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Distributions and Applications

On the Sampling Distributions of the Estimated
Process Loss Indices with Asymmetric Tolerances

Y. C. CHANG1, W. L. PEARN2, AND CHIEN-WEI WU3

1Department of Industrial Engineering and Management,
Ching Yun University, Taiwan
2Department of Industrial Engineering and Management,
National Chiao Tung University, Taiwan
3Department of Industrial Engineering and Systems Management,
Feng Chia University, Taiwan

Pearn et al. (2006a) proposed a new generalization of expected loss index L′′
e to

handle processes with both symmetric and asymmetric tolerances. Putting the loss
in relative terms, a user needs only to specify the target and the distance from the
target at which the product would have zero worth to quantify the performance of
a process. The expected loss index L′′

e may be expressed as L′′
e = L′′

ot + L′′
pe, which

provides an uncontaminated separation between information concerning the process
accuracy and the process precision. In order to apply the theory of testing statistical
hypothesis to test whether a process is capable or not under normality assumption,
in this paper we first derive explicit form for the cumulative distribution function
and the probability density function of the natural estimator of the three indices
L′′
ot� L

′′
pe, and L′′

e � We have proved that the sampling distributions of L̂′′
pe and L̂′′

ot may
be expressed as the chi-square distribution and the normal distribution, respectively.
And the distribution of L̂′′

e can be described in terms of a mixture of the chi-square
distribution and the normal distribution. Then, we develop a decision-making rule
based on the estimated index L̂′′

e . Finally, an example of testing L′′
e is also presented

for illustrative purpose.

Keywords Asymmetric tolerances; Decision-making rule; Process capability
indices; Process loss indices; Sampling distributions.

Mathematics Subject Classification Primary 62E15; Secondary 62P30.

1. Introduction

Process capability indices (PCIs), including Cp�Ca� Cpk� Cpm, and Cpmk (see Chan
et al., 1988; Kane, 1986; Pearn et al., 1992, 1998), are convenient and powerful tools
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ycchang@cyu.edu.tw
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1154 Chang et al.

for measuring performance from many different perspectives. Those indices convey
critical information regarding whether a process is capable of reproducing items
satisfying customers’ requirement. In recent years, PCIs have received substantial
research attention in quality assurance and statistical literatures as well. The use
of PCIs in industry did not begin in the United States until the early 1980’s.
Soon after, this explosion of use expanded into other industries such as automated,
semiconductor, and IC assembly manufacturing industries, to measure product
qualities that meet specification. Based on analyzing the PCIs, a production
department can trace and improve a poor process so that the quality level can be
enhanced and the requirements of the customers can be satisfied. These well-known
PCIs have been defined respectively as:

Cp =
USL− LSL

6�
� Ca = 1− �� −m�

d
� (1)

Cpk = min
{
USL− �

3�
�
� − LSL

3�

}
� Cpm = USL− LSL

6
√
�2 + �� − T�2

� (2)

Cpmk = min
{

USL− �

3
√
�2 + �� − T�2

�
� − LSL

3
√
�2 + �� − T�2

}
� (3)

where � is the process mean, � is the process standard deviation, USL is the
upper specification limit, LSL is the lower specification limit, m = �USL+ LSL�/2 is
the mid-point of the specification interval, T is the target value, and d = �USL−
−LSL�/2 is half length of the specification interval.

1.1. Loss Measure with Symmetric Tolerances

Johnson (1992) developed the so-called relative expected loss Le for symmetric case,
which is defined as the ratio of the expected quadratic loss and the square of the
half specification width:

Le =
∫ �

−�

[
�x − T�2

d2

]
dF�x� =

(
� − T

d

)2

+
(
�

d

)2

� (4)

where F�x� is the cumulative distribution function (cdf) of the measured
characteristic. If we denote the first term ��� − T�/d�2 by Lot and the second
term ��/d�2 by Lpe, then Le can be rewritten as Le = Lot + Lpe. Unfortunately,
the index Le inconsistently measures process capability in many cases, particularly
for processes with asymmetric tolerances, and thus reflects process potential and
performance inaccurately.

