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For complex digital circuits, building their power models is a popular approach to 

estimate their power consumption without detailed circuit information. In the literature, 
most of power models have to increase their complexity in order to meet the accuracy 
requirement. In this paper, we propose a tableless power model for complex circuits that 
uses neural networks to learn the relationship between power dissipation and input/  
output signal statistics. The complexity of our neural power model has almost no rela-
tionship with circuit size and number of inputs and outputs such that this power model 
can be kept very small even for complex circuits. Using such a simple structure, the 
neural power models can still have high accuracy because they can automatically con-
sider the non-linear characteristic of power distributions and the effects of both state- 
dependent leakage power and transition-dependent switching power. The experimental 
results have shown the accuracy and efficiency of our approach on benchmark circuits 
and one practical design for different test sequences with wide range of input distribu-
tions. 
 
Keywords: power macromodel, power estimation, neural network, low power design, 
RTL 
 
 

1. INTRODUCTION 
 

System-on-a-chip (SOC) is a trend of system integration in recent years. For SOC 
designs, most design teams will not design all circuit blocks in the system by themselves. 
Instead, they will integrate many well-designed circuit blocks called intellectual proper-
ties (IPs) and some self-designed circuit blocks to build up the complex system in a short 
time. While designing such complex systems, power consumption is also a very impor-
tant design issue because of the increasing requirement on operating time of portable 
devices. In order to avoid problems associated with excessive power consumption, there 
is a need for computer-aided design (CAD) tools to help in estimating the power con-
sumption of very large scale integrated (VLSI) circuits, at various levels of abstraction. 
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A number of CAD techniques for power estimation at lower levels of abstraction, 
such as transistor-level [1-3] or gate-level [4], have been proposed. Generally speaking, 
they can provide more accurate estimation results. However, they may become unpracti-
cal for complex designs because to simulate the whole design under such low levels re-
quires too much computation resources. In addition, by the time the design has been 
specified down to gate level or lower, it may be too expensive to go back to fix high- 
power problems. Most importantly, IP vendors may not provide such low-level descrip-
tion for an IP to protect their knowledge. Therefore, a number of high-level power esti-
mation techniques [5-14] have been proposed to estimate the power consumption at a 
high level of abstraction, such as when the circuit is represented only by Boolean equa-
tions. This will provide more flexibility to explore design tradeoffs early in the design 
process and reduce the redesign cost and time to fix power problems. 

Those high-level techniques can be roughly divided into two categories: top-down 
and bottom-up. In the top-down techniques [6, 7], a combinational circuit was specified 
only as a Boolean function without information on the circuit implementation. Therefore, 
top-down techniques are useful when one is designing a logic block that was not previ-
ously designed because they can provide a rough measurement about the trend of power 
consumption before implemented. However, they may not have very good accuracy due 
to lack of implementation details. For SOC designs, bottom-up approaches [8-14] are 
more useful when one is reusing previously designed circuit blocks such as IPs. Since all 
internal structural details of the circuit are known, they can build a power macromodel 
for this block to estimate its power consumption in the target system at function-level. 
Building those power macromodels often requires a power characterization process that 
uses low-level simulations of modules under their respective input sequences to record 
the relationship between high-level power characteristics and real power consumption. 
Because the power consumptions are measured in the low-level simulations with internal 
circuit information, the power macromodels can provide more accurate estimations than 
those in the top-down approaches. After the characterization step, no more low-level 
simulations are required in the estimation step. Users can obtain the power consumption 
of the circuits by only providing the high-level power characteristics obtained in func-
tion-level simulations thus having a very fast estimation time. 

Lookup table (LUT) is the most commonly used power macromodel. In order not to 
increase the table size too much, most of the LUT-based approaches [8-10] use the ag-
gregate signal statistics (average input signal probability, average input signal transition 
density, average output signal transition density, input signal correlation coefficient, etc.) 
of the primary inputs and outputs of circuits to be the indexes of lookup tables. In [8], the 
lookup tables with 2 dimensions, 3 dimensions and 4 dimensions were compared. The 
results showed that the estimation errors are decreased when the dimensions of tables are 
increased, but the sizes of tables are also exponentially increased. For large circuits, the 
table size may increase very fast in order to meet the accuracy requirement. 

The method in [11] built a one-dimension lookup table using the zero-delay charg-
ing and discharging capacitance as table index. The authors proposed an efficient method 
to divide power characteristics of pattern pairs into several groups and fill the lookup 
table with the average power consumption of each group. Although this approach can 
build smaller lookup tables with reasonable accuracy, it still requires gate-level descrip-
tions and node capacitance information to obtain the total charging and discharging ca-
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pacitance in the circuits, which may not provided by IP vendors. 
There are also some approaches [12-14] that use equations instead of lookup tables 

to be the power macromodels. After identifying suitable variables for the power equa-
tions of a circuit, those equation-based approaches will use some numerical methods 
such as linear regression to find out the best parameter for each variable to form the 
equations. Compared to LUT-based approaches, equation-based approaches often have 
less data to be recorded for a power macromodel because the distribution of an equation 
often requires many points to describe. However, because the power distribution is often 
a very irregular curve as illustrated in Fig. 1, it is hard to use only a single equation to 
describe this curve. Therefore, in order to improve the accuracy of their power macro-
models, those equation-based approaches may increase the order of the power equations 
(more variable) or use piece-wise power equations (more equations) to approximate the 
power distribution, which will significantly increase the complexity of the power mac-
romodels. 

