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Multivariate Capability Indices:
Distributional and Inferential Properties

W. L. PEARN∗, F. K. WANG∗∗ & C. H. YEN∗

∗Department of Industrial Engineering and Management, National Chiao Tung University, Taiwan
∗∗Department of Industrial Management, National Taiwan University of Science and Technology,
Taiwan

ABSTRACT Process capability indices have been widely used in the manufacturing industry for
measuring process reproduction capability according to manufacturing specifications. Properties
of the univariate processes have been investigated extensively, but are comparatively neglected for
multivariate processes where multiple dependent characteristics are involved in quality measurement.
In this paper, we consider two commonly used multivariate capability indices MCp and MCpm, to
evaluate multivariate process capability. We investigate the statistical properties of the estimated MCp

and obtain the lower confidence bound for MCp . We also consider testing MCp , and provide critical
values for testing if a multivariate process meets the preset capability requirement. In addition, an
approximate confidence interval for MCpm is derived. A simulation study is conducted to ascertain
the accuracy of the approximation. Three examples are presented to illustrate the applicability of the
obtained results.

KEY WORDS: Multivariate capability index, lower confidence bound, hypothesis testing, critical
value

Introduction

Process capability indices have been widely used in the manufacturing industry for measur-
ing process reproduction capability according to its manufacturing specifications. In current
practice, suppliers are often required to provide their process capability of the product to
the customers in the supply chain partnership. Process capability indices can also be used
as the benchmarking for quality improvement activities. Capability indices, Cp, Cpk and
Cpm, have been proposed to evaluate process performance but restricted to cases with single
engineering specification. A large number of papers have dealt with the statistical properties
and the estimation of these univariate indices. Kotz & Lovelace (1998) provided a review
of these indices in their textbook. Kotz & Johnson (2002) provided a compact survey and
commented on some 170 publications on process capability indices during the years 1992
to 2000.

Process capability is defined to be the range over which the measurements of a process
vary when the process variation is due to random causes only. Process capability indices pro-
vide an effective measure of process performance. Engineers can realize whether the product
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942 W. L. Pearn et al.

meets its specifications using process capability indices. In real applications, manufactured
products often have multiple quality characteristics. That is, the process capability analysis
involves more than one engineering specification. For this reason, multivariate methods for
assessing process capability are proposed. Wang et al. (2000) reviewed three multivariate
methods (Taam et al., 1993; Chen 1994; and Shahriari et al., 1995) and compared their capa-
bility for four problems. Although some multivariate capability indices have been proposed,
research on the statistical properties of those multivariate capability indices has received
little attention. It is needed to investigate the statistical properties for the multivariate pro-
cess capability indices for practical purposes. In this paper, the statistical properties for the
multivariate process indices MCp and MCpm are investigated. The next section describes
the processes with multiple characteristics. The estimator of MCp and its properties are
presented in the third section. Confidence interval, lower confidence bound, and hypothesis
testing for MCp are presented in the fourth section. An approximate confidence interval and
lower confidence bound for MCpm and a simulation study to ascertain the accuracy of the
approximate confidence interval for MCpm are presented in the fifth section. Three exam-
ples are chosen to illustrate the proposed methodology in the sixth section. Conclusions are
made in the final section.

Multivariate Capability Indices

Traditionally, process capability is confined to single characteristic of the product. In many
cases, a manufactured product is described by more than one characteristic. That is, man-
ufactured items are confined to several different characteristics for adequate description of
their quality. Each of those characteristics must satisfy certain specifications. The assessed
quality of a product depends on the combined effects of these characteristics, rather than
on their individual values. For example, automobile paint needs to have a range of light
reflective abilities and a range of adhesion abilities. A paint that satisfies one criterion but
not the other may be undesirable. Those characteristics are related through the compositions
of the paint. It is therefore only natural to consider a bivariate characterization of this paint.

As for the tolerance region about multiple characteristics, we often take an ellipsoidal
region or a rectangular region. For more complex engineering specifications, the tolerance
region will be very complicated. For instance, a drawing of a connecting rod in a combustion
engine consists of crank-bore inner diameter, pin-bore inner diameter, rod length, bore true-
location and so on. In multivariate processes, we usually assume that the observations X

have a multivariate normal distribution Nv(μ, �), where v is the dimension of variables, μ
is the mean vector and � represents the variance–covariance matrix of X. In addition, T is
the target vector, X is the sample mean vector and S is the sample covariance matrix.

We will focus on the multivariate process indices MCp and MCpm (Taam et al., 1993).
The multivariate capability index MCp is defined as

MCp = vol.(modified tolerance region)

vol.[(X − μ)′�−1(X − μ) ≤ k(q)] = vol.(modified tolerance region)

(πχ2
v,0.9973)

v/2|�|1/2[�(v/2 + 1)]−1

(1)
where k(q) is the 99.73th percentile of the χ2 distribution with v degrees of freedom, |�|
is the determinant of �, and �(·) is the gamma function. Also the multivariate capability
index MCpm is defined in the following, where D = [1 + (μ − T )′�−1(μ − T )]1/2.

MCpm = MCp

D
(2)
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Multivariate Capability Indices 943

Note that, MCpm is less than 1, the process is not close to the specified tolerance region.
On the other hand, MCp is larger than 1, which only indicates that the process variation is
smaller than the specified range of variation.

Estimation of MCp

An estimator of MCp can be expressed as

M̂Cp = vol.(modified tolerance region)

vol.(estimated 99.73% process region)
= vol.(modified tolerance region)

(πχ2
v,0.9973)

v/2|S|1/2[�(v/2 + 1)]−1

(3)
where S is the sample variance-covariance matrix and |S| is the determinant of S.
According to the equation (1), M̂Cp can be expressed as MCp × (|S|/|�|)−1/2. Let
X = (X1, X2, . . . , Xn)

′ represents an n-dimensional vector of measurements from a mul-
tivariate normal distribution with mean vector μ = (μ1, μ2, . . . , μv)

′, T is the vector of
target values, � is the process variance-covariance matrix. Using the following theorem,
we can derive the distribution of M̂Cp.

Theorem 1

The distribution of the generalized variance |S| of a sample X1, X2, . . . , Xn from Nv(μ, �)

is the same as the distribution of |�|/(n − 1)v times the product of v independent factors,
the distribution of the ith factor being the χ2 distribution with n − i degrees of freedom.