1.2. Loss Measure with Asymmetric Tolerances

To remedy for this, Pearn et al. (2006a) proposed a modification of expected
loss index, which referred to as L′′

e , to handle processes with both symmetric
and asymmetric tolerances. Regardless of whether the tolerances are symmetric or
asymmetric, the new index obtains the minimal value at � = T . Additionally, the
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Sampling Distributions 1155

half specification width d is substituted by d∗. This generalization of expected loss
index may be expressed as follows:

L′′
e =

(
A

d∗

)2

+
(

�

d∗

)2

� (5)

where A = max	�� − T� · d/Du� �T − �� · d/Dl
, Du = USL− T�Dl = T − LSL, and
d∗ = min	Du�Dl
. Note that L′′

e is sensitive to target value T and it obtains larger
value when T is away from the mid-point between the upper and the lower
specification limits. We denoted �A/d∗�2 by L′′

ot� ��/d
∗�2 by L′′

pe, and hence L′′
e =

L′′
ot + L′′

pe. Obviously, if the tolerances are symmetric �T = m�, then L′′
pe reduces to

the original index Le.
A process is said to have a symmetric tolerance if the target value T is set to

be the mid-point of the specification interval (LSL, USL). In general, asymmetric
tolerances (T �= m) simply reflect that deviations from target are less tolerable in one
direction than the other (see Wu and Tang, 1998). Recent research and advances
made in this subject are Boyles (1994), Vännman (1997), Jessenberger and Weihs
(2000), and the more recent Pearn et al. (2006a,b). Asymmetric tolerances can also
arise from a situation where the tolerances are symmetric to begin with, but the
process follows a non normal distribution and the data is transformed to achieve
approximate normality as shown by Chou et al. (1998).

For statistical inferences problems, in order to develop a successfully decision-
making rule based on the estimated index L̂′′

e to test whether a normally distributed
process is capable or not, the cdf of L̂′′

e is needed. In this article, we first
derive explicit forms for the cdf and probability density function (pdf) of the
natural estimators of L′′

ot, L′′
pe, and L′′

e when sampling is drawn from a normal
distributed data. Those sampling distribution results greatly simplify the complexity
on analyzing the statistical properties of the estimated indices. Then, we develop a
reliable decision-making rule based on the estimated index L̂′′

e , which can be used to
test whether the process is capable or not.

2. Contour Plots of L′′
e

We investigate some effects of the process mean � and the process variance �2 on L′′
e

when the specification tolerances are symmetric or asymmetric. From the inequality
L′′
e ≥ �A/d∗�2, it is not difficult to show a necessary condition for L′′

e ≤ C is

T − D�d
∗√C

d
≤ � ≤ T + Dud

∗√C

d
� (6)

where C is a constant. If the tolerances are symmetric, the necessary condition for
L′′
e ≤ C reduces to

m− d
√
C ≤ � ≤ m+ d

√
C� (7)

Figures 1 and 2 display the contours of L′′
e in the ��� �� plane for the symmetric case

(LSL, T , USL� = �20� 30� 40� and the asymmetric case (LSL, T , USL� = �20� 35� 40�,
respectively. Contours are shown for L′′

e = 0�11� 0�06� 0�05� 0�04, and 0.03 from top
to bottom in each plot.
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1156 Chang et al.

Figure 1. Contours of L′′
e in ��� �� plane with L′′

e = 0�11, 0.06, 0.05, 0.04, 0.03 (top to
bottom) for symmetric case Du = Dl.

To obtain the estimated value of L′′
e , sample data must be collected, and a

great degree of uncertainty may be introduced into capability assessments owing to
the sampling errors. The approach by simply looking at the calculated values of
the estimated indices and then make a conclusion on whether the given process is
capable, is highly unreliable since the sampling errors have been ignored. As the
use of the capability indices grows more widespread, users are becoming educated
and sensitive to the impact of the estimators and their sampling distributions on
constructing confidence intervals and performing hypothesis testing.

Figure 2. Contours of L′′
e in ��� �� plane with L′′

e = 0�11, 0.06, 0.05, 0.04, 0.03 (top to
bottom) for asymmetric case 3Du = Dl.
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Sampling Distributions 1157

3. Sampling Distributions of the Estimated Process Loss Indices

Let X1� X2� � � � � Xn be a random sample of size n from a normally distributed process
N��� �2� with mean � and standard deviation �. To estimate the generalization L′′

e ,
Pearn et al. (2006a) proposed the natural estimator L̂′′

e , which is defined as:

L̂′′
e =

(
Â

d∗

)2

+
(
Sn
d∗

)2

� (8)

where Â = max
{(
X − T� · d/Du�

(
T − X

) · d/Dl

}
, the mean � is estimated by

the sample mean, X = ∑n
i=1 Xi/n, and the variance �2 by S2

n =
∑n

i=1

(
Xi − X

)2
/n, the

maximum likelihood estimator. By letting L̂′′
ot =

(
Â/d∗)2 and L̂′′

pe = �Sn/d
∗�2,

the relationship L̂′′
e = L̂′′

ot + L̂′′
pe may be established.

