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Abstract

We present the existence of 2n stable stationary solutions for a general n-dimensional delayed neural networks with several classes of activation
functions. The theory is obtained through formulating parameter conditions motivated by a geometrical observation. Positively invariant regions
for the flows generated by the system and basins of attraction for these stationary solutions are established. The theory is also extended to the
existence of 2n limit cycles for the n-dimensional delayed neural networks with time-periodic inputs. It is further confirmed that quasiconvergence
is generic for the networks through justifying the strongly order preserving property as the self-feedback time lags are small for the neurons with
negative self-connection weights. Our theory on existence of multiple equilibria is then incorporated into this quasiconvergence for the network.
Four numerical simulations are presented to illustrate our theory.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Existence of many equilibria is a necessary feature in the
applications of neural networks to associative memory storage
or pattern recognition [1–4]. The notion of “multistability”
of a neural network describes coexistence of multiple stable
patterns such as equilibria or periodic orbits. Recently, further
application potentials of multistability have been found in
decision making, digital selection or analogy amplification [5].
“Quasiconvergence” for a system refers to that every solution
tends to the set of stationary solutions, while “convergence”
means that every solution tends to a single stationary solution,
as time tends to infinity.

In this presentation, we address multistability and quasicon-
vergence for a general delayed neural network:

dxi (t)

dt
= −µi xi (t)+

n∑
j=1

αi j g j (x j (t))

+

n∑
j=1

βi j g j (x j (t − τi j ))+ Ii , (1.1)
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where i = 1, . . . , n; µi > 0; αi j , βi j are connection weights
from neuron j to neuron i ; g j (·) are activation functions;
0 ≤ τi j ≤ τ are time lags; Ii stands for an independent
bias current source. System (1.1) reduces to the classical and
delayed Hopfield neural networks [3,6], as βi j = 0 and αi j = 0
for all i, j , respectively. It also represents the cellular neural
networks (CNN) without delays [7] and with delays [8]. Indeed,
a CNN system built in a multi-dimensional coupling fashion
can always be rewritten in a one-dimensional coupling form,
by renaming the indices [9]. Such an arrangement, however,
suppresses the local connection representation.

In electronic implementation, time delays of neural network
systems are unavoidable due to axonal conduction times,
distances of interneurons and the finite switching speeds of
amplifiers. The dynamics for differential equations with delays
can be rather complicated. Although the stationary equations
are identical for system (1.1) without delay (τi j = 0 for
all i, j) and with delay (τi j > 0), the stability for the
equilibrium points and dynamical behaviors of the systems can
be very different. There have been papers [10–15] exploring the
effects of delays in differential equations and neural network
systems. For system (1.1), the theory of unique equilibrium
and global convergence to the equilibrium has been studied
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extensively in [8,16–25]. These studies indicate a coincidence
of dynamics between the systems with delays and without
delays. This presentation moves the investigation in this
direction by establishing the existence of multiple stationary
solutions for system (1.1). More specifically, we construct 2n

stable stationary solutions for a general n-dimensional delayed
neural network with several classes of activation functions. The
theory is obtained through formulating parameter conditions
based on a geometrical setting. We first derive conditions
for the existence of 3n equilibria for (1.1) with sigmoidal
activation functions and saturated activation functions. Some
regions containing these stationary solutions are shown to be
positively invariant under the flows generated by (1.1) and
the basins of attraction for these stationary solutions are also
estimated. In fact, through a further subtle estimate, it can
be justified that the basins of attraction are at least as large
as the positively invariant sets. The theory is also extended
to confirm the existence of 2n limit cycles for system (1.1)
with time-periodic inputs. We further discuss the property of
strongly order preserving, hence quasiconvergent behaviors for
(1.1). The dynamics scenario for system (1.1) is thus composed
of multiple equilibria and quasiconvergence (or convergence)
almost everywhere. Our investigations also illustrate different
criteria and distinct dynamical behaviors between (1.1) with
smooth sigmoidal activation functions and (1.1) with saturated
activation functions.