 

 
Fig. 1. Irregular power distribution and piece-wise approximation. 

 
Most of the above techniques focus on estimating the average power consumption 

over a long input sequence, which are referred to as cumulative power macromodels. 
However, in some applications, the average power is not sufficient. One of the other im-
portant tasks is to understand the power consumption of a circuit due to a given pattern 
pair, which is often referred to as cycle-accurate power macromodels [13, 14]. This in-
formation is crucial for circuit reliability analysis, dc/ac noise analysis, and design opti-
mization. Of course, those cycle-accurate power macromodels can also provide the in-
formation of average power consumption by just computing the average of the power 
consumed at each cycle in the given input sequence. Therefore, cycle-accurate power 
macromodels are considered to have more use than cumulative power macromodels. Be-
cause it is not feasible to build a lookup table for every possible combinations at each 
cycle, most of those cycle-accurate power macromodels use equation-based approaches 
to record the power distributions. 

In other research areas, neural networks play as a powerful tool in many applica-
tions such as classification, clustering, pattern recognition, control application, etc. Be-
cause of the self-learning capability of neural networks, they can recognize complex 
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characteristics by using several simple computation elements with proper training. For 
irregular distributions such as the power distribution shown in Fig. 1, neural networks 
can still have good efficiency because they use the combination of some non-linear 
curves to fit the multi-dimensional non-linear surface instead of increasing the recording 
points to reduce the errors as in the traditional power macromodels. Therefore, several 
researches [15, 18] tried to use neural networks to solve the power estimation problem. 
The authors in [15] proposed a symbolic neural network model to estimate the power 
consumption of circuits. Based on Hopfield neural network [16], they built another rep-
resentation for the gate- level description of circuits and stored the structure information 
of the neural networks in algebraic decision diagrams [17] to reduce the memory usage. 
In that approach, neural networks were only used to replace the gate-level structures and 
to perform a gate-level simulation for estimating the power consumption of circuits with 
fewer resources. Therefore, the simulation time was only similar to the gate-level simula-
tion, which will be very slow for large circuits. 

The authors in [18] proposed a power modeling approach for library circuits using 
Bayesian inference and neural networks. They divided the leakage and switching power 
distributions of circuits into a limited number of classes and trained two neural networks 
to classify an input state or transition into the corresponding class. After classified, the 
leakage power of an input state and the switching power of an input transition can be 
estimated by the average power consumption of that class, which has been stored in a 
lookup-table as in the traditional table-based approaches. Although the classification of 
an input state or transition can be more accurate by using neural networks, the number of 
classes may limit the accuracy of this power modeling approach over the entire power 
spectrum. Therefore, they may also have to increase the number of table entries to reduce 
the estimation error, which is similar to the problem of traditional table-based approaches. 
In addition, if the table entries are increased, the number of outputs of the neural net-
works is also increased. If there are too many outputs in a neural network, it will often 
become much harder to converge and sacrifice the classification accuracy. However, the 
authors did not show the experimental results for the cases with wide power distribution 
and large number of classes. 

In this paper, we propose a quite different approach for high-level power modeling 
of complex digital circuits that uses a 3-layer fully connected feedforward neural net-
work [19] to learn the power characteristics during simulation without any lookup tables. 
By considering all possible types of state transitions separately in the input data, both the 
state-dependent leakage power and transition-dependent switching power are still re-
corded well in our power model. In addition, because the numbers of input and output 
neurons in our neural power model are fixed as 8 and 1 respectively, the complexity of 
our neural power model has almost no relationship with circuit size and the numbers of 
primary inputs and outputs such that this power model can be kept very small even for 
complex circuits. Unlike the piece-wise equations in the equation-based approaches, only 
one simple neural model is enough for those test circuits to provide similar accuracy thus 
reducing the modeling complexity. 

The rest of this paper is organized as follows. The feedforward neural network and 
our neural power model will be described in section 2. In section 3, we will explain the 
details to build a neural power model. Finally, the experiment results will be demon-
strated in section 4 and some conclusions will be given at the end. 
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2. BACKGROUND 
 
2.1 Feedforward Neural Networks 
 

The basic unit in a neural network is an artificial neuron as shown in Fig. 2. In Fig. 
2, x1 to xN are the input data for the neuron, w1 to wN are the weights of input x1 to xN in-
dividually that represent the contribution from each input, and s is the summation of x1w1 
to xNwN and the bias factor x0w0 as represented in Eq. (1). In most cases, x0 is fixed as 1 
such that the training algorithm only adjusts the weight w0 to wN. Function f is the trans-
fer function that converts s into output y as represented in Eq. (2). According to the rela-
tionship between of input data and output data, users can choose different transfer func-
tion f for each different case.  
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Fig. 2. An artificial neuron. 
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A neural network is a set of interconnected neurons, where the outputs of neurons 

act as the inputs of other neurons or the final outputs of the neural network. Feedforward 
neural network [19] is one of the most popular models of neural networks. Although any 
architecture of neural network with learning capabilities can be used in this work, we use 
the 3-layer fully connected feedforward neural network, as shown in Fig. 3, to learn the 
relationship between power consumption and statistic information of input patterns be-
cause the 3-layer feedforward neural network has a quite simple structure with good per-
formance in many applications. In addition, the fully connected configuration can auto-
matically consider the correlation between all inputs by properly adjusting the weights 
for their interconnections. The accuracy of this power model can thus being improved 
because the correlation is also an important factor that affects power consumption. 