For the case where the production tolerance is symmetric, Â may be simplified
as �X − T �. Therefore, the estimator L̂′′

e reduces to L̂e = �n−1d−2� ·∑n
i=1 �Xi − T�2, the

natural estimator of Le discussed in Johnson (1992). Consequently, we may view
the estimator L̂′′

e as a direct extension of L̂e. In the following, we focus on sampling
distributions of the estimated process loss indices L̂′′

pe� L̂
′′
ot, and L̂′′

e .
In attempt to derive the cdf and pdf of L̂′′

pe, L̂
′′
ot, and L̂′′

e , we first introduce the
following notation:

(1) B = �nd∗2�/�2;
(2) K = �nS2

n�/��
2�� which is distributed as �2n−1;

(3) Z = n1/2
(
X − T

)
/�� which is distributed as N�� 1�, where  = n1/2�� − T�/�;

(4) Y = max2	duZ�−dlZ
� where du = d/Du� dl = d/Dl.

After some algebraic manipulations, the following expressions L̂′′
pe = K/B,

L̂′′
ot = Y/B, and L̂′′

e = �Y + K�/B can be established.

3.1. Sampling Distribution of L̂′′
pe

Theorem 3.1. Let X1� X2� � � � � Xn be a random sample of size n from a normally
distributed process N��� �2�. Then L̂′′

pe is distributed as �2/�nd∗2� times a chi-square
distribution with n− 1 degrees of freedom. And the pdf and cdf of L̂′′

pe can be expressed
respectively as:

fL̂′′
pe
�x� = nd∗2

�2
fK

(
nd∗2

�2
x

)
= BfK�Bx�� (9)

FL̂′′
pe
�x� = FK

(
nd∗2

�2
x

)
= FK�Bx�� for x > 0� (10)

where FK�·� and fK�·�, respectively, denote the cdf and the pdf of K, which is distributed
as �2n−1.

Proof. Since L̂′′
pe = K/B, the cdf of L̂′′

pe can be obtained directly as:

FL̂′′
pe
�x� = P

(
L̂′′
pe ≤ x

) = P�K ≤ Bx�� for x > 0� (11)

Differentiate (11) with respect to x, the pdf of L̂′′
pe may be derived.
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1158 Chang et al.

If the specification tolerance is symmetric (i.e., T = m), then d∗ = d and the
inconsistency loss index estimator L̂′′

pe reduces to L̂pe. Therefore, the pdf and the cdf
of L̂′′

pe can be simplified, respectively, as:

fL̂pe
�x� = nd2

�2
fK

(
nd2

�2
x

)
� (12)

FL̂pe
�x� = FK

(
nd2

�2
x

)
� for x > 0� (13)

Let ��·� and ��·� denote the cdf and the pdf of the standardized normal
distribution N�0� 1�, respectively. Then we can express the cdf of Z as FZ�z� = ��z−
� and the pdf of Z as fZ�z� = ��z− �, respectively. The cdf of Y can be written as:

FY �y� = P�Y ≤ y� = P�Y ≤ y� Z < 0�+ P�Y ≤ y� Z ≥ 0�

= P�−d−1
�

√
y ≤ Z < 0�+ P�0 ≤ Z ≤ d−1

u

√
y�

= ��d−1
�

√
y + �+��d−1

u

√
y − �− 1� for y > 0� (14)

Taking the derivative of FY �y� with respect to y to obtain the pdf of Y as:

fY �y� =
1

2
√
y

(
d−1
� ��d−1

�

√
y + �+ d−1

u ��d−1
u

√
y − �

)
� for y > 0� (15)

If the tolerance is symmetric, then du = dl = 1, and the corresponding pdf of Y
can be simplified as:

fY �y� =
1

2
√
y

(
��

√
y + �+ ��

√
y − �

)
� (16)

For symmetric case, since Y = Z2 reduces to the non central chi-square distribution
with one degree of freedom and non centrality parameter  = n1/2�� − T�/�. The pdf
of Y , an alternative form of (16), can be expressed as:

fY �y� =
�∑
j=0

Pj��/2�fYj �y�� y > 0� (17)

where Yj is distributed as �21+2j� Pj��/2� = e−�/2��/2�j/�j!� = P�W = j�, and W
follows a Poisson distribution with expected value �/2, where � = 2.