The existence of multiple equilibria and their attractive
domains for (1.1) with the standard activation function have
been studied in [26]. The result therein strongly relies on the
piecewise linearity and saturations of the standard activation
function as well as subsequent partition of the phase space.
Our geometrical approach can be applied to (1.1) with general
sigmoidal activation functions. In addition, larger positively
invariant sets and basins of attraction are established. Moreover,
the criteria in our theory are weaker than those in [26]. The
approach in this presentation is an extension from [27] which
mainly treats multistability for the Hopfield neural networks
with smooth sigmoidal activation functions.

The monotone dynamic property for the classical neural
networks (without delays) was first exploited by Hirsch [28].
Such a property was then extended to the two-neuron and the
n-neuron delayed Hopfield neural networks in [12] and [13]
respectively; see also [29] for a comprehensive overview. The
investigations in [12,13] are mainly concerned with global
attractivity of a single equilibrium and the effect of delays upon
such a dynamical scenario. Our study aims at incorporating the
existence of multiple equilibria into the monotone dynamics
and the quasiconvergence for (1.1).

The remaining part of this presentation is organized as
follows. In Section 2, we consider two classes of activation
functions which are commonly employed in neural networks.
We then derive conditions for the existence of 3n equilibria
for the networks. In Section 3, we show that, with additional
condition, there are 2n regions in Rn which are positively
invariant under the flow generated by system (1.1). Each
of these regions contains one equilibrium out of those 3n

equilibria. Subsequently, it is argued that these 2n equilibria
are asymptotically stable. Existence of multiple stable periodic
orbits for system (1.1) with periodic inputs is demonstrated
in Section 4. We discuss strongly order preserving property
and quasiconvergence for system (1.1) in Section 5. Finally, in
Section 6, we present four numerical simulations to illustrate
the present theory and distinct dynamical behaviors for different
activation functions.

2. Activation functions and multiple equilibria

Existence and stability of stationary patterns for neural
networks certainly depend on the characteristics of activation
functions. We shall consider the following two classes of
activation functions gi for (1.1):

class A : gi ∈ C2,


ui < gi (ξ) < vi , g′

i (ξ) > 0,
(ξ − σi )g

′′

i (ξ) < 0, for all ξ ∈ R,
lim

ξ →+∞
gi (ξ) = vi ,

lim
ξ →−∞

gi (ξ) = ui ;

class B : gi ∈ C, gi (ξ) =

ui if − ∞ < ξ < pi ,

gi (ξ) if pi ≤ ξ ≤ qi ,

vi if qi < ξ < ∞,

where, ui , vi , pi , qi and σi are constants with ui < vi , pi < qi ,
and gi (·), i = 1, . . . , n, are C1 increasing functions. Class
A contains general bounded smooth sigmoidal functions, and
class B consists of nondecreasing functions with saturations,
including the piecewise linear functions with two corner points
at pi , qi :

gi (ξ) = ui +
vi − ui

qi − pi
(ξ − pi ); (2.1)

and, in particular, the standard activation function for the CNN:

gi (ξ) = gs(ξ) :=
1
2
(|ξ + 1| − |ξ − 1|), i = 1, . . . , n. (2.2)

Typical configurations of these functions are depicted in Figs. 1
and 2(a). Notably, in practical implementation, the transition
from the linear regime to the saturated regime in the standard
activation function is smooth. Thus, the theory developed for
the dynamics of (1.1) should also be valid for the activation
functions which are smooth at ξ = ±1, as demonstrated in
Fig. 2(b). Our investigations have provided theoretical basis for
all these activation functions. In Section 5, we will see some
distinct dynamics between (1.1) with activation functions of
class A and (1.1) with the ones of class B.

Let us review some basic notion of delayed differential
equations. We set τ = max1≤i, j≤n τi j . The initial condition
for (1.1) is xi (θ) = φi (θ),−τ ≤ θ ≤ 0, i = 1, . . . , n, with
φ = (φ1, . . . , φn) ∈ C([−τ, 0],Rn). We define the norm of
φ as ‖ φ ‖= max1≤i≤n{supθ∈[−τ, 0] |φi (θ)|}. Let ` > 0. For
x(·) = (x1(·), . . . , xn(·)) ∈ C([−τ, `],Rn), and t ∈ [0, `], we
define

xt (θ) = x(t + θ), θ ∈ [−τ, 0]. (2.3)
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Fig. 1. The configurations of (a) typical smooth sigmoidal activation functions in classA and (b) saturated activation functions in class B.