For the proof of Theorem 1, see Anderson (2003, p. 268). From the above theorem, we
can have that |S|/� is the distribution of χ2

n−1 × χ2
n−2 × · · · × χ2

n−v/(n − 1)v . Let y =
χ2

n−1 × χ2
n−2 × · · · × χ2

n−v . Then, we have

MC2
p

M̂C2
p

∼ y

(n − 1)v

Using the transformation method, the probability density function of M̂Cp can be
expressed as

f (x) = fY [g−1(x)] ×
∣∣∣∣ d

dx
g−1(x)

∣∣∣∣ = fY

[
MC2

p(n − 1)v

x2

]
× 2(n − 1)vMC2

p

x3
for x > 0

(4)
When v = 1, the probability density function of M̂Cp is equivalent to the pdf of Ĉp. So,

we have
C2

p

Ĉ2
p

∼ y

(n − 1)
where y = χ2

n−1.

From equation (4) and the pdf of y is

fY (y) = (1/2)(n−1)/2y(n−1)/2−1e−y/2

�(n − 1/2)

the pdf of Ĉp is given by

f (x) = (n − 1)(n−1)/2

Cp�(n − 1/2)2(n−3)/2
×
(

Cp

x

)
× e−[(n−1)/2]×(Cp/x)2

for x > 0 (5)
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944 W. L. Pearn et al.

When v = 2, we have

MC2
p

M̂C
2
p

∼ y

(n − 1)2
where y = χ2

n−1 × χ2
n−2.

It can be shown that χ2
n−1 × χ2

n−2 ∼ (χ2
2n−4)

2/4 (see Corollary 1 in Appendix). Thus, we
have

MC2
p

M̂C2
p

∼ z

4(n − 1)2
where z = (χ2

2n−4)
2.

Using the transformation method, the pdf of z is

f (z) = (1/2)(n−1)zn/2−2e−√
z/2

�(n − 2)
for z > 0

Similarly, from equation (4) and the pdf of z, the pdf of M̂Cp is given by

f (x) = (n − 1)(n−2)

MCp�(n − 2)
×
(

MCp

x

)n−1

× e−(n−1)×(MCp/x) for x > 0 (6)

When v = 3, we have

MC2
p

M̂
C2

p ∼ y

(n − 1)3
where y = χ2

n−1 × χ2
n−2 × χ2

n−3.

Let z1 = χ2
n−1 × χ2

n−2 ∼ (χ2
2n−4)

2/4 and z2 = χ2
n−3. Then, we have

MC2
p

M̂C2
p

∼ z1z2

(n − 1)3

Let u = z1 × z2 and v = z1. Using the transformation method, the joint pdf of u × v is

f (u, v) = (1/2)(n−1)/2 × v−1/2 × u(n−5)/2 × e−(
√

v+u/2v)

�(n − 2)� (n − 3/2)
for u, v > 0

Then, the pdf of u is given by

fU(u) =
∫ ∞

0

(1/2)(n−1)/2 × v−1/2 × u(n−5)/2 × e−(
√

v+u/2v)

�(n − 2)� (n − 3/2)
dv for u > 0

Similarly, from equation (4) and the pdf of u, the pdf of M̂Cp is given by

f (x) = (n − 1)3 × (1/2)(n/2)−(3/2)

MCp�(n − 2)� (n − 3/2)
×
(

MCp

x

)n−2

×
∫ ∞

0
v−1/2

× e−[√v+(n−1)3(MCp/x)2/(2v)]dv for x > 0 (7)

Since the hth moment of a χ2 distribution with v degrees of freedom is 2h�(v/2 +
h)/�(v/2) and the moment of a product of independent variables is the product of the
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Multivariate Capability Indices 945

moments of the variables, the hth moment of |S|/|�| can be obtained as

E(|S|/|�|)h =
2vh

v∏
i=1

� [1/2(n − i) + h]

(n − 1)vh
v∏

i=1
� [1/2(n − i)]

(8)

Now we can derive the rth moment of M̂Cp according to the equation (8) and M̂Cp =
MCp × (|S|/�)−1/2. Thus, we have

E(M̂Cr
p) = E(MCr

p × (|S|/�)−r/2) = MCr
p × E(|S|/�)−r/2 (9)

Now, we can substitute r = 1 and h = −1/2 into the equations (8) and (9), respectively.
Then, we have

E(M̂Cp) = MCp ×
2−v/2

v∏
i=1

� [1/2(n − i) − 1/2]

(n − 1)−v/2
v∏

i=1
� [1/2(n − i)]

= MCp ×
(

n − 1

2

)v/2
� [1/2(n − v) − 1/2]

� [1/2(n − 1)]
= 1

bv

× MCp (10)

where bv = (
2

n − 1

)v/2
� [1/2(n − 1)] � [1/2(n−v) − 1/2] is a correction factor, so that

bv × M̂Cp is an unbiased estimator of MCp. Again, we can substitute r = 2 and h = −1
into the equations (8) and (9), respectively. Then, we have

E(M̂C2
p) = MC2

p ×
2−v

v∏
i=1

� [1/2(n − i) − 1]

(n − 1)−v
v∏

i=1
� [1/2(n − i)]

(11)

From the equations (10) and (11), we have the variance of M̂Cp as

Var(M̂Cp) = MC2
p ×

2−v
v∏

i=1
� [1/2(n − i) − 1]

(n − 1)−v
v∏

i=1
� [1/2(n − i)]

−
[

1

bv

× MCp

]2

(12)

When v = 1, according to the equations (10) and (12), we can find that the expectation
and variance of M̂Cp are equal to those of Ĉp (see Kotz & Lovelace, 1998). That is, the
expectation and variance of Ĉp can be obtained as

E(Ĉp) = MCp ×
√

n − 1

2

� [1/2(n − 2)]

� [1/2(n − 1)]
= 1

b1
× Cp

and

V ar(Ĉp) =
[
n − 1

n − 3
− 1

b2
1

]
× C2

p

where b1 = √
2/(n − 1) [� [(1/2)(n − 1)]/� [(1/2(n − 2))]] is a correction factor, so that

b1 × Ĉp is an unbiased estimator of Cp. When v = 2, according to the equations (10) and
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946 W. L. Pearn et al.