3.2. Sampling Distribution of L̂′′
ot

Theorem 3.2. Let X1� X2� � � � � Xn be a random sample of size n from a normally
distributed process N��� �2�. Then the pdf and the cdf of L̂′′

ot can be expressed,
respectively, as:

fL̂′′
ot
�x� =

√
B/x

2

(
d−1
� �

(
d−1
�

√
Bx + 

)+ d−1
u �

(
d−1
u

√
Bx − 

))
� (18)

FL̂′′
ot
�x� = �

(
d−1
�

√
Bx + 

)+�
(
d−1
u

√
Bx − 

)− 1� for x > 0� (19)
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Sampling Distributions 1159

where ��·� and ��·� are the cdf and the pdf of the standardized normal distribution
N�0� 1�, respectively.

Proof. Since L̂′′
ot = Y/B, the cdf of L̂′′

ot can be derived easily by (14):

FL̂′′
ot
�x� = P

(
L̂′′
ot ≤ x

) = P�Y ≤ Bx�

= �
(
d−1
�

√
Bx + 

)+�
(
d−1
u

√
Bx − 

)− 1� for x > 0� (20)

The pdf of L̂′′
ot follows by differentiate (20) with respect to x.

If the specification tolerance is symmetric, then Du = Dl = d� du = dl = 1, and
the off-target loss index estimator L̂′′

ot reduces to L̂ot. The pdf and the cdf of L̂′′
ot

therefore can be simplified, respectively, as:

fL̂ot
�x� =

√
B/x

2

(
�
(√

Bx + 
)+ �

(√
Bx − 

))
� (21)

FL̂ot
�x� = �

(√
Bx + 

)+�
(√

Bx − 
)− 1� for x > 0� (22)

3.3. Sampling Distribution of L̂′′
e

Theorem 3.3. Let X1� X2� � � � � Xn be a random sample of size n from a normally
distributed process N��� �2�. Then the pdf and the cdf of L̂′′

e can be expressed,
respectively, as:

fL̂′′
e
�x� =

∫ 1

0

√
B3x/t

2
fK�Bx�1− t��

×(
d−1
� �

(
d−1
�

√
Bxt + 

)+ d−1
u �

(
d−1
u

√
Bxt − 

))
dt� (23)

FL̂′′
e
�x� =

∫ Bx

0
FK�Bx − y�

1
2
√
y

×(
d−1
� �

(
d−1
�

√
y + 

)+ d−1
u �

(
d−1
u

√
y − 

))
dy� for x > 0� (24)

where fK�·� and FK�·�, respectively, denote the pdf and the cdf of K, which is distributed
as �2n−1.

Proof. Since L̂′′
e = �Y + K�/B, the cdf of L̂′′

e can be expressed as:

FL̂′′
e
�x� = P

(
L̂′′
e ≤ 0x

) = P�Y + K ≤ Bx�

=
∫ �

0
P�K ≤ Bx − Y �Y = y�fY �y�dy

=
∫ Bx

0
FK�Bx − y�fY �y�dy� for x ≥ 0� (25)

The last equality is valid since �Bx − y� ≥ 0 for 0 ≤ y ≤ Bx, and �Bx − y� < 0
for y > Bx. Thus, FK�Bx − y� = 0 for y > Bx. Using (15) the distribution function
FL̂′′

e
(x) can be expressed as (24).
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1160 Chang et al.

On the other hand, since

d

dx

(∫ u�x�

0
f�x� t�dt

)
=

∫ u�x�

0

�

�x
f�x� t�dt + f�x� u�x��u′�x�

(see Varberg and Purcell, 1992) and

fL̂′′
e
�x� = d

dx
FL̂′′

e
�x��

we may obtain the pdf of L̂′′
e as:

fL̂′′
e
�x� =

∫ Bx

0
BfK�Bx − y�fY �y�dy + BFK�0�fY �Bx��

Note that K is distributed as �2n−1, so FK�0� = 0. By changing variable t = y/�Bx� in
the above integral, we have y = Bxt and dy = Bx dt. Hence,

fL̂′′
e
�x� =

∫ 1

0
B2xfK�Bx�1− t��fY �Bxt�dt�

Using (15) the pdf fL̂′′
e
�x� can be expressed as (23).