In Fig. 3, xl:i represents the ith neuron in the lth layer, wl:i,j represents the weight of 
the interconnection between neuron xl:i and xl+1:j, and y is the final output of this neural 
network. The number of input neurons is n and the number of hidden neurons is h. In 
order to simplify the graph, the biases, the summations, and the outputs of all neurons are 
not labeled in Fig. 3. The weight of the bias in neuron xl+1:j is denoted as wl:0,j, the input 
of the bias in neuron xl+1:j is denoted as al:0, the summation s in neuron xl:i is denoted as 
sl:i, and the output of neuron xl:i is denoted as al:i. The output y in this neural network, 
which is denoted as a2:1, is defined as Eq. (3). 
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Fig. 3. A fully connected 3-layer feedforward neural network. 

 

2:1 2:1 1: ,1 1:
0

( )
h

i i
i

y a f s f w a
=

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
∑                                    (3) 

If we are going to use neural networks for high-level power estimation, we have to 
decide the input data type, the number of hidden neurons and the transfer function of 
internal neurons to build up a suitable neural network structure for our application. We 
will discuss the details of our decision strategies for those parameters in section 3.  
 
2.2 Training Process 
 

Before using a neural network, we have to train the neural network with proper 
strategies such that it can learn as many experiences as it needs. Given a 3-layer neural 
network η with N input neurons, H hidden neurons and 1 output neuron, we can denote 
the training set as T = {(xi, ti), i = 1:P}, where xi is a column vector of the ith input vector, 
ti is the expected output for the ith input vector, and P is the size of training set. The tar-
get of this training process is going to minimize an error function or metric using this 
training set and the corresponding weight matrix in the neural network. In this work, the 
error function is chosen as the mean square error defined in Eq. (4) because it is widely 
used in many applications and there are many existing training algorithms for minimiz-
ing this error function. In Eq. (4), W = [w1 w2 … wQ]T consists of all weights including 
biases of the network, yi is the output value of the ith input vector and Q is the number of 
weights. 
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p
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There are many training algorithms for feedforward neural networks that can select 
suitable weights to minimize the error function in Eq. (4). Some methods such as steepest 
descent algorithms, conjugate gradients algorithms and quasi-Newton algorithms [19] are 
general optimization methods. In this work, we choose Levenberg-Marquardt algorithm 
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[19-21] to train our neural power models because it is very suitable to minimize the error 
functions that arise from a squared error criterion.  

Typically, the training process will minimize the user-specified error function itera-
tively until the neural network can satisfy user-specified error criterion. When this crite-
rion is satisfied, the neural network is considered as having learned the behavior between 
the input data and the expected output values. In some cases, it is very possible that the 
learning capability of this neural network is not enough to learn the required behavior 
such that the training process cannot satisfy the stop criterion even the network has been 
trained for many iterations. In such cases, we have to stop the training process and en-
hance the learning capability of the neural network such as increasing its hidden neurons. 

In some cases, the neural network is probably over fitting the training set thus pro-
ducing a neural network that has poor generalization performance. Typically, an extra 
validation set V = {(xi, ti), i = 1:M} will be used to prevent this situation. A validation set 
is similar to a training set, but its size M is larger than the size of training set P. In gen-
eral, it is stochastically independent of the training set but has the same distribution. This 
set is used to determine when to stop the training process according to the value of a 
user-defined validation error function Fv(V, W). In each training iteration, say the rth 
iteration, we will hold the weight matrix Wr and calculate the value of Fv(V, Wr), which 
is also called the validation error. When the validation error starts to gradually increase 
but the value of error function is still decreasing, it is considered as over fitting. At that 
moment, the training process should be stopped and the complexity of this neural net-
work may have to be reduced. In this work, we start from a small neural network archi-
tecture and increase the complexity of the neural network until it can satisfy the error 
requirement. According to our experiences in those benchmark circuits, this strategy 
seldom results in over fitting. The details of this strategy will be described in section 3 
with several preliminary experimental results. 

Since those training algorithms have been extensively discussed in neural network 
researches with many good solutions, the most important problems for us about the train-
ing process are designing a good training set and setting a good stop criterion such that 
the trained neural network can be applied to most cases in the input space. Because it is 
hard to train a neural network with the entire input space in many applications, the size 
and distribution of the training set and the stop criterion will have great influence on the 
accuracy of the trained neural network. We will discuss the details of this problem and 
our strategies in section 3. 
 