Fig. 2. The graphs for (a) the standard activation function gs(ξ) =
1
2 (|ξ + 1| − |ξ − 1|), (b) saturated activation functions with smooth corners.
Let us denote F̃ = (F̃1, . . . , F̃n), where F̃i is the right hand
side of system (1.1),

F̃i (xt ) = −µi xi (t)+

n∑
j=1

αi j g j (x j (t))

+

n∑
j=1

βi j g j (x j (t − τi j ))+ Ii .

A function x(·) is called a solution of (1.1) on [−τ, `) if
x(·) ∈ C([−τ, `),Rn), and xt defined as (2.3) lies in the
domain of F̃ and satisfies (1.1) for t ∈ [0, `). For a given
φ ∈ C([−τ, 0],Rn), let us denote by x(t;φ) the solution of
(1.1) with x(θ;φ) = φ(θ), for θ ∈ [−τ, 0].

Notably, the stationary equation for (1.1) is

Fi (x) := −µi xi +

n∑
j=1

(αi j + βi j )g j (x j )+ Ii = 0,

i = 1, . . . , n. (2.4)

Next, we shall consider the above activation functions and
formulate sufficient conditions for the existence of multiple
stationary solutions for (1.1). Our approach is based on a
geometrical observation. The first condition for (1.1) with
activation functions in classes A, B is, respectively,

(H1
A): 0 = inf

ξ∈R
g′

i (ξ) <
µi

αi i + βi i
< max

ξ∈R
g′

i (ξ)(= gi
′(σi )), i = 1, . . . , n

(H1
B): (αi i + βi i )max

ξ∈R
g′

i (ξ) > µi , i = 1, . . . , n.
Condition (H1
B) reduces to (αi i + βi i )

vi −ui
qi −pi

> µi , if
piecewise linear activation functions (2.1) are adopted, and
reduces to

αi i + βi i > µi , i = 1, . . . , n, (2.5)

if the standard activation function gs(·) in (2.2) is employed,
with pi = ui = −1, qi = vi = 1. We define, for i = 1, . . . , n,

f̂i (ξ) = −µiξ + (αi i + βi i )gi (ξ)+ k+

i ,

f̌i (ξ) = −µiξ + (αi i + βi i )gi (ξ)+ k−

i , (2.6)

where k+

i =
∑n

j=1, j 6=i ρ j (|αi j | + |βi j |) + Ii , k−

i =

−
∑n

j=1, j 6=i ρ j (|αi j |+ |βi j |)+ Ii , and ρ j := max{|u j |, |v j |}. It

follows that f̌i (xi ) ≤ Fi (x) ≤ f̂i (xi ), for all x = (x1, . . . , xn)

and i = 1, . . . , n. We introduce a family of single neuron
equations, for i = 1, . . . , n

dξ
dt

= fi (ξ) := −µiξ + (αi i + βi i )gi (ξ)+ Ji ,

ξ ∈ R, k−

i ≤ Ji ≤ k+

i .

Proposition 2.1. There exist two points p̃i and q̃i with p̃i <

σi < q̃i (resp. p̃i ≥ pi and q̃i ≤ qi ) such that f ′

i ( p̃i ) =

f ′

i (q̃i ) = 0, i = 1, . . . , n, under condition (H1
A) (resp. (H1

B)),
for activation functions of class A (resp. B).

Proof. We only prove for class A. For each i , since f ′

i (ξ) =

−µi +(αi i +βi i )g′

i (ξ), we have f ′

i (ξ) = 0 if and only if g′

i (ξ) =

µi/(αi i + βi i ). The graph of function g′

i (ξ) is concave down
and has its maximal value at σi . Note that limξ→±∞ g′

i (ξ) = 0.
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Fig. 3. (a) The graph of activation function gi in classA, (b) configurations of
functions f̂i and f̌i .