For the case when the specification tolerance is symmetric, then Du = Dl = d,
du = dl = 1, and estimator of the expected loss index L̂′′

e reduces to L̂e. The pdf (23)
and the cdf (24) of L̂′′

e reduce to those of L̂e. Hence, the cdf and the pdf of L̂e can
be expressed, respectively, as:

fL̂e
�x� =

∫ 1

0

√
B3x/t

2
fK�Bx�1− t��

(
�
(√

Bxt + 
)+ �

(√
Bxt − 

))
dt� (26)

FL̂e
�x� =

∫ Bx

0
FK�Bx − y�

1
2
√
y

(
�
(√

y + 
)+ �

(√
y − 

))
dy� for x > 0� (27)

Furthermore, for symmetric tolerances since Y follows a non central chi-square
distribution with one degree of freedom and non centrality parameter , we can
substitute the pdf of Y as expressed in (17) into (25). Hence, the cdf of L̂e can be
expressed in an alternative form as:

FL̂e
�x� =

�∑
j=0

Pj��/2�
∫ Bx

0
FK�Bx − y�fYj �y�dy� for x > 0� (28)

where Yj is distributed as �21+2j , � = 2, and Pj��/2� = e−�/2��/2�j/�j!�.
Taking the derivative of FL̂e

�x� in (28) with respect to x to obtain the pdf of
L̂e as:

fL̂e
�x� =

�∑
j=0

Pj��/2�
∫ Bx

0
BfK�Bx − y�fYj �y�dy� for x > 0� (29)
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Sampling Distributions 1161

Now by changing variable t = y/�Bx� in the above integral, we have y = Bxt and
dy = Bxdt. Hence, the result follows:

fL̂e
�x� =

�∑
j=0

Pj��/2�
∫ 1

0
B2xfK�Bx�1− t��fYj �Bxt�dt� for x > 0� (30)

Since

fK�Bx�1− t�� = 2−�n−1�/2

���n− 1�/2�
�Bx�1− t���n−3�/2e−Bx�1−t�/2�

fYj �Bxt� =
2−�2j+1�/2

���2j + 1�/2�
�Bxt��2j−1�/2e−Bxt/2�

we have

fL̂e
�x� = 2−n/2Bn/2xn/2−1

���n− 1�/2�

�∑
j=0

Pj

(
�

2

)
e−Bx/2�Bx/2�j

���2j + 1�/2�

∫ 1

0
t�2j+1�/2−1�1− t��n−1�/2−1dt

= �B/2�n/2 xn/2−1

���n− 1�/2�

�∑
j=0

Pj

(
�

2

)
Pj

(
Bx

2

)
��j + 1�

���2j + 1�/2�
���2j + 1�/2����n− 1�/2�

���2j + n�/2�

= �B/2�n/2 xn/2−1
�∑
j=0

Pj

(
�

2

)
Pj

(
Bx

2

)
��j + 1�

���2j + n�/2�
� for x > 0� (31)

where Pj��/2� = e−�/2��/2�j/�j!��

Figure 3. The pdf of L̂′′
e with a = −1, b = 3, and n = 10� 30� 50� 100� 300 (bottom to top

in plot) for 3Du = Dl.
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1162 Chang et al.

Figure 4. The pdf of L̂′′
e with a = −0�5� b = 3, and n = 10� 30� 50� 100� 300 (bottom to top

in plot) for 3Du = Dl.

Figure 5. The pdf of L̂′′
e with a = 0�5� b = 3, and n = 10� 30� 50� 100� 300 (bottom to top in

plot) for 3Du = Dl.
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Sampling Distributions 1163

Figure 6. The pdf of L̂′′
e with a = 1� b = 3, and n = 10� 30� 50� 100� 300 (bottom to top in

plot) for 3Du = Dl.