(12), the expectation and variance of M̂Cp can be obtained as

E(M̂Cp) = MCp × n − 1

n − 3
= 1

b2
× MCp

and

Var(M̂Cp) = MC2
p × (n − 1)2

(n − 3)2(n − 4)
= 1

n − 4
× 1

b2
2

× MC2
p

where b2 = (n − 3)/(n − 1) is a correction factor, so that b2 × M̂Cp is an unbiased esti-
mator of MCp. When v = 3, according to the equations (10) and (12), the expectation and
variance of M̂Cp can be obtained as

E(M̂Cp) = MCp ×
(

n − 1

2

)3/2

× � [1/2(n − 3) − 1/2]

� [1/2(n − 1)]
= 1

b3
× MCp

and

Var(M̂Cp) = MC2
p ×

[
(n − 1)3

(n − 3)(n − 4)(n − 5)
− (n − 1)3

2(n − 3)2
× �2 (1/2n − 2)

�2 (1/2n − 3/2)

]

=
[

(n − 1)3

(n − 3)(n − 4)(n − 5)
− 1

b2
3

]
× MC2

p

where b3 = (n − 3)/(n − 1) × √
2/(n − 1) × (�(1/2n − 3

2 ))/(�( 1
2n − 2)) is a correction

factor, so that b3 × M̂Cp is an unbiased estimator of MCp.

Confidence Intervals and Hypothesis Testing for MCp

Confidence Interval and Lower Confidence Bound for MCp

Since M̂Cp = MCp × (|S|/|�|)−1/2, like other statistics, is subject to the sampling varia-
tion, it is critical to compute an interval to provide a range that includes the true MCp with
high probability. Based on the definition, a 100(1 − α)% confidence interval for MCp can
be established as:

P {L ≤ MCp ≤ U} = 1 − α −→ P {L ≤ M̂Cp ×
( |S|

|�|
)1/2

≤ U} = 1 − α

−→ P

{
L

M̂Cp

≤
( |S|

|�|
)1/2

≤ U

M̂Cp

}
= 1 − α

−→ P

⎧⎨
⎩ L

M̂Cp

≤
√

χ2
n−1 × χ2

n−2 × · · · × χ2
n−v

(n − 1)v
≤ U

M̂Cp

⎫⎬
⎭ = 1 − α

−→ P

{
L2(n − 1)v

M̂C2
p

≤ χ2
n−1 × χ2

n−2 × · · · × χ2
n−v ≤ U 2(n − 1)v

M̂C2
p

}

= 1 − α

Let y = χ2
n−1 × χ2

n−2 × · · · × χ2
n−v , then we have

∫ U 2(n−1)v/M̂C2
p

L2(n−1)v/M̂C2
p

fY (y)dy = 1 − α
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Multivariate Capability Indices 947

So, we have
F−1

Y (α/2) = (L2(n − 1)v)/M̂C2
p and F−1

Y (1 − α/2) = (U 2(n − 1)v)/M̂C2
p, where

FY (z) = ∫ z

0 f (y)dy.
Thus, a 100(1 − α)% confidence interval for MCp can be obtained as:⎡

⎣M̂Cp

√
F−1

Y (α/2)

(n − 1)v
, M̂Cp

√
F−1

Y (1 − α/2)

(n − 1)v

⎤
⎦ (13)

Furthermore, a 100(1 − α)% lower confidence bound for MCp can be obtained as⎡
⎣M̂Cp

√
F−1

Y (α)

(n − 1)v

⎤
⎦ (14)

When v = 1, a 100(1 − α)% confidence interval and lower confidence bound for Cp are
given by ⎡

⎣Ĉp

√
χ2

n−1, α/2

(n − 1)
, Ĉp

√
χ2

n−1, 1−α/2

(n − 1)

⎤
⎦ and

⎡
⎣Ĉp

√
χ2

n−1, α

(n − 1)

⎤
⎦ (15)

When v = 2, we can find that the distribution of χ2
n−1 × χ2

n−2 is equal to (χ2
2n−4)

2/4. Thus,
a 100(1 − α)% confidence interval and lower confidence bound for MCp are given by⎡

⎣M̂Cp

√
(χ2

2n−4,α/2)
2

4 × (n − 1)2
, M̂Cp

√
(χ2

2n−4,1−α/2)
2

4 × (n − 1)2

⎤
⎦ and

⎡
⎣M̂Cp

√
(χ2

2n−4,α)2

4 × (n − 1)2

⎤
⎦ (16)

When v = 3, we can find that the distribution of χ2
n−1 × χ2

n−2 × χ2
n−3 can be expressed

as y = (χ2
2n−4)

2/4 × χ2
n−3.

Now, let y1 ∼ (χ2
2n−4)

2/4 and y2 ∼ χ2
n−3. So, we have y = y1y2. Let w = y1. Using the

transformation method, the probability density function of y is given by

fY (y) =
∫ ∞

0
fy1,y2(y1, y2)dy1

=
∫ ∞

0

(1/2)(n−1)/2 × y
−1/2
1 × y

(n−5)/2
2 × e−y

1/2
1 −(y2/2y1)

�(n − 2) × �[(n − 3)/2] dy1, 0 ≤ y < ∞

Thus, a 100(1 − α)% confidence interval and lower confidence bound for MCp are given by⎡
⎣M̂Cp

√
F−1

Y (α/2)

(n − 1)3
, M̂Cp

√
F−1

Y (1 − α/2)

(n − 1)3

⎤
⎦ and

⎡
⎣M̂Cp

√
F−1

Y (α)

(n − 1)3

⎤
⎦ (17)

where

FY (y) =
∫ y

0

∫ ∞

0

(1/2)(n−1)/2 × x−1/2 × y(n−5)/2 × e−x1/2−(y/2x)

�(n − 2) × �[(n − 3)/2] dx dy

Efficient Mathematica programs are developed to obtain equation (17). These programs are
available by sending an e-mail request to Wang.
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948 W. L. Pearn et al.

Hypothesis Testing for MCp

In hypothesis testing, we determine whether or not a hypothesized value of a parameter is
true or not, based on the sample taken and the parameter estimate derived from it. That is,
we are trying to find out where the estimated capability is relative to either true capability,
hypothesized capability, or how different the estimated and true capabilities are. To do this,
we estimate an index value, compare it to a lower bound c0, and compute the so-called
p-value. The quantity p refers to the actual risk of incorrectly concluding that the process is
capable for a particular test. In general, we want p-value to be no greater than 0.05. To test
whether a given process is capable, we may consider the following statistical hypothesis
testing:

H0 : MCp � c0(process is not capable)

H1 : MCp > c0(process is capable)

where c0 is the standard minimal criteria for MCp. The critical value, c, can be determined as:

P
{
M̂Cp > c|MCp = c0

}
=α −→ P

⎧⎪⎨
⎪⎩

MCp√
(χ2

n−1 × χ2
n−2 × · · · × χ2

n−v)/(n − 1)v

> c|MCp = c0

⎫⎪⎬
⎪⎭ = α.