Hence, since each g′

i is continuous, if

0 = inf
ξ∈R

g′

i (ξ) <
µi

αi i + βi i

< max
ξ∈R

g′

i (ξ) (= g′

i (σi )), i = 1, . . . , n,

there exist two points p̃i , q̃i , with p̃i < σi < q̃i , such
that g′

i ( p̃i ) = g′

i (q̃i ) = µi/(αi i + βi i ). This completes the
proof. �

For (1.1) with piecewise linear activation functions, fi
attains its local minimum at p̃i = pi , and local maximum at
q̃i = qi , under assumption (H1

B). In particular, for the standard
activation function gs, p̃i = −1, q̃i = 1, i = 1, . . . , n. A
consequence of Proposition 2.1 is that fi is strictly increasing
on (−∞, p̃i ], decreasing on [q̃i ,∞), under condition (H1
∗).

Note that condition (H1
∗), ∗ = A,B, implies αi i + βi i > 0 for

each i = 1, . . . , n, since µi is already assumed positive.
We consider the second parameter condition which is used

to establish existence of multiple equilibria for (1.1):

(H2): f̂i ( p̃i ) < 0, f̌i (q̃i ) > 0, i = 1, . . . , n.

The configuration that motivates (H2) is depicted in Figs. 3 and
4. Under assumptions (H1

∗) and (H2), ∗ = A, B, there exist
points âi , b̂i , ĉi with âi < b̂i < ĉi such that f̂i (âi ) = f̂i (b̂i ) =

f̂i (ĉi ) = 0 as well as points ǎi , b̌i , či with ǎi < b̌i < či , such
that f̌i (ǎi ) = f̌i (b̌i ) = f̌i (či ) = 0.

Theorem 2.2. There exist 3n equilibria for system (1.1) with
activation functions of class ∗, ∗ = A,B, under conditions
(H1

∗) and (H2).

Proof. We only prove the case of class A. The equilibria of
system (1.1) are roots of (2.4). Conditions (H1

A) and (H2)

induce a configuration depicted in Fig. 3. Accordingly, there
are 3n disjoint closed regions in Rn , namely,

�w
= {(x1, . . . , xn) ∈ Rn

| xi ∈ Ωi
wi },

w = (w1, . . . , wn), wi = “l”, “m”, “r”,
(2.7)

where Ωi
l

= [ǎi , âi ], Ωi
m

= [b̂i , b̌i ], Ωi
r

= [či , ĉi ]

are intervals. Herein, “l”, “m”, “r” mean respectively “left”,
“middle” and “right”. Let �w be one of these regions. For any
given x̃ = (x̃1, . . . , x̃n) ∈ �w, we solve for xi in

hi (xi ) := −µi xi + (αi i + βi i )gi (xi )

+

n∑
j=1, j 6=i

(αi j + βi j )g j (x̃ j )+ Ii = 0, (2.8)

i = 1, . . . , n. Note that hi is a vertical shift and lies between
f̂i and f̌i , due to (2.6). Accordingly, one can always find
three solutions to (2.8), which lie in regions Ωi

l,Ωi
m,Ωi

r

respectively, for each i . We define a mapping Hw : �w
→ �w

by Hw(x̃) = x = (x1, . . . , xn) where x i is the solution of (2.8)
lying in Ωi

wi . The mapping Hw as defined is continuous, since
gi is continuous. It follows from Brouwer’s fixed point theorem
that there exists one fixed point x̄ = (x̄1, . . . , x̄n) of Hw in �w,
which is also a zero of F in (2.4). Consequently, there exist 3n

equilibria for system (1.1) and each of them lies in one of the
3n regions �w. �
Fig. 4. (a) The graphs of f̂i and f̌i induced from the activation function of class B. (b) The graphs of f̂i and f̌i induced from the standard activation function gs.
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3. Stability of equilibria and basins of attraction

In this section, we first establish some positively invariant
sets for system (1.1) and investigate stability of the equilibrium
in each invariant set. As a result, we also obtain a basin of
attraction for each of the asymptotically stable equilibria.

We consider the following 2n subsets of C([−τ, 0],Rn). Let
w = (w1, . . . , wn) with wi = “l” or “r”, and set

3̃
w

= {ϕ = (ϕ1, . . . , ϕn) | ϕi ∈ Λ̃l
i

if wi = “l”, ϕi ∈ Λ̃r
i if wi = “r”}, (3.1)

where Λ̃l
i = {ϕi ∈ C([−τ, 0],R) | ϕi (θ) < b̂i for all θ ∈

[−τ, 0]}, Λ̃r
i = {ϕi ∈ C([−τ, 0],R) | ϕi (θ) > b̌i for all θ ∈

[−τ, 0]}.