2.3 Evaluating the Accuracy of a Trained Neural Network 
 

In order to evaluate the accuracy of a trained neural network, we also need a test set 
that is independent to the training set and the validation set if it is used. We denote the 
test set as Z = {(xi, ti), i = 1:K}, where xi and ti are the same as defined in the training set 
and K is the size of this test set. The output of neural network for input xi is denoted as yi. 
In order to verify our power model can be used on a wide distribution on the input space, 
the test set is composed of many short test sequences. Those short test sequences are de-
noted as Sj = {(xi, ti), i = 1:Kj}, where j = 1:L and K1 + K2 + … + KL = K, which are 
widely distributed in the input space. The details of our strategies to generate those test 
sequences will be discussed in section 3. 
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Because our neural power models are used to estimate the average power consump-
tion of circuits under a specific input sequence, we will use typical evaluation criterion 
for power estimation instead of traditional methods in neural networks to evaluate the 
quality of our power model. We define the error in estimating the power consumption of 
the jth test sequence (ESPj) as Eq. (5). The average error AESP, which is the average of 
ESPj and the maximum error MAXESP, which is the maximum value of ESPj, are defined 
as Eqs. (6) and (7). The root mean square error (RMSESP) and standard deviation errors 
(STDESP) of those test sequences are defined as Eqs. (8) and (9) to show the distribution 
of the estimation errors. Those metrics will be used to evaluate the quality of our neural 
power models in the following experiments. 
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3. POWER MODEL CONSTRUCTION WITH NEURAL NETWORKS 

Since neural networks have been used for many years in other areas, determination 
of those parameters in neural networks is still mostly done by heuristic approaches. In 
typical experience, these parameter determinations are application-oriented problems. 
Different applications might have different suitable parameters of modeling construction. 
Therefore, the primary goal in this paper is trying to build a systematic procedure to 
build the power models using neural networks. The best parameters in the neural net-
works might still be different from circuit to circuit. 

The overall construction procedure of the proposed neural power model is illus-
trated in Fig. 4. This procedure consists of three major steps: building a neural network, 
generating training sets, and training the neural network. In order to make good decisions 
at each step, we will use several simple experiments to explain the decision strategies in 
the following discussions.  

Because there are a lot of good training methods for neural networks, we will di-
rectly use them and focus our discussions in the first two phases in the following sections. 
The only two things that have to be decided are the target error and the maximum  
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Fig. 4. The workflow of building a neural power model. 

 
number of iterations in the training process. Because our target is to use the neural power 
model to estimate the average power of a test sequence, we decide to use the mean square 
error (MSE) as the validation error function. During the training phase, we will hold the 
temporal weight matrix after each iteration and estimate the validation error according to 
this weight matrix. If the validation error is smaller than 0.0036, which can roughly im-
ply that the estimation error using the validation set is near 6%, we will stop the training 
process. Otherwise, we will train the neural network again using the same training set. 
According to our experiences, the validation errors are often saturated after 15 training 
iterations for those benchmark circuits. Therefore, we set the upper bound of training 
iterations as 15. If the stop criterion is still not satisfied after 15 iterations, we will add 
more hidden neurons and train the new neural network again using the same training set. 
 
3.1 Building Neural Network 
 

As described in section 2, we decide to use the 3-layer fully connected feedforward 
neural network structure and the Levenberg-Marquardt training algorithm with the mean 
square error function in our power model. In the first step, we have to decide the input 
data type of this neural network, the number of hidden neurons and the transfer function 
of internal neurons. In typical experiences, the best decisions might be different in dif-
ferent cases, which are hard to be theoretically analyzed. Therefore, we will use a simple 
experiment on the circuit C1355, which is arbitrarily chosen in ISCAS’85 benchmark 
circuits, to explain our decisions for those parameters. Because it is not feasible to show 
all detailed analysis for each circuit, we will try to verify the feasibility of our approach 
with complete benchmark set in section 4 by using the metrics defined in section 2.3. 
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3.1.1 Input data type and transfer function 
 

In this work, the input data type of neural networks and the transfer function of in-
ternal neurons are decided together because the most suitable transfer function depends 
on the behavior between the input data and the output values of the training set. If the 
relationship between input data and output values has non-linear characteristics, the ac-
curacy of the trained neural networks would be lost when using a linear transfer function 
for internal neurons because it is similar to use a piece-wise linear curve to fit a non- lin-
ear curve as illustrated in Fig. 1.  