4. Distribution Plots of L̂′′
e

We plot the pdf of L̂′′
e when the underlying process is normal for several selected

cases. Figures 3–6 depict the plots of the pdf of L̂′′
e for four levels of L′′

e index value
with parameter a set to a = �� − T�/� = −1�0

(
L′′
e = 0�16

)
� a = −0�5

(
L′′
e = 0�12

)
�

a = 0�5
(
L′′
e = 0�22

)
, and a = 1�0

(
L′′
e = 0�56

)
, respectively. The asymmetric case is

considered by setting 3�USL− T� = T − LSL� b = d∗/� = 3, and sample size n = 10,
30, 50, 100, and 300 from bottom to top in each figure.

From Figures 3–6, we discover that as the value of L′′
e increases, the spread

of the distribution also increases. For small sample size n = 10 as example, the
distributions are skew to the right (have positive skewness) and have large spread.
As sample size n increases, the spread decreases and so does the skewness. We also
observe that L̂′′

e is approximately unbiased and bell-shaped for sample size n greater
than 50.

5. A Decision-Making Rule for Testing L′′
e

Under normality assumption, we proved that the cdf and the pdf of L̂′′
e can

be represented in terms of a mixture of the central chi-square distribution and
the normal distribution. Using the index L′′

e , the engineers can assess the process
performance and monitor the manufacturing processes on routine basis. To obtain
an effective decision-making rule, we consider a testing hypothesis with the null
hypothesis and the alternative hypothesis, respectively, as

H0 � L
′′
e ≥ C (incapable) versus H1 � L

′′
e < C (capable)�
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1164 Chang et al.

The null hypothesis H0 will be rejected if L̂′′
e < c�, where the constant c�, called

the critical value, is determined so that the significance level of the test is �, i.e.,
P
(
L̂′′
e < c� �L′′

e = C
) = �. The decision-making rule to be used is then stated as

follows: for given � (the probability of wrongly reject null hypothesis when it is true)
and sample size n, the process will be considered capable if L̂′′

e < c� and incapable
if L̂′′

e ≥ c�.
We note that, by setting a = �� − T�/� and b = d∗/�, the indices L′′

ot and L′′
pe

can be rewritten as L′′
ot = �dla/b�

2 for a < 0, L′′
pe = �dua/b�

2 for a > 0, and L̂′′
pe =

�1/b�2, where du = d/Du� dl = d/Dl . Hence, the value of L′′
e = L′′

ot + L′′
pe can be

calculated when values of a, b, du, and dl are given. For example, if �a� b� du� dl� =
�1� 3� 2/3� 2� then L′′

e = �2× 1/3�2 + �1/3�2 = 5/9� If L′′
e = C, from L′′

e = L′′
ot + L′′

pe,
we have

C = �d�a�
2

b2
+ 1

b2
for a ≤ 0 and C = �dua�

2

b2
+ 1

b2
for a > 0�

then b2 = [
�d�a�

2 + 1
]
/C for a ≤ 0 and b2 = [

�dua�
2 + 1

]
/C for a > 0. In addition,

we have B = nd∗2/�2 = nb2. Therefore, if L′′
e = C, then

B = n
[
�d�a�

2 + 1
]
/C for a ≤ 0 and B = n

[
�dua�

2 + 1
]
/C for a > 0� (32)

Furthermore, we have the equality  = n1/2�� − T�/� = n1/2a. From the result
of Theorem 3.3, we can use the central chi-square distribution and the normal
distribution to find the critical value c� satisfying P

(
L̂′′
e < c� �L′′

e = C
) = �, i.e.,

FL̂′′
e
�c�� = � given L′′

e = C, or equivalent to

∫ Bc�

0
FK�Bc� − y�

1
2
√
y

(
d−1
� �

(
d−1
�

√
y +√

na
)+ d−1

u �
(
d−1
u

√
y −√

na
))
dy = �� (33)

where B is given in (32).
We note that the distribution characteristic parameter a = �� − T�/� in (33)

is usually unknown, which has to be estimated in real applications, naturally by
substituting � and �2 by the sample mean X and the maximum likelihood estimator
S2
n =

∑n
i=1

(
Xi − X

)2
/n. To realize the relationship between c� and a, we examine

the behavior of c� against a = −3(0.05)3, which covers a wide range of applications
with process capability analysis. The results indicate that the critical value reaches
its minimum at a = 0�5 in all cases with accuracy up to 10−3. Figures 7–10 plot the
curves of c� vs. a for some selected cases.