Let y = χ2
n−1 × χ2

n−2 × · · · × χ2
n−v , then we have

P

{
c0√

y/(n − 1)v
> c

}
= α −→ P

{
c2

0

y/(n − 1)v
> c2

}

= α −→ P

{
y <

(n − 1)vc2
0

c2

}
= α −→

∫ (n−1)vc2
0/c

2

0
fY (y)dy

= α −→ F−1
Y (α) = (n − 1)vc2

0

c2
.

Thus, the critical value can be expressed as

c = c0

√
(n − 1)v

F−1
Y (α)

(18)

When v = 1 and y = χ2
n−1, the critical value is equal to

c0

√
n − 1

χ2
n−1,α

.

When v = 2 and y = χ2
n−1 × χ2

n−2 ∼ (χ2
2n−4)

2/4, the critical value is equal to

c0

√
4(n − 1)2

(χ2
2n−4,α)2

.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
59

 2
6 

A
pr

il 
20

14
 



Multivariate Capability Indices 949

When v = 3 and y = χ2
n−1 × χ2

n−2 × χ2
n−3, the critical value is equal to

c0

√
(n − 1)3

F−1
Y (α)

, where FY (y) =
∫ y

0

∫ ∞

0

(1/2)(n−1)/2 ×x(−1/2) ×y(n−5)/2 ×e−x1/2−y/2x

�(n − 2)×�((n − 3)/2)
dxdy

From the definition of c, it is obvious that the value of M̂Cp must be higher than the
original target value for the true MCp. The amount of difference required depends on the
sample size, n. The power of the test, β, is given by

β(MCp) = P {M̂Cp > c|MCp}

= P

⎧⎪⎨
⎪⎩

MCp√
(χ2

n−1 × χ2
n−2 × · · · × χ2

n−v)/(n − 1)v
> c|MCp

⎫⎪⎬
⎪⎭

= P

{
y <

(n − 1)vMC2
p

c2
|MCp

}
(19)

where y is the probability density function of χ2
n−1 × χ2

n−2 × · · · × χ2
n−v . From the above

equation, we can obtain the operating characteristic (OC) curve for MCp, which plots the
true value of 1 − β(MCp) against MCp for two situations: (1) n = 30, c = 1.33; (2) n = 70,
c = 1.46. When v = 1, 2 and 3, several operating characteristic (OC) curves for MCp are
shown in Figures 1–5. From these operating characteristic curves, we found that some
interesting results are as follows.

(i) From these graphs, it is obvious that when the c0 is larger, the chance of incorrectly
concluding the process is not capable is smaller.

(ii) When n and c of the two are the same, then their OC curves are similar regardless of
v = 1, v = 2 or v = 3.

(iii) When c is smaller, the chance of incorrectly concluding the process is not capable will
be smaller.

Figure 1. Operating characteristic curve for MCp when v = 1
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950 W. L. Pearn et al.

Figure 2. Operating characteristic curve for MCp when v = 2

Figure 3. Operating characteristic curve for MCp when v = 3

Figure 4. Operating characteristic curve for MCp when n = 30

Approximate Confidence Intervals for MCpm

An Approximate Confidence Interval and Lower Confidence Bound for MCpm

An estimator of MCpm can be expressed as

M̂Cpm = M̂Cp

D̂
= MCp × (|S|/|�|)−1/2

D̂
= MCp × D × (|S|/|�|)−1/2

D × D̂

= MCpm × D

D̂
×
( |S|

|�|
)−1/2

(20)
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Multivariate Capability Indices 951

Figure 5. Operating characteristic curve for MCp when n = 70

where

D̂ =
[

1 +
(

n

n − 1

)
(X − T )′S−1(X − T )

]1/2

Since

M̂Cpm = MCpm × D

D̂
×
( |S|

|�|
)−1/2

and
|S|
|�| ∼ χ2

n−1χ
2
n−2 · · · χ2

n−v

(n − 1)v

we have

(
MCpm/M̂Cpm

)
× D = D̂ ×

( |S|
|�|

)1/2

=⇒
(

MCpm/M̂Cpm

)2 × D2 = D̂2 ×
( |S|

|�|
)

= D̂2 × χ2
n−1χ

2
n−2 · · · χ2

n−v

(n − 1)v

where

D2 = [1 + (μ − T )′�−1(μ − T )], D̂2 =
[

1 +
(

n

n − 1

)
(X − T )′S−1(X − T )

]

Based on the definition, a 100(1 − α)% confidence interval forMCpm is given as follows:

P
{
L ≤ MCpm ≤ U

} = 1 − α −→ P

⎧⎨
⎩
(

L

M̂Cpm

)2

D2 ≤
(

MCpm

M̂Cpm

)2

D2 ≤
(

U

M̂Cpm

)2

D2

⎫⎬
⎭ = 1 − α

−→ P

⎧⎨
⎩
(

L

M̂Cpm

)2

D2 ≤ D̂2 ×
(

χ2
n−1χ

2
n−2 · · · χ2

n−v

(n − 1)v

)

≤
(

U

M̂Cpm

)2

D2

⎫⎬
⎭ = 1 − α
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952 W. L. Pearn et al.

−→ P

⎧⎨
⎩
(

L

M̂Cpm

)2

D2(n − 1)v ≤ D̂2 × χ2
n−1χ

2
n−2 · · · χ2

n−v

≤
(

U

M̂Cpm

)2

D2(n − 1)v

⎫⎬
⎭ = 1 − α

Let z = D̂2 × χ2
n−1χ

2
n−2 . . . χ2

n−v . The above equation can be rewritten as

∫ U 2(n−1)vD2/M̂C2
pm

L2(n−1)vD2/M̂C2
pm

fZ(z)dz = 1 − α.

So, we have

F−1
Z (α/2) = L2(n − 1)vD2

M̂C2
pm

and F−1
Z (1 − α/2) = U 2(n − 1)vD2

M̂C2
pm

where FZ(z) = ∫ z

0 fZ(z)dz. Thus, a 100(1 − α)% confidence interval and lower confidence
bound for MCpm are given by⎡
⎣M̂Cpm

√
F−1

Z (α/2)

(n − 1)vD2
, M̂Cpm

√
F−1

Z (1 − α/2)

(n − 1)vD2

⎤
⎦ and

⎡
⎣M̂Cpm

√
F−1

Z (α)

(n − 1)vD2

⎤
⎦ (21)

In fact, D and τ 2 are unknown values, we can use D̂ and τ̂ 2 to estimate the values of D and
τ 2, where

D̂ =
[

1 +
(

n

n − 1

)
(X − T )

′
S−1(X − T )

]1/2

and τ̂ 2 = n(X − T )
′
S−1(X − T )

Thus, an approximate 100(1 − α)% confidence interval and lower confidence bound for
MCpm are given by⎡
⎣M̂Cpm