Since we are building a high-level power model, the input data of this neural power 
model can only use primary input and output information of circuits. The most straight-
forward idea is to use the complete 4 states of bit transitions (0 → 0, 0 → 1, 1 → 0, 1 → 
1) at the input and output pins of circuits as the input data of the neural networks because 
the effects of both state-dependent leakage power and transition-dependent switching 
power can be considered. If we use such bit-level transition data (bit-level statistics) to be 
the input data of our neural power model, the number of neurons in the input layer will 
be fixed as 4 × (n + m) for a circuit with n inputs and m outputs, which are TIi,00, TIi,01, 
TIi,10, TIi,11, TOj,00, TOj,01, TOj,10 and TOj,11. Here, TIi,xy = 1 represents that the ith input pin 
changes from logic state x to y and TOj,xy = 1 represents that jth output bit changes from 
logic state x to y in a pattern pair. Instead of using bit-level statistics, we could use the 
word-level statistics as the input data of our neural power model. If we consider the input 
statistics and the output statistics separately, the number of neurons in the input layer will 
be fixed as 8, which are TI00, TI01, TI10, TI11, TO00, TO01, TO10 and TO11. Here, TIxy repre-
sents the ratio of input signals change from logic state x to y in a input pattern pair and 
TOxy represents the ratio of output signals change from logic state x to y in a output pat-
tern pair. For example, given a circuit with 10 inputs and 10 outputs, we assume that its 
corresponding output signals will change from 0101101100 to 0110110111 when the 
input signals change from 0001110101 to 1010101011. For this pattern pair, both the 
bit-level and word-level statistics are shown in the 4th to 7th rows in Figs. 5 (a) and (c) 
respectively. According to the definitions, their input data will be formed as shown in 
Figs. 5 (b) and (d). 

Input vectors
Bit i 0 1 2 3 4 5 6 7 8 9
Patternt 0 0 0 1 1 1 0 1 0 1
Patternt+1 1 0 1 0 1 0 1 0 1 1
TIi,00 0 1 0 0 0 0 0 0 0 0
TIi,01 1 0 1 0 0 0 1 0 1 0
TIi,10 0 0 0 1 0 1 0 1 0 0
TIi,11 0 0 0 0 1 0 0 0 0 1

Corresponding output vectors
Bit j 0 1 2 3 4 5 6 7 8 9
Patternt 0 1 0 1 1 0 1 1 0 0
Patternt+1 0 1 1 0 1 1 0 1 1 1
TOj,00 1 0 0 0 0 0 0 0 0 0
TOj,01 0 0 1 0 0 1 0 0 1 1
TOj,10 0 0 0 1 0 0 1 0 0 0
TOj,11 0 1 0 0 1 0 0 1 0 0  

Fig. 5. (a) An example of the bit-level statistics characterization. 

total length = 40         bit-level statistics
Input vector part Corresponding output vector part

TI0,00 TI0,01 . . . TI9,10 TI9,11 TO0,00 TI0,01 . . . TI9,10 TI9,11

0 1 … 0 1 1 0 … 0 0 
 

Fig. 5. (b) Input data format with bit-level statistics. 
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 Input vectors 
Bit i 0 1 2 3 4 5 6 7 8 9  
Patternt 0 0 0 1 1 1 0 1 0 1  
Patternt+1 1 0 1 0 1 0 1 0 1 1  
TI00  √      1/10
TI01 √  √    √ √ 4/10
TI10    √  √  √ 3/10
TI11     √   √ 2/10

Corresponding output vectors
Bit j 0 1 2 3 4 5 6 7 8 9  
Patternt 0 1 0 1 1 0 1 1 0 0  
Patternt+1 0 1 1 0 1 1 0 1 1 1  
TO00 √ 1/10 
TO01 √ √ √ √ 4/10 
TO10 √ √ 2/10 
TO11 √ √ √ 3/10  

Fig. 5. (c) An example of the word-level statistics characterization. 

total length = 8 (fixed)      word-level statistics
Input vector part Corresponding output vector part

TI00 TI01 TI10 TI11 TO00 TO01 TO10 TO11 

0.1 0.4 0.3 0.2 0.1 0.4 0.2 0.3  
Fig. 5. (d) Input data format with word-level statistics. 

 
If we use bit-level statistics to be the input data of our neural power model, the neu-

ral network may recognize the individual contribution to the total power consumption 
from each input transition such that the estimation error of the power model is more pos-
sible to be reduced. However, the size of this power model will increase very fast espe-
cially for the circuits with large amount of I/O pins. Moreover, because the complexity of 
bit-level statistics is too high, it will become much harder to learn such complex rela-
tionship between the bit-level statistics and the power consumptions for a neural network. 
If we use word-level statistics as the input data of neural power model, some individual 
characteristics of each possible input transition may be lost, especially for the control- 
dominated circuits with significantly different power modes. However, it is a common 
heuristic method used in many power models [5, 8, 12, 24] to reduce the modeling com-
plexity with reasonable error loss. According to their experimental results, the induced 
errors are indeed in an acceptable range in most cases. 

When we are selecting the transfer function, we also have to consider the output 
format of our neural power model. The output of our neural power model is expected to 
represent the estimated power consumption of pattern pairs. Because the values of power 
consumptions often continuously distribute on a wide range, those transfer functions that 
use discrete values, such as the unit-step or the sign functions are not suitable. In our 
observations, the three commonly used functions, logarithmic sigmoid (logsig), hyper-
bolic tangent sigmoid (tansig) and linear (linear) functions, are more suitable for our 
application, which are defined in Eqs. (10), (11) and (12) respectively. However, it 
should be noted that the values of power consumption have to be normalized between 0 
to 1 in both the training set and the test set if logarithmic sigmoid and hyperbolic tangent 
sigmoid functions are used in the output neuron. In order to save the normalization effort, 
we use the linear function as the transfer function of the output neuron. In the following 
discussions, we will focus on the comparison between those three transfer functions for 
hidden neurons. 
 