5.1. Making Decision by Critical Value

Tables 1–2 display the critical values c� for 3Du = Dl, 3Du = 2Dl, respectively, with
C = 0�05, sample size n = 100, a = −3(0.2)3, and � = 0�01, 0.05, 0.10. To test if
the process meets the capability requirement, we first determine the value of C
and �, then estimate the index L′′

e and parameter a from the collected sample. If
the calculated value of L̂′′

e is smaller than the critical value c�
(
L̂′′
e < c�

)
, then we

conclude that the process meets the capability requirement
(
L′′
e < C

)
. Otherwise, we

do not have sufficient information to conclude whether the process meets the preset
capability requirement. In this case, we would believe that L′′

e ≥ C (the process is
incapable).
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Sampling Distributions 1165

Figure 7. Plots of c� vs. a for L′′
e = 0�11, 3Du = Dl, n = 25� 50� 75� 100� 300 (bottom to top

in plot).

Figure 8. Plots of c� vs. a for L′′
e = 0�05, 3Du = Dl, n = 25� 50� 75� 100� 300 (bottom to top

in plot).
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1166 Chang et al.

Figure 9. Plots of c� vs. a for L′′
e = 0�11, 3Du = 2Dl, n = 25� 50� 75� 100� 300 (bottom to

top in plot).

Figure 10. Plots of c� vs. a for L′′
e = 0�05, 3Du = 2Dl, n = 25� 50� 75� 100� 300 (bottom to

top in plot).
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Sampling Distributions 1167

Table 1
Critical values c� for C = 0�05 with n = 100,

a = −3(0.2)3, and � = 0�01� 0�05� 0�10 under 3Du = Dl

a � = 0�01 � = 0�05 � = 0�10

−3.0 0.0431 0.0450 0.0461
−2.8 0.0427 0.0447 0.0458
−2.6 0.0423 0.0444 0.0456
−2.4 0.0418 0.0441 0.0453
−2.2 0.0413 0.0437 0.0450
−2.0 0.0408 0.0433 0.0447
−1.8 0.0402 0.0428 0.0443
−1.6 0.0395 0.0423 0.0439
−1.4 0.0388 0.0418 0.0435
−1.2 0.0380 0.0412 0.0430
−1.0 0.0373 0.0406 0.0425
−0.8 0.0365 0.0401 0.0420
−0.6 0.0358 0.0395 0.0416
−0.4 0.0353 0.0391 0.0412
−0.2 0.0349 0.0388 0.0410
0.0 0.0352 0.0392 0.0414
0.2 0.0334 0.0376 0.0400
0.4 0.0304 0.0351 0.0379
0.6 0.0300 0.0350 0.0379
0.8 0.0313 0.0362 0.0389
1.0 0.0331 0.0376 0.0401
1.2 0.0348 0.0389 0.0412
1.4 0.0363 0.0400 0.0421
1.6 0.0375 0.0410 0.0429
1.8 0.0386 0.0418 0.0435
2.0 0.0396 0.0425 0.0441
2.2 0.0404 0.0431 0.0445
2.4 0.0411 0.0436 0.0449
2.6 0.0417 0.0440 0.0453
2.8 0.0422 0.0444 0.0456
3.0 0.0427 0.0447 0.0459

5.2. Making Decision by p-value

We also can calculate the p-value, i.e., the probability that L̂′′
e does not exceed the

observed index given the values of C, du, dl, a, and sample size n, and then compare
this probability with the significance level �. If the estimated index value is l0, then
the p-value can be calculated as:

p-value =
∫ Bl0

0
FK�Bl0 − y�

1
2
√
y

(
d−1
� �

(
d−1
�

√
y +√

na
)+ d−1

u �
(
d−1
u

√
y −√

na
))
dy�

(34)
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1168 Chang et al.

Table 2
Critical values c� for C = 0�05 with n = 100� a = −3�0�2�3,

and � = 0�01� 0�05� 0�10 under 3Du = 2Dl

a � = 0�01 � = 0�05 � = 0�10

−3.0 0.0431 0.0450 0.0461
−2.8 0.0427 0.0447 0.0458
−2.6 0.0423 0.0444 0.0456
−2.4 0.0418 0.0441 0.0453
−2.2 0.0413 0.0437 0.0450
−2.0 0.0407 0.0433 0.0447
−1.8 0.0401 0.0428 0.0443
−1.6 0.0394 0.0423 0.0439
−1.4 0.0387 0.0418 0.0435
−1.2 0.0379 0.0412 0.0430
−1.0 0.0372 0.0406 0.0425
−0.8 0.0364 0.0400 0.0420
−0.6 0.0358 0.0395 0.0416
−0.4 0.0353 0.0391 0.0413
−0.2 0.0350 0.0389 0.0411
0.0 0.0350 0.0390 0.0412
0.2 0.0349 0.0389 0.0411
0.4 0.0344 0.0385 0.0408
0.6 0.0344 0.0385 0.0408
0.8 0.0349 0.0389 0.0411
1.0 0.0357 0.0395 0.0417
1.2 0.0367 0.0403 0.0423
1.4 0.0377 0.0410 0.0429
1.6 0.0386 0.0417 0.0435
1.8 0.0394 0.0423 0.0439
2.0 0.0402 0.0429 0.0444
2.2 0.0408 0.0434 0.0448
2.4 0.0415 0.0438 0.0451
2.6 0.0420 0.0442 0.0454
2.8 0.0424 0.0446 0.0457
3.0 0.0429 0.0449 0.0460

where B is given in (32). The numerical calculations can be easily carried out using
the computer software, to integrate the function based on the chi-square distribution
and the normal distribution. If the p-value is smaller than �, then we conclude that
the process meets the capability requirement.

5.3. An Example of Testing L′′
e

Due to low-power consumption, high reliability, and high brightness, Light Emitting
Diode (LED) lamps have many applications in traffic signals, full-color displays, etc.
As an illustrative example, we consider an LED manufacturing process. Suppose a
customer has told his LED supplier that, in order to quality for business with his
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Sampling Distributions 1169

company, the supplier must demonstrate that his process capability L′′
e is less than

0.05. This problem may be formulated as a hypothesis-testing problem:

H0 � L
′′
e ≥ 0�05 (incapable) versus H1 � L

′′
e < 0�05 (capable)�

In statistical hypothesis testing, rejection of H0 is always a strong conclusion. The
supplier would like to reject H0, thereby demonstrating that his process is capable.
Moreover, he wants to be sure that if the process capability is below 0.05 there will
be a high probability of judging the process capable (say, 0.95).

With a focus on the critical characteristic, the luminous intensity of LED
sources, we examine a particular LED product model to test whether the production
process of LED is capable or not. Historical data based on routine process
monitoring shows that the process is under statistical control and the process
distribution is shown to be fairly close to the normal distribution. The upper and
the lower specification limits of luminous intensity are set to USL = 40 mcd, LSL =
20 mcd, and the target value is set to T = 35 mcd. Some calculations are made
to obtain d = 10, Du = 5� Dl = 15, d∗ = 5� du = 2� dl = 2/3. A random sample of
size n = 100 is taken, and calculated statistics are X = 35�25� Sn = 0�3125, Â = 0�5,
â = 0�8, and L̂′′

e = 0�0325� Using Table 1 based on n = 100, we obtain c� = 0�0362�
Since the calculated L̂′′

e ≤ 0�0362, we may claim that the process is capable at the
significant level � = 0�05.

Alternatively, we obtain the p-value = 0.015 via (34). We would conclude that
the process meets the capability requirement if � is set to be larger than 0.015.
Otherwise, we do not have sufficient information to make a conclusion. We note
that in the illustrative example, the estimated off-target loss index L̂′′

ot = 0�02 which
occupies 61.5% of L̂′′

e value, and the estimated inconsistency loss index L̂′′
pe = 0�0125

which occupies 38.5% of L̂′′
e value. Obviously, it can be seen that the variability is

contributed mainly by the process departure in this case.

6. Conclusions

Pearn et al. (2006a) introduced a new generalization of expected loss index L′′
e

to handle processes with both symmetric and asymmetric tolerances. The relative
expected loss L′′

e = L′′
ot + L′′

pe, which provides an uncontaminated separation between
information concerning the relative inconsistency loss

(
L′′
pe

)
and the relative off-

target loss
(
L′′
ot

)
. In this article, we considered the three indices, and derive the

sampling distributions of their natural estimators under normality assumption. In
addition, the theory of testing statistical hypothesis was used to determine whether
a process is capable or not. For illustrative purpose, we demonstrated the use
of derived results by presenting a case study on LED manufacturing process, to
evaluate the process performance.
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