√
F̂−1

z (α/2)

(n − 1)vD̂2
, M̂Cpm

√
F̂−1

z (1 − α/2)

(n − 1)vD̂2

⎤
⎦ and

⎡
⎣M̂Cpm

√
F̂−1

z (α)

(n − 1)vD̂2

⎤
⎦ (22)

From Corollary 2 in theAppendix, the pdf of z can be found. When v = 2, an approximate
100(1 − α)% confidence interval and lower confidence bound for MCpm are given by⎡
⎣M̂Cpm

√
F̂−1

z (α/2)

(n − 1)2D̂2
, M̂Cpm

√
F̂−1

z (1 − α/2)

(n − 1)2D̂2

⎤
⎦ and

⎡
⎣M̂Cpm

√
F̂−1

z (α)

(n − 1)2D̂2

⎤
⎦ (23)

where

F̂Z(z) =
∫ z

0

∫ ∞

1

1/2e(−1/2(τ̂ 2))

x�(n − 2)�[(n − 2)/2] (z/x)(n−4)/2e−√
z/x

×
∞∑
i=0

(τ̂ 2/2)i(x − 1)i�(n/2 + i)

i!�(i + 1)x1/2n+i
dxdz for z ≥ 0
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Multivariate Capability Indices 953

When v = 3, an approximate 100(1 − α)% confidence interval and lower confidence
bound for MCpm are given by

⎡
⎣M̂Cpm

√
F̂−1

z (α/2)

(n − 1)3D̂2
, M̂Cpm

√
F̂−1

z (1 − α/2)

(n − 1)3D̂2

⎤
⎦ and

⎡
⎣M̂Cpm

√
F̂−1

z (α)

(n − 1)3D̂2

⎤
⎦ (24)

where

F̂Z(z) =
∫ z

0

∫ ∞

1

∫ ∞

0

(1/2)(n−1)/2x−1/2e−√
x−z/(2wx)

�(n − 2)�[(n − 3)/2]
e(−(1/2)τ̂ )2

(z/w)(n−5)/2

w�[(n − 3)/2]

×
∞∑
i=0

(τ̂ 2/2)i(w − 1)i+1/2�(n/2 + i)

i!�(i + 3/2)wn/2+i
dxdwdz

Simulation Study

In order to ascertain the performance of the confidence interval and the lower confidence
bound in equation (23), a simulation study was conducted. In this study, random samples
of size 25, 45 and 65 were generated from the multivariate normal distribution with a
plethora of combinations of μ, � and MCpm. The specification limits were assumed to
be, without loss of generality, LSL1 = 10, T1 = 13, USL1 = 16, LSL2 = 12, T2 = 13,
USL2 = 14. For each combination, 1000 random samples were generated and, for each of
these samples, the corresponding confidence intervals and lower confidence bound were
assessed. The proportion of times that each of these limits contains the actual value of the
index was recorded. The frequency of coverage for the limit is a binomial random variable
with p = 0.95 and N = 1000. Thus, a 99% confidence interval for the coverage proportion
is 0.95 ± 2.576

√
0.95 × 0.05/1000. Hence, the limits from 0.932 to 0.968 are the critical

values for a statistical test at the 99% confidence level of the hypothesis that the p = value
is 0.95.

The obtained results are summarized in Table 1. More specifically, Table 1 presents that
the observed coverage of 95% confidence interval as well as the observed coverage of the
lower confidence bound are within the nominal interval at 99% confidence level. Thus, we
can ascertain the performance of the confidence interval and the lower confidence bound in
equation (23).

Illustration Examples

Three examples were chosen to illustrate the proposed methodology. The first example
was used to illustrate a process with two variables. The other two examples were used to
illustrate a process with three variables.

Example 1

Chen (1994) discussed a bivariate normal example and employed Sultan (1986) bivariate
process data (n = 25). Of particular interest were the Brinell hardness (H) and the tensile
strength (S) of a process. The specification limits for H and S were set at (112.7, 241.3) and
(32.7, 73.3), respectively. The center of the specifications was μT

0 = [177, 53]. The sample
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954 W. L. Pearn et al.

Table 1. Observed coverage of 95% confidence limits

n = 25 n = 45 n = 65

μ � MCpm CI LCB CI LCB CI LCB

[
13
13

] ⎡
⎢⎢⎢⎣

5

0.75χ2
2,0.9973

4

0.75χ2
2,0.9973

4

0.75χ2
2,0.9973

5

0.75χ2
2,0.9973

⎤
⎥⎥⎥⎦ 0.75 0.968 0.959 0.965 0.969 0.952 0.952

[
13
13

] ⎡
⎢⎢⎢⎣

5

χ2
2,0.9973

4

χ2
2,0.9973

4

χ2
2,0.9973

5

χ2
2,0.9973

⎤
⎥⎥⎥⎦ 1 0.968 0.959 0.966 0.970 0.952 0.952

[
13
13

] ⎡
⎢⎢⎢⎣

5

1.25χ2
2,0.9973

4

1.25χ2
2,0.9973

4

1.25χ2
2,0.9973

5

1.25χ2
2,0.9973

⎤
⎥⎥⎥⎦ 1.25 0.968 0.959 0.966 0.970 0.952 0.952

[
13
13

] ⎡
⎢⎢⎢⎣

5

1.5χ2
2,0.9973

4

1.5χ2
2,0.9973

4

1.5χ2
2,0.9973

5

1.5χ2
2,0.9973

⎤
⎥⎥⎥⎦ 1.5 0.968 0.959 0.966 0.970 0.952 0.952

Note: CI = confidence interval; LCB = lower confidence bound.

mean vector and sample covariance matrix were

X
T = [177.2, 52.32] and S =

[
337.8000 85.3308
85.3308 33.6247

]

Using the discussion in the second and third sections, we can derive the estimated value,
expectation, variance, confidence interval, lower confidence bound and critical value for
MCp. From the data, we have χ2

2,0.9973 = 11.829 and |S| = 4077.0782. Then, we have

M̂Cp = π × [(241.3 − 112.7)/2] × [(73.3 − 32.7)/2]
π × |S|1/2χ2

2,0.9973

= 1.7282

Since v = 2 and n = 25, the expectation and variance of M̂Cp can be calculated as
(25/22) × MCp, (48/847) × MC2

p, respectively. According to the equation (16), a 95%
confidence interval for MCp is calculated as⎡

⎣1.7282

√
(χ2

46,0.025)
2

4 × 242
, 1.7282

√
(χ2

46,0.975)
2

4 × 242

⎤
⎦ = [1.0499, 2.3985]