logsig transfer function: 
1( )

1 sf s
e−

=
+

                               (10) 
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tansig transfer function: 2
2( ) 1

1 sf s
e−

= −
+

                            (11) 

linear transfer function: f(s) = s                                       (12) 
 

In order to help us making better decisions, we perform an experiment to compare 
the accuracy and performance of 6 combinations between 2 input data types (bit-level 
and word-level statistics of the input and output pattern pairs) and 3 transfer functions 
(logsig, tansig, linear). Because this experiment is only used for evaluating the input data 
types and suitable transfer functions, many parameters in the neural network are arbitrar-
ily chosen and fixed in this experiment. All the training process will be stopped after 15 
iterations instead of using the validation error checking as the stop criterion. The number 
of hidden neurons is fixed as 4. The training set includes 20 sequences, which are uni-
formly distributed over the population of the average signal probability (Pin) and the av-
erage signal transition density (Din) and each sequence includes 1,000 random input pat-
tern pairs with the chosen PD combination. The comparison using AESP and STDESP 
for those test cases on C1355 is shown in Table 1. 
 

Table 1. Comparison of input data types vs. transfer functions. 

Average Power 
Circuits Input Data & |W| f(s) 

AESP(%) STDESP(%)
Construction 
Time (sec) 

linear 4.40 6.32 443.53 
logsig 4.92 4.68 704.73 Bit-Level 

|W| = 1177 
tansig 4.38 7.80 555.81 
linear 5.09 7.19 54.17 
logsig 4.71 4.16 55.83 

C1355 
PI = 41 
PO = 32 Word-Level 

|W| = 41 
tansig 3.81 2.81 57.17 

 
The neural power model using bit-level statistics has higher complexity than that of 

the neural power model using word-level statistics, which can be observed in the number 
of weight |W| and the constructing time. However, as shown in the experimental results, 
the neural power model using bit-level statistics does not have many improvements in 
terms of AESP and STDESP. According to the analysis above, we select word-level sta-
tistics as the input data of our neural power model. While checking the neural power 
model using word-level statistics, we can find that the neural power model using tansig 
function as the transfer function of hidden neurons provides better results on AESP and 
STDESP. Therefore we select tansig function as the transfer function of internal hidden 
neurons in this work. 
 
3.1.2 Number of Hidden Neurons  
 

Another issue to be decided is the number of hidden neurons required in the neural 
power model. Typically, the minimal number of hidden neurons depends on the com-
plexity of the relationship between the input data and output values in the training set. 
However, according to the experience in neural network researches, there is no easy or 
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general way to determine the optimal solution for the number of hidden neurons to be 
used [23]. As mentioned in section 2, our strategy is initially using a neural network with 
a small number of hidden neurons and increasing the hidden neurons until the stop crite-
rion has satisfied. In the following discussions, we will explain the reason of using this 
strategy through a simple experiment. 

We first build a neural power model for C1355 and set the initial number of hidden 
neurons as 2. The training set is the same one as used in the experiment of section 3.1.1. 
The validation set includes 20 sequences with the same PD distribution as in the training 
set, but and the size of each sequence is increased to 3,000. In the following experiment, 
we increase the number of hidden neurons from 2 to 15 and test the accuracy of the neu-
ral networks after 15 training iterations using the same test set as used in the experiment 
of section 3.1.1. The experimental results about the effects of number of hidden neurons 
are shown in Table 2. 
 

Table 2. The effects of number of hidden neurons. 

Average Power 
Circuits Hidden 

Neurons AESP(%) STDESP(%)
Validation

Error 
Construction 
Time (sec) 

2 4.96 3.57 0.004264 50.51 
3 4.92 3.56 0.004255 53.25 
4 3.81 2.81 0.004098 57.17 
5 3.93 3.06 0.004272 59.78 
6 5.67 3.21 0.004550 62.97 
7 3.25 3.38 0.004252 66.41 
8 3.62 3.30 0.004205 71.49 
9 3.20 2.24 0.004011 73.14 
10 2.96 2.64 0.003969 78.99 
11 3.79 2.89 0.004406 81.83 
12 3.72 2.65 0.004357 88.52 
13 3.36 2.81 0.004675 90.28 
14 3.26 2.41 0.004179 96.56 

C1355 
PI = 41 
PO = 32 

15 3.31 2.59 0.004163 99.76 

 
According to the results in Table 2, increasing the number of hidden neurons does 

improve both AESP and STDESP when the number is small. However, when the number 
of hidden neurons is larger than 10, we could find that the validation error, AESP, and 
STDESP may become worse due to the over fitting problem mentioned in section 2.2. 
Therefore, for this case, the best choice is to set the number of hidden neurons as 10. 
 
3.2 Design of Training Sets 
 

Typically, a power model is expected to be used for different test sets with various 
input distributions. In order to achieve this target, the neural power model should be 
trained over a wide range in the input space such that it can learn enough experiences. 
Therefore, we will randomly decide the Pin and Din while generating each test sequence. 
Because an input signal is assumed to make at most one single transition per cycle, there 
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is a relationship between Pin and Din as shown in Eq. (13), whose detailed proof can be 
found in [8]. Therefore, while generating those training sets over a wide range of Pin and 
Din distribution, we can use only the PD combinations that satisfy Eq. (13) such that neu-
ral networks could learn the correct characteristics between the input signal statistics and 
the power consumption of circuits.  