Theorem 3.1. Assume that (H1
∗), (H2), ∗ = A,B, and βi i >

0, i = 1, . . . , n, then each 3̃
w

is positively invariant under
the solution flow generated by system (1.1) with activation
functions of class ∗.

Proof. We only prove theA case. Let 3̃
w

be a subset defined in
(3.1). Consider any initial condition φ = (φ1, . . . , φn) ∈ 3̃

w
;

there exists a sufficiently small constant ε0 > 0 such that
φi (θ) ≥ b̌i + ε0 for all θ ∈ [−τ, 0], if wi = “r”, and
φi (θ) ≤ b̂i − ε0 for all θ ∈ [−τ, 0], if wi = “l”. We claim
that the solution x(t;φ) remains in 3̃

w
for all t ≥ 0. If this is

not true, there exists a component of x(t;φ) which is the first
one (or one of the first ones) decreasing across the value b̌i +ε0
or increasing across the value b̂i − ε0; i.e., there exists some
i ∈ {1, . . . , n} and t1 > 0 such that either xi (t1) = b̌i + ε0,
(dxi/dt)(t1) ≤ 0, and xi (t) > b̌i + ε0 for −τ ≤ t < t1 or
xi (t1) = b̂i − ε0, (dxi/dt)(t1) ≥ 0 and xi (t) < b̂i − ε0 for
−τ ≤ t < t1. For the first case, we derive from (1.1) that

dxi

dt
(t1) = −µi (b̌i + ε0)+ αi i gi (b̌i + ε0)+ βi i gi (xi (t1 − τi i ))

+

n∑
j=1, j 6=i

αi j g j (x j (t1))

+

n∑
j=1, j 6=i

βi j g j (x j (t1 − τi j ))+ Ii ≤ 0. (3.2)

On the other hand,

−µi (b̌i + ε0)+ αi i gi (b̌i + ε0)+ βi i gi (xi (t1 − τi i ))

+

n∑
j=1, j 6=i

αi j g j (x j (t1))+

n∑
j=1, j 6=i

βi j g j (x j (t1 − τi j ))+ Ii

≥ −µi (b̌i + ε0)+ (αi i + βi i )gi (b̌i + ε0)

−

n∑
j=1, j 6=i

ρ j (|αi j | + |βi j |)+ Ii

= f̌i (b̌i + ε0) > 0, (3.3)

due to (H2), βi i > 0, |g j (·)| ≤ ρ j , and gi (xi (t1 − τi i )) ≥

gi (b̌i + ε0), from the monotonicity of gi and the definition of
t1. This yields a contradiction to (3.2). Hence, xi (t) ≥ b̌i + ε0
for all t > 0. Similar arguments can be employed to show
that xi (t) ≤ b̂i − ε0, for all t > 0 for the situation that
xi (t1) = b̂i − ε0 and (dxi/dt)(t1) ≥ 0. Therefore, 3̃

w
is

positively invariant under the flow generated by system (1.1).
The proof is completed. �

Next, we consider the following criterion concerning
stability of the equilibria for the system with activation
functions in class A. Let η j , j = 1, . . . , n, be real numbers
satisfying

max{g j
′(ξ)|ξ = č j , â j } < η j < min{g j

′(ξ)|ξ = p̃i , q̃i }.

Consider

(H3): µi >

n∑
j=1

η j (|αi j | + |βi j |), i = 1, . . . , n.

For activation functions g j (·) in class A, we define d j and d̄ j
as

d j = min{ξ | g j
′(ξ) = η j }, d j = max{ξ | g j

′(ξ) = η j }. (3.4)

Then d j > â j , d j < č j . For the activation functions g j in class
B, gi in (2.1), and gs in (2.2), we define, respectively,

d j = p̃ j , d j = q̃ j ; d j = p j , d j = q j ; d j = −1, d j = 1. (3.5)

We consider the following 2n subsets of C([−τ, 0],Rn). Let
w = (w1, . . . , wn) with wi = “l” or “r”, and set