In addition, a 95% lower confidence bound for MCp is

1.7282

√
(χ2

46,0.05)
2

4 × 242
= 1.1319
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Multivariate Capability Indices 955

To judge whether this process meets the present capability requirement, we consider a
statistical hypothesis testing for MCp: H0: MCp � 1 versus H1: MCp > 1. According to
equation (18), the critical value is obtained as

c = 1 ×
√

4(25 − 1)2

(χ2
46,0.05)

2
= 1.5268

Since M̂Cp = 1.7282 > 1.5268, we can conclude that the MCp is larger than 1 at 95%
confidence level. It implies that this process variation is smaller than the specified range of
variation. From the data, we have D̂ = 1.0228 and τ̂ 2 = 1.1084. Thus, the M̂Cpm can be
calculated as 1.7282/1.0228 = 1.6896. According to equation (23), an approximate 95%
confidence interval for MCpm is calculated as[

1.6896

√
236.417

(24)2 × 1.02282
, 1.6896

√
1320.09

(24)2 × 1.02282

]
= [1.0583, 2.5008]

Also, according to equation (23), an approximate 95% lower confidence bound for MCpm is

1.6896

√
275.491

(24)2 × 1.02282
= 1.1424

Therefore, we can conclude that the MCpm is larger than 1 at 95% confidence level. It
implies that this process is close to the specified target.

Example 2

A previous study (Wang & Chen, 1998) presented a trivariate quality control involving the
joint control of the depth (D), the length (L), and the width (W ) of a plastic product from
a multivariate normality. Fifty observations were collected from a plastic production line.
The specified limits for D, L, and W were set at [2.1, 2.3], [304.5, 305.1] and [304.5,
305.1], respectively. The 3D tolerance region is illustrated in Figure 6. The specification of
the target value is T T = [2.2, 304.8, 304, 8].

The sample mean vector and sample covariance matrix for 50 observations were

X
T = [2.16, 304.72, 304.77] and S =

⎡
⎣0.0021 0.0008 0.0007

0.0008 0.0017 0.0012
0.0007 0.0012 0.0020

⎤
⎦

From the data, we have χ2
3,0.9973 = 14.1563 and |S| = 0.3347 × 10−8. Then we have

M̂Cp = 4/3π × (0.2/2) × (0.6/2) × (0.6/2)

|S|1/2(π × χ2
3,0.9973)

3/2[�(2.5)]−1
= 2.9208

Figure 6. Tolerance region for example 2
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956 W. L. Pearn et al.

Since v = 3 and n = 50, the expectation of M̂Cp can be calculated as 1.0819 × MCp and
0.038805 × MC2

p, respectively. According to equation (17), a 95% confidence interval for
MCp is calculated as[

2.9208

√
50504.6

493
, 2.9208

√
204926

493

]
= [1.9136, 3.8547]

In addition, a 95% lower confidence bound is

2.9208

√
56994.6

493
= 2.0329

To judge whether this process meets the present capability requirement, we consider a
statistical hypothesis testing for MCp: H0: MCp � 1 versus H1: MCp > 1. According to the
equation (18), the critical values

c = 1 ×
√

493

56994.8
= 1.4367

Since M̂Cp = 2.9208 > 1.4367, we can conclude that the MCp is larger than 1 at 95%
confidence level. It implies that this process variation is smaller than the specified range of
variation. From the data, we have D̂ = 2.3408 and τ̂ 2 = 219.495. Thus, the M̂Cpm can be
calculated as 2.9208/2.3408 = 1.2478. According to equation (24), an approximate 95%
confidence interval for MCpm is calculated as

[
1.2478

√
266563

(49)3 × 2.34082
, 1.2478

√
1341790

(49)3 × 2.34082

]
= [0.8024, 1.8002]

Also, according to equation (24), an approximate 95% lower confidence bound for MCpm is

1.2478

√
304913

(49)3 × 2.34082
= 0.8582

Therefore, we can conclude that the lower bound for MCpm is not larger than 1 at 95%
confidence level. It implies that this process is not close to the specified target.

Example 3

Taam et al. (1993) and Karl et al. (1994) discussed a geometric dimensioning and toleranc-
ing (GD&T) drawing that specifies a target value for a pin diameter corresponding to the
midpoint of allowable pin sizes and allowable perpendicularity of the pin depending on its
size. The specifications require a pin diameter between 9 and 11 tenths of an inch (all units
in tenths of an inch) and the center line of the pin to be within a cylinder of diameter 0.5 at
maximum material condition (MMC, i.e., maximum pin diameter), increasing to a cylinder
2.5 diameter at Least Material Condition (LMC, i.e. minimum pin diameter). Therefore,
the tolerance of perpendicularity depends on the pin diameter: for a pin with a diameter
of 9, the allowable perpendicular tolerance zone is a 2.5 diameter cylinder, whereas for a
pin diameter of 11, the allowable perpendicular tolerance is a 0.5 diameter cylinder. A pin
meeting this specification will fit a gage with an 11.5 diameter hole. These GD&T specifica-
tions result in a three-dimensional tolerance region in the shape of a frustum, as illustrated
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Multivariate Capability Indices 957

Figure 7. Tolerance region and modified tolerance region for example 3

in Figure 7. The center of the specification is T T = [0, 0, 10]. The sample mean vector and
sample covariance matrix for 70 observations were

X
T = [−0.0124, −0.0062, 10.0586] and S =

⎡
⎣ 0.01313 −0.00371 0.00884

−0.00371 0.01618 −0.01031
0.00884 −0.01031 0.06473

⎤
⎦

From the data, we have χ2
3,0.9973 = 14.1563 and |S| = 0.00001092. Then we have

M̂Cp = 4/3π × [(11 − 9)/2] × (2.5/2) × (0.5/2)

|S|1/2(π × χ2
3,0.9973)

3/2[�(2.5)]−1
= 1.7752

Now, v = 3 and n = 70, the expectation and variance of M̂Cp can be calculated as 1.0570 ×
MCp and 0.025685 × MC2

p, respectively. According to equation (17), a 95% confidence
interval for MCp is calculated as

[
1.7752

√
164939

693
, 1.7752

√
533052

693

]
= [1.2579, 2.2613]

In addition, a 95% lower confidence bound is

1.7752

√
182304

693
= 1.3224

To judge whether this process meets the present capability requirement, we consider a
statistical hypothesis testing for MCp: H0: MCp � 1 versus H1: MCp > 1.According to the
equation (18), the critical values

c = 1 ×
√

693

182304
= 1.3423

Since M̂Cp = 1.7752 > 1.3423, we can conclude that the MCp is larger than 1 at 95%
confidence level. It implies that this process variation is smaller than the specified range of
variation. From the data, we have D̂ = 1.0437 and τ̂ 2 = 6.1608. Thus, the M̂Cpm can be
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958 W. L. Pearn et al.

calculated as 1.7752/1.0437 = 1.7009. According to equation (24), an approximate 95%
confidence interval for MCpm is calculated as

[
1.7009

√
184666

(69)3 × 1.04372
, 1.7009

√
619698

(69)3 × 1.04372

]
= [1.2219, 2.2383]

Also, according to equation (24), an approximate 95% lower confidence bound for MCpm is

1.7009

√
204521

(69)3 × 1.04372
= 1.2859

Therefore, we can conclude that the MCpm is larger than 1 at 95% confidence level. It
implies that this process is close to the specified target.