1
2 2
in in

in
D D

P≤ ≤ −                                                 (13) 

The size of a training set is also an important issue while training the neural power 
model. According to the related study [22], it suggested to determine the size of training 
set according to Eq. (14), in which P is the number of samples, |W| is the number of 
weights to be adjusted and a is the expected accuracy. In this work, our target is set as a 
≥ 95%. According to this error requirement, we suggest to generate the training set with 
size P >> 20 |W|. A larger training set is supposed to produce a more accurate neural 
power model. However, the characterization time of this power model is also increased. 
In the following experiment, we will show the observation of the relationship between 
the size of training set and the modeling accuracy. 

1
P

a
>

−

W
                                                        (14) 

In this experiment, we use the best neural network structure for C1355 decided in 
section 3.1, which is a neural network that uses 10 hidden neurons and word-level statis-
tics. As mentioned above, the samples of the training sets should be distributed over the 
space with a wide range of Pin and Din. Therefore, we generate 4 training sets consisting 
of 20 sequences in each, which have the same uniformly distribution on the input space 
that satisfies the Pin and Din constrains in Eq. (13). However, the length of each sequence 
is different, which are 500, 1,000, 2,000 and 5,000 pattern pairs respectively. In other 
words, the total sizes of the training sets are 10,000, 20,000, 40,000 and 100,000 respec-
tively. The validation sets consist of 20 sequences that have the same distribution as 
those test sequences but their sequence lengths are multiplied by 3. Therefore, the sizes 
of validation sets are 30,000, 60,000, 120,000 and 300,000 respectively. The experimen-
tal results of those 4 neural networks under different training conditions after 15 training 
iterations, which are evaluated using the same test set that consists of 20 sequences with 
3,000 pattern pairs are shown in Table 3. 
 

Table 3. The effects of the size of training set. 

Circuit C1355 
Average Power Size of  

Training Sets AESP(%) STDESP(%)
Validation 

Error 
Construction 
Time (sec) 

10,000 4.05 2.20 0.003952 59.47 
20,000 2.63 2.43 0.003804 99.67 
40,000 2.05 1.99 0.003510 114.21 
100,000 3.67 2.86 0.004203 233.95 
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The experimental results show that the size of training set will not affect the accu-
racy too much on accuracy if the training set is large enough. According to this observa-
tion, we generate 20 sequences with 3,000 pattern pairs in each sequence to be the train-
ing set of our neural power model in the following experiments to make a trade off be-
tween the size of test sequences and accuracy. Of course, those 20 sequences will have a 
distribution that covers a wide range of the input space. 

4. EXPERIMENTAL RESULTS 

In this section, we will demonstrate the accuracy and efficiency of our power model 
with ISCAS’85 benchmark circuits and one real design, a combinational divider with 
32-bit dividend/quotient and 12-bit divisor/remainder. All circuits in our experiments 
were synthesized by using 0.35μm cell library. The accuracy will also be compared with 
traditional 3D-LUT power modeling methodology, which uses Pin, Din and average out-
put signal transition density (Dout) as its three dimensions, and the interval size of each 
dimension is set to 0.1. Our neural power models including the training algorithms were 
all constructed on MATLAB by using an Intel Pentium III 1GHz mobile CPU and 384M 
RAM. 

In the model construction phase, the input training sequences are generated over a 
wide range of input distribution as described in section 3.2. The real power of those input 
sequences is simulated by a transistor-level simulator, PowerMill such that the measured 
power consumptions can include switching power and leakage power and can be charac-
terized in the power model. In order to show the power models can be used for various 
input distribution, we test those models by using 200 test sequences with 3,000 pattern 
pairs. Each sequence has different Pin and Din that are randomly selected over a wide 
range that satisfies the condition in Eq. (13). After simulation, the estimated average 
power consumption with this power model is also compared to the simulation results 
from PowerMill. 

All the test circuits will be tested using the two power estimation approaches with 
the same information: traditional 3D-LUT power model and our neural power model. 
The same training and test sequences will be used for both approaches to make a fair 
comparison. The performances of both power models are summarized in Table 4. The 
construction time of neural power models includes the data pre-loading time of training 
and validation sets, the establishing time of neural network and the elapsed time of net-
work training process. The simulation time of transistor-level simulation is not included. 

According to Table 4, the average values of AESP and STDESP are 17.58% and 
18.59% respectively while we use the traditional 3D-LUT power models. The conver-
gences of this approach are quite poor that can be observed from the large values of 
STDESP. It implies that using the LUT-based power model may have large errors in 
some cases. Compared to the traditional 3D-LUT power model, we only have 4.72% 
error for all cases on average, and the largest AESP is only 8.93% for the 32-bit divider. 
The improvement of our neural power model can be shown in the STDESP. The largest 
STDESP is only 5.88% for the 32-bit divider using our approach, which shows a good 
agreement with real powers. The combined scatter plots of all ISCAS’85 circuits by us-
ing our approach and the 3D-LUT approach are shown in Figs. 6 and 7 respectively.  
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Table 4. The comparison between traditional 3D LUT power model and our neural 
power model. 

