
socket on the specified port to maintain continuous communi-
cation with the server. Then, the Java applet acquires the system
status through the constructed socket and displays it on the con-
trol Web page iteratively by invoking the Device Handler to fetch
the sensor states of Device objects. Finally, the supervisory agent
is called by the Java applet and run to enable/disable associated
control buttons on the HMI according to the current system
status so as to meet the required specifications. Thus, the Re-
mote Manager can send a task command by pushing an enabled
button to control the remote process through the constructed
socket.

D. Java Implementation

In this paper, we have employed the Java servlet for authenti-
cation and Java applet for graphical HMI. A Java servlet [34] is
a compiled code, dynamically loaded to process requests from a
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Fig. 4. Interactive modeling with sequence diagram for the implemented hierarchical supervision system.

Web server. It does not depend on browser compatibility due to
running on the server side. Moreover, a Java server page (JSP)
is a script and it is compiled into Java servlets during its first
invocation and may call JavaBeans to perform processing on the
server. A JavaBean is a portable, platform-independent compo-
nent model, developed in collaboration with industry leaders.
Since JSP with JavaBean requires the script translation, Java
servlet has been selected for implementation due to its faster
performance and easier debugging. On the other hand, a Java
applet is a widely used program that can be embedded in a Web
page. When you use a Java-enabled browser to view a page that
contains an applet, the applet’s code is transferred to your sys-
tem and executed by the browser’s Java virtual machine (JVM).
This paper has adopted the Java applet for graphical HMI due to
its plentiful availability of application programming interfaces
(API) [35]. Also, most Web browsers (Navigator or Internet Ex-
plorer) provide the JVM to support Java applets. Moreover, as
shown in Fig. 4, the TCP socket communication is used for data
transmission due to its easier implementation. For distributed
application development, the Java remote method invocation
(RMI) or interface definition language (IDL) can be further ap-
plied [34].

IV. REMOTE HIERARCHICAL SUPERVISION OF AN FMS

A. Description of the Flexible Manufacturing System

Fig. 5 shows the remote-controlled FMS, which is composed
of: 1) three processing machines; 2) three raw material sup-
pliers; and 3) six automated conveyers. It is assumed that the
raw materials are provided infinitely. The FMS corresponding
to different products are specified in terms of recipes, i.e., the
sequences of tasks to be carried out on discrete amounts of ma-
terials by employing all or part of the machines. This particular

Fig. 5. Schematic diagram of the three-recipe FMS.

FMS has three recipes for three different products described as
follows:

Recipe 1 (Product x-y): Load materials x and y to Machine 1
(M1) for processing. Then, convey x-y to Machine 3 (M3). After
processing x-y in M3, unload the product.

Recipe 2 (Product x-z): Load materials x to M1 and z to
Machine 2 (M2) for processing, and then convey x and z to M3.
After processing x-z in M3, unload the product.

Recipe 3 (Product y-z): Load materials y to M1 and z to M2
for processing, and then convey y and z to M3. After processing
y-z in M3, unload the product.

By applying the task-oriented concept, the PN model for the
three recipes is constructed as shown in Fig. 6, which consists
of 19 places and 22 transitions. Transitions drawn with dark
symbols are events that are controllable by remote managers via
the Internet. Corresponding notation is described in Table I.

B. Design of Supervisor to Meet Command-Level Specifications

The three machines represent resources shared between the
different recipes. Since more than one recipe may require access
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Fig. 6. Preliminary PN model of the three-recipe FMS.

TABLE I
NOTATION FOR THE PN OF THE FMS IN FIG. 6

to the same resource, but each resource can only serve one recipe
at a time, deadlock between different recipes may, thus, occur.
The required specifications are as follows.

Spec-1: Raw material loading of x and y is allowed only when
M1 is available.

Spec-2: Raw material loading of z is allowed only when M2 is
available.

Spec-3: Material conveying to M3 is allowed only when M3 is
available.

Spec-4: Liveness, i.e., no deadlock states, must be enforced
throughout system operation.

Fig. 7. Composed PN model of the three-recipe FMS.

TABLE II
NOTATION FOR THE SUERVISORY PLACES OF THE PN IN FIG. 7

In the specification model, Spec-1 and Spec-3 are built by
using the mutual exclusion concept, while Spec-2 is modeled
as the precondition of the associated tasks. The composed PN
model of both the recipe and specifications is shown in Fig. 7.
The supervisory arcs are shown with dashed lines and the places
showing the supervisory positions are drawn thicker than those
showing the task positions. The supervisory places ps1-4 (ps1
for Spec-1, ps2 for Spec-2, ps3-4 for Spec-3) are used to prevent
the remote manager from issuing undesired commands leading
to resource conflicts on the part of the system. Corresponding
notation for the supervisory places is described in Table II.