Conclusions

Processes with multiple quality characteristics often occur in manufacturing industries.
Multivariate capability indices such as MCp and MCpm have been proposed to measure
process reproduction capability according to the corresponding multiple specifications. In
this paper, we obtained the probability density function of the estimated M̂Cp. We con-
structed lower confidence bounds for M̂Cp, and developed the corresponding hypothesis
testing for MCp. In addition, we derived an approximate lower confidence bound for MCpm

for v = 2, 3. A simulation study was conducted to ascertain the accuracy of the approxima-
tion. Three examples are given to illustrate the obtained results. Although we only provided
the distribution of MCp for v = 1, 2, 3, using the variable transformation technique we
could obtain the sampling distribution of MCp for v ≥ 4. Practitioners can use the proposed
procedure to determine whether their process meets the preset capability requirement, and
so make reliable decisions.
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Multivariate Capability Indices 959

Appendix

Corollary 1

If χ2
n−1 and χ2

n−2 are independently distributed, then χ2
n−1 × χ2

n−2 is distributed as
(χ2

2n−4)
2/4.

Proof

Let x1 ∼ χ2
n−1 and x2 ∼ χ2

n−2. The joint pdf of x1 and x2 is given by

fx1,x2(x1, x2) = (1/2)(n−1)/2x
n/2−3/2
1 e−x1/2

�[(n − 1)/2] × (1/2)(n−2)/2x
n/2−2
2 e−x2/2

�[(n − 2)/2]
Let z1 = x1 and z2 = 2

√
x1x2. Using the transformation method, the solution is x1 = z1

and x2 = z2
2/4z1, and the Jacobian of the transformation is

J =
∣∣∣∣∣∣

1 0

− z2
2

4
√

z1

z2

2z1

∣∣∣∣∣∣ = z2

2z1
.

So, we find that the joint pdf of z1z2 is

fz1,z2(z1, z2) = (1/2)(n−1)/2z
n/2−3/2
1 e−z1/2

�[(n − 1)/2] × (1/2)(n−2)/2(z2
2/4z1)

n/2−2e−(z2
2/4z1)/2

�[(n − 2)/2]
× z2

2z1
, 0 ≤ z1, z2 ≤ ∞

Then, the marginal density function of z2 is obtained as follows:

fz2(z2) =
∞∫

0

(1/2)(n−1)/2z
n/2−3/2
1 e−z1/2

�[(n − 1)/2] × (1/2)(n−2)/2(z2
2/4z1)

n/2−2e−(z2
2/4z1)/2

�[(n − 2)/2] × z2

2z1
dz1

= C1 × zn−3
2 ×

∞∫
0

z
−1/2
1 × e−z1/2−(z2

2/4z1)/2dz1, 0 ≤ z2 ≤ ∞

where

C1 = (1/2)2n−9/2

�[(n − 1)/2] × �[(n − 2)/2]
Let h(z2) = ∫∞

0 z
−1/2
1 × e−z1/2−(z2

2/4z1)/2dz1. Hence, h
′
(z2) = (−z2/4z1) × ∫∞

0 z
−1/2
1

×e−z1/2−(z2
2/4z1)/2dz1. Now, let z2

2/4z1 = w. Using the transformation method, we find that

h
′
(z2) =

(
−1

2

)
×
∫ ∞

0
w−1/2 × e−w/2−(z2

2/4w)/2dw =
(

−1

2

)
× h(z2)

The above equation gives h(z2) = e(−z2/2+C2), where C2 is a constant. Thus, the pdf of z2 is
given as the following, where C3 = C1 × e−C2 . Therefore, we have z2 ∼ χ2

2n−4, fz2(z2) =
C1 × e−C2 × zn−3

2 × e−z2/2 = C3 × z
(2n−4)/2−1
2 × e−z2/2, 0 ≤ z2 ≤ ∞.
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960 W. L. Pearn et al.

Theorem 2

Let T 2 = n(�X − μ0)
′
S−1(�X − μ0), where X = (x1, x2, . . . , xn)

′
be a sample from

N(μ, �) with mean vector μ = (μ1, μ2, . . . , μv)
′

and covariance matrix �v×v , and μ0

is the vector of target values. The distribution of

T 2

n − 1
× n − v

v

is a non-central F with v and n − v degrees of freedom and non-centrality parameter
τ 2 = n(�X − μ0)

′
�−1(�X − μ0).

Proof

See Anderson (2003, pp. 174–176).
It can be shown that the pdf of T 2 is given by

e−(1/2)τ 2

(n − 1)�[1/2(n − v)]
∞∑
i=0

(τ 2/2)i
[
t2/(n − 1)

](1/2)v+i−1
�(1/2n + i)

i!�(1/2v + i)
[
1 + t2/(n − 1)

](1/2)n+i
(A1)

(See Anderson, 2003, p. 186.)