3w
= {ϕ = (ϕ1, . . . , ϕn) | ϕi ∈ Λi

l

if wi = “l”, ϕi ∈ Λi
r if wi = “r”}, (3.6)

where Λl
i = {ϕi ∈ C([−τ, 0],R) | ϕi (θ) ≤ d i ,∀θ ∈

[−τ, 0]},Λr
i = {ϕi ∈ C([−τ, 0],R) | ϕi (θ) ≥ d i ,∀θ ∈

[−τ, 0]}. In the following, we will derive that each of these 2n

subsets 3w of C([−τ, 0],Rn) lies in the basin of attraction for
the respective equilibrium and justify that these 2n equilibria
are exponentially stable.

Theorem 3.2. Under conditions (H1
A), (H2), (H3), and βi i >

0, i = 1, . . . , n, there exist 2n exponentially stable equilibria
for system (1.1) with activation functions of class A. The
same assertion holds for activation functions of class B, under
conditions (H1

B), (H2).

Proof. We only prove the case of class A. Let 3w be a subset
defined in (3.6) and x̄ be an equilibrium lying in 3w. For
each i = 1, . . . , n, we consider the single-variable function
Gi (ζ ) = µi − ζ −

∑n
j=1 η j |αi j | −

∑n
j=1 η j |βi j |eζ τi j . Then,

(H3) implies Gi (0) > 0, and there exists a constant λ > 0 such
that Gi (λ) > 0, for all i = 1, . . . , n, due to continuity of Gi .
Let x(t) = x(t;φ) be the solution to system (1.1) with initial
condition φ ∈ 3w. With translation y(t) = x(t) − x̄, system
(1.1) becomes

dyi (t)

dt
= −µi yi (t)+

n∑
j=1

αi j [g j (x j (t))− g j (x j )]

+

n∑
j=1

βi j [g j (x j (t − τi j ))− g j (x j )], (3.7)
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where y = (y1, . . . , yn). Now, consider functions zi (·) defined
by zi (t) = eλt

|yi (t)|, i = 1, . . . , n. Let δ > 1 and let
K = max1≤i≤n{supθ∈[−τ,0] |xi (θ) − x̄i |} > 0. It follows that
zi (t) < K δ, for t ∈ [−τ, 0] and i = 1, . . . , n. We shall justify
that

zi (t) < K δ, for all t > 0, i = 1, . . . , n. (3.8)

Suppose (3.8) does not hold, then there is a k ∈ {1, . . . , n}

and a t1 > 0 for the first time such that zi (t) ≤ K δ, t ∈

[−τ, t1], i = 1, . . . , n, i 6= k, zk(t) ≤ K δ, t ∈ [−τ, t1), and
zk(t1) = K δ, with żk(t1) ≥ 0. Note that |yk(t)| and zk(t)
are differentiable at t = t1, since zk(t1) = K δ > 0 implies
yk(t1) 6= 0. From (3.7), we compute that

d
dt

|yk(t1)| ≤ −µk |yk(t1)| +

n∑
j=1

|αk j g
′
j (ξ j )y j (t1)|

+

n∑
j=1

|βk j g
′
j (ς j )y j (t1 − τk j )|,

for some ξ j between x j (t1) and x̄ j as well as ς j between
x j (t1 − τk j ) and x̄ j . Hence,

dzk(t1)

dt
≤ λeλt1 |yk(t1)| + eλt1

[
− µk |yk(t1)|

+

n∑
j=1

|αk j g
′
j (ξ j )y j (t1)|

+

n∑
j=1

|βk j g
′
j (ς j )y j (t1 − τk j )|

]

= λzk(t1)− µk zk(t1)+

n∑
j=1

|αk j |g
′
j (ξ j )z j (t1)

+

n∑
j=1

|βk j |g
′
j (ς j )eλτk j z j (t1 − τk j )

≤ −(µk − λ)zk(t1)+

n∑
j=1

|αk j |η j z j (t1)

+

n∑
j=1

|βk j |η j eλτk j [ sup
θ∈[t1−τ,t1]

z j (θ)].

Herein, the positive invariance property of 3w can be verified
using the same treatment as the proof of Theorem 3.1, under
condition βi i > 0, i = 1, . . . , n, for activation functions in
class A. Due to Gk(λ