At this stage, due to its ease of manipulation, support for
graphics import, and ability to perform structural and perfor-
mance analyses, the software package ARP [36] is chosen to
verify the behavioral properties of the composed PN model us-
ing the reachability analysis. The validation result (without ps5)
shows that one deadlock occurs with the places p2, p10, p12,
and ps3 marked only. The physical meaning of the deadlock
state is that if both M2 and M3 are occupied with z for the prod-
uct x-z or y-z, while M1 is loaded for the product x-y, then no
product can be completed and the system is deadlocked. Hence,
for Spec-4, the ps5 is further designed and added to the PN
model, as shown in Fig. 7. Validation results (with ps5) reveal
that the present PN model is live, bounded, and reversible. The
liveness property means that the system can be executed prop-
erly without deadlocks, boundedness indicates that the system
can be executed with limited resources, and reversibility implies
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Fig. 8. PN models of (a) loading, (b) conveying, and (c) processing tasks for FMS.

Fig. 9. Hardware setup during prototype development.

that the initial system configuration is always reachable. In this
approach, the supervisor consists only of places and arcs, and
its size is proportional to the number of specifications that must
be satisfied.

C. Design of Local Controller to Meet Control-Level
Specifications

As mentioned in Section II-D, the detailed operations of each
task can also be designed and constructed with PN models.
Fig. 8(a)–(c) shows the PN model of the tasks loading (from
raw material supplier to M1 or M2 with processing), conveying
(from M1 or M2 to M3), and processing (processed by M3 and
unloaded), respectively.

D. Implementation of Remote Hierarchical Supervision

The system modeling and design developed in previous stages
provide supervisory and control models for implementation of
the present remote hierarchical supervision. The developed local
controller and supervisory agent are implemented on the Mirle
SoftPLC (80486-100 CPU), an advanced industrial PLC with
built-in Web server and JVM so that it can interpret the LLD,
HTTP requests, and Java programs [25], [26], as shown in Fig. 9.

The developed HMI, shown in Fig. 10, is carefully designed
to make its Web pages more user friendly and also to increase
download speed by avoiding unnecessary images. Since the
client users will be mainly operators and engineers, they will
want efficient information delivery instead of flashy graphics
[37]. The current system status is placed on the left, the system
message is in the center, and the button control area is on the
right. By pushing the enabled buttons, the remote manager can
issue commands to start tasks operated by the local controller.

Fig. 10 also shows that M1 is available, and both M2 and M3
are occupied with the material z (the prestate of the mentioned
deadlock in Section IV-B). In this situation, the button Load X
to M1 or Load Y to M1 is enabled to meet Spec-1, while the
Load X-Y to M1 button is disabled by the supervisory agent to
satisfy Spec-4, and the other buttons are disabled to meet Spec-2,
Spec-3, and recipe specifications. The remote manager can only
push the button Load X to M1 or Load Y to M1 to generate the
product x-z or y-z, respectively. Thus, the desired requirements
of the three-recipe FMS are guaranteed as the commands issued
by the remote human manager are conducted.

E. Discussion

In the proposed hierarchical framework, the supervisor turns
out to be more compact and simple, since it deals only with the
command-level tasks, i.e., groups of operations. This greatly
simplifies analysis and validation of the supervisor. The im-
plementation of several elementary operations can be grouped
into a single task performed by the local controllers. Separation
of detailed control and supervision enables us to increase the
conciseness of our design problem and makes the complexity
manageable.

By comparison, as shown in Table III, using a conventional
nonhierarchical approach [8] to the present three-recipe FMS,
verification of the supervisor has to resolve all deadlock sit-
uations by searching the whole reachability graph, with the
detailed control-level operations in a 2228-state space. How-
ever, by applying the proposed hierarchical framework, the
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Fig. 10. Interactive Web page for remote supervision of the FMS by a Java applet (only three buttons are admissible).

TABLE III
COMPARISON BETWEEN THE NONHIERARCHICAL

AND HIERARCHICAL APPROACHES

supervisor design has a more compact model with a 248-state
space.

Moreover, to produce 30 products (ten x-y, x-z, y-z each), 560
request/response transmissions over the Internet are consumed
in the nonhierarchical approach, while only 260 ones are re-
quired using the proposed hierarchical scheme.

V. CONCLUSION

This paper has presented a unified PN framework to design
and implement a hierarchical supervisory system for remote-
controlled processes. The supervisor is systematically synthe-
sized using PNs to enforce the command-level specifications of
resource constraints and liveness for the processes, and then is
implemented with agent technology. The local controller in the
lower level is also designed with PNs to meet the control-level
specifications and is implemented by the LLD. To illustrate
the proposed approach, an application to a three-recipe FMS
controlled over the Internet is provided. According to the feed-
back status of the remotely located system, the designed Java-
based supervisory agent guarantees that all requested commands

from the human manager satisfy the requirements for multiple
recipes, resource sharing, and deadlock avoidance, while the de-
veloped local controller performs the corresponding operations
to meet the requested tasks. Moreover, results show that the su-
pervisor synthesis of the presented hierarchical scheme is less
complex than the conventional nonhierarchical one, and fewer
packet transmissions are consumed so that the effects of time
delays and packet losses across the Internet could be moderated.

Since the original supervisory control framework [10]–[14]
is restricted to purely logical system models, for applications
with time-based requirements (e.g., transmission delays), it is
necessary to extend the present models with time specifications.
Moreover, novel specifications for the error recovery due to the
packet losses should be investigated in the future.
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