Corollary 2

(1) For v = 2, if z = χ2
n−1 × χ2

n−2 × D̂2, where D̂2 = [1 + n/n − 1(�X − μ0)
′
S−1(�X −

μ0)], then the pdf of z is

fZ(z) =
∫ ∞

1

(1/2)e−(1/2)τ 2

w�(n − 2)�[(n − 2)/2] (z/w)(n−4)/2e−√
z/w

×
∞∑
i=0

(τ 2/2)i(w − 1)i�(n/2 + i)

i!�(i + 1)w(1/2)n+i
dw for z ≥ 0

(2) For v = 3, if z = χ2
n−1 × χ2

n−2 × χ2
n−3 × D̂2, where D̂2 = [1 + n/n − 1(�X −

μ0)
′
S−1(�X − μ0)], then the pdf of z is

fZ(z) =
∫ ∞

1

∫ ∞

0

(1/2)(n−1)/2x
−1/2
1 e−√

x1−z/(2wx1)

�(n − 2)�[(n − 3)/2]
e−(1/2)τ 2

(z/w)(n−5)/2

�[(n − 3)/2]

×
∞∑
i=0

(τ 2/2)i(w − 1)i�(n/2 + i)

i!�(i + 3/2)w1/2n+i
dx1dw for z ≥ 0

Proof

(1) From D̂2 = [1 + n/(n − 1)(�X − μ0)
′
S−1(�X − μ0)] and Theorem 2, we find that D̂2 =

1 + (1/(n − 1))T 2.
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Multivariate Capability Indices 961

Let y = 1 + (1/(n − 1))T 2. Using the transformation method and the equation (A1),
the pdf of y is obtained as follows:

fY (y) = fT 2 ((n − 1)(y − 1)) × |(n − 1)|

= e(−1/2)τ 2

(n − 1)�[(n − 2)/2]
∞∑
i=0

(τ 2/2)i(y − 1)i�(n/2 + i)

i!�(i + 1)y(1/2)n+i
× (n − 1)

= e−(1/2)τ 2

�[(n − 2)/2]
∞∑
i=0

(τ 2/2)i(y − 1)i�(n/2 + i)

i!�(i + 1)y(1/2)n+i
for y ≥ 1

Let x = χ2
n−1 × χ2

n−2. From Corollary 1, we find that x = (χ2
2n−4)

2/4. That is, the pdf
of x is

fX(x) = (1/2)x(n−4)/2e−√
x

�(n − 2)
for x > 0

Now, let z = xy and w = y. Using the transformation method, the solution is x = z/w

and y = w, and the Jacobian of the transformation is J =
∣∣∣∣ 1/w −z/w2

0 1

∣∣∣∣ = 1/w.

So, we find that the joint pdf of zw is

fZW(z, w) = fXY (z/w, w) × (1/w) = (1/2)(z/w)(n−4)/2e−√
z/w

w�(n − 2)

× e−(1/2)τ 2

�[(n − 2)/2]
∞∑
i=0

(τ 2/2)i(w − 1)i�(n/2 + i)

i!�(i + 1)w1/2n+i
for z ≥ 0, w > 1

Then, the marginal density function of z is obtained as follows:

fZ(z) =
∫ ∞

1

(1/2)(z/w)(n−4)/2e−√
z/w

w�(n − 2)
× e−(1/2)τ 2

�[(n − 2)/2]

×
∞∑
i=0

(τ 2/2)i(w − 1)i�(n/2 + i)

i!�(i + 1)w1/2n+i
dw

=
∫ ∞

1

1/2e−(1/2)τ 2

w�(n − 2)�[(n − 2)/2] (z/w)(n−4)/2e−√
z/w

×
∞∑
i=0

(τ 2/2)i(w − 1)i�(n/2 + i)

i!�(i + 1)w(1/2)n+i
dw for z ≥ 0

(2) From D̂2 = [1 + n/(n − 1)(�X − μ0)
′
S−1(�X − μ0)] and Theorem 2, we find that D̂2 =

1 + (1/(n − 1))T 2.
Let y = 1 + (1/(n − 1)T )2. Using the transformation method and the equation (A1),

the pdf of y is obtained as follows:

fY (y) = fT 2 ((n − 1)(y − 1)) × |(n − 1)|

= e−(1/2)τ 2

(n − 1)�[(n − 3)/2]
∞∑
i=0

(τ 2/2)i(y − 1)i+1/2�(n/2 + i)

i!�(i + 3/2)y(1/2)n+i
× (n − 1)

= e−(1/2)τ 2

�[(n − 3)/2]
∞∑
i=0

(τ 2/2)i(y − 1)i+1/2�(n/2 + i)

i!�(i + 3/2)y1/2n+i
for y ≥ 1
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962 W. L. Pearn et al.

Let x1 = χ2
n−1 × χ2

n−2 and x2 = χ2
n−3. From Corollary 1, we find that x1 = (χ2

2n−4)
2/4.

That is, the pdf of x1 is

fx1(x1) = (1/2)x
(n−4)/2
1 e−√

x1

�(n − 2)
for x1 > 0

Now, let x = x1x2 and u = x1. Using the transformation method, the solution is x1 = u

and x2 = x/u, and the Jacobian of the transformation is J =
∣∣∣∣ 0 1

1/u −x/u2

∣∣∣∣ = 1/u.

So, we find that the joint pdf of xu is

fXU(x, u) = fX1X2(u, x/u) × 1

u

= (1/2)(n−1)/2 × u−1/2 × x(n−5)/2 × e−√
u−x/2u

�(n − 2) × �[(n − 3)/2] 0 ≤ x, u < ∞

Then, the marginal density function of x is

fX(x) =
∫ ∞

0

(1/2)(n−1)/2 × u−1/2 × x(n−5)/2 × e−√
u−x/2u

�(n − 2) × �[(n − 3)/2] du , 0 ≤ x

Again, let z = xy and w = y. Using the transformation method, the solution is x = z/w

andy = w, and the Jacobian of the transformation is theJ =
∣∣∣∣ 1/w −z/w2

0 1

∣∣∣∣ = 1/w.

So, the joint pdf of zw is obtained as follows:

fZW(z, w) = fXY (z/w, w) × (1/w)

=
∫ ∞

0

(1/2)(n−1)/2 × u−1/2 × (z/w)(n−5)/2 × e−√
u−z/2wu

�(n − 2) × �[(n − 3)/2] du

× e−(1/2)τ 2

�[(n − 3)/2]
∞∑
i=0

(τ 2/2)i(w − 1)i+1/2�(n/2 + i)

i!�(i + 3/2)w(1/2)n+i
× 1

w

=
∫ ∞

0

(1/2)(n−1)/2u−1/2e−√
u−z/(2wu)

�(n − 2)�[(n − 3)/2] du
e−1/2τ 2

(z/w)(n−5)/2

w�[(n − 3)/2]

×
∞∑
i=0

(τ 2/2)i(w − 1)i+1/2�(n/2 + i)

i!�(i + 3/2)w1/2n+i
for z ≥ 0, w > 1

Then, the marginal density function of z is

fZ(z) =
∫ ∞

1

∫ ∞

0

(1/2)(n−1)/2u−1/2e−√
u−z/(2wu)

�(n − 2)�[(n − 3)/2]
e−1/2τ 2

(z/w)(n−5)/2

w�[(n − 3)/2]

×
∞∑
i=0

(τ 2/2)i(w − 1)i+(1/2)�(n/2 + i)

i!�(i + 3/2)w(1/2)n+i
dudw for z ≥ 0.
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