Circuits C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552 Divider |Average| 
Input 36 41 60 41 33 233 50 178 32 207 44 − I/O Pin 

Number Output 7 32 26 32 25 140 22 123 32 108 45 − 
Gate Count 116 324 245 362 328 447 700 1102 1640 1135 2726 − 
# of table entries 500 
MAXESP(%) 77.63 27.66 68.39 36.71 71.24 65.76 99.05 44.46 88.71 71.08 43.94 63.28 

AESP(%) 18.56 11.72 22.81 11.19 16.81 14.14 24.41 16.60 29.57 15.00 12.46 17.58 
STDESP(%) 17.21 9.09 23.92 9.72 16.32 17.50 24.38 14.08 35.37 18.64 18.07 18.59 

3D
 L

U
T 

Po
w

er
 

M
od

el
 

RMSESP(%) 24.22 14.37 30.39 14.16 22.82 21.86 32.41 20.34 39.23 22.51 18.44 23.72 
Neurons in 

Hidden Layer 8 6 8 8 7 9 9 7 8 8 8 7.82 

|W| 81 61 81 81 71 91 91 71 81 81 81 79.18 
Construction 
Time (sec) 

313.07 216.28 310.83 323.51 262.48 390.29 391.53 267.34 320.19 324.29 325.23 313.19 

Training  
Iterations 102 36 101 105 90 120 120 88 105 105 105 97.91 

MAXESP(%) 15.13 -11.19 32.72 11.83 22.09 24.74 24.14 -17.28 16.34 -17.49 26.63 20.06 
AESP(%) 3.36 2.92 5.34 2.10 5.29 5.72 4.57 3.83 4.14 5.47 8.93 4.72 

STDESP(%) 3.11 2.31 5.07 1.66 4.45 6.07 3.15 3.99 3.47 2.82 5.88 3.85 

O
ur

 N
eu

ra
l P

ow
er

 M
od

el
 

RMSESP(%) 3.80 3.72 7.39 3.82 6.81 6.60 7.68 3.91 3.95 7.28 9.13 5.85 

 
Fig. 6. Scatter plot of neural power model estimation versus PowerMill simulation in ISCAS’85 

benchmarks. 

 
In order to examine all circuits on the same plot, the power consumptions of all circuits 
are normalized with the circuit size and operating frequency. Comparing the two plots, 
we can see that our approach can really provide better trend of estimation accuracy. 

The storage requirements are also much less in our approach. According to the re-
sults shown in Table 4, the maximum number of hidden neurons is 9 in our experiments.  
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Fig. 7. Scatter plot of 3D-LUT estimation versus PowerMill simulation in ISCAS’85 benchmarks. 

 
It means that we only use up to 9 hidden neurons structure with 91 elements in the 
weight matrix |W| to record the power characteristics, which is quite small compared to 
the lookup tables, which require 500 (= 10 × 10 × 10/2) numbers to record the tables. 
These experimental results have also shown that the complexity of our neural power 
model has almost no relationship with circuit size and number of inputs and outputs. 
Even for large circuits such as the 32-bit divider, the complexity of its power model is 
still the same as the complexity of smaller circuits such as C432. Besides, the construc-
tion of neural power model is rapid that can be observed from the short construction time 
and the total training iterations of each neural power model in Table 4. Therefore, using 
such a power model can be very efficient even for complex circuits and also has high 
accuracy. 

Another important information not shown in Table 4 is the estimation time while 
using our power model. Actually, the estimation time of our neural power model is 
dominated by the functional simulation time with a logic simulator, which simulates the 
circuits with specific input vectors to obtain the corresponding output vectors. If we as-
sume that the corresponding output values under specific input sequences are also pro-
vided by users, the estimation time of our neural power model is always less than one 
second for all ISCAS’85 circuits. Therefore, the estimation time is not shown in Table 4 
because it is almost equal to the logic simulation time, which is quite small compared 
with low-level power estimation methods such as PowerMill. 

In order to demonstrate that the neural power model can handle specific functional 
patterns in practical use, we also test the practical design, the 32-bit divider design, with 
user-given functional patterns. The functional sequence consists of 1,000 pattern-pairs 
only. However, the average estimation error is only 5.98% compared to the PowerMill 
results. 

6. CONCLUSIONS 

In this paper, we propose a novel power model for complex digital circuits, which 
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uses neural networks to learn the power characteristics during simulation including both 
leakage power and switching power. Unlike the power characterization process in tradi-
tional approaches, our characterization process is very simple and straightforward. The 
complexity of our neural power model is also less than traditional 3D LUT power model 
which is almost no relationship with circuit size and the number of inputs and outputs. 
More importantly, using the neural power model for power estimation does not require 
any detailed circuit information of the circuits, which is very suitable for IP protection. In 
this paper, we have tested our neural power model on all ISCAS’85 benchmark circuits 
and one real design. The experimental results demonstrate that our neural power model 
can accurately estimate the power consumption of combinational circuit for different test 
sequences with wide range of input distributions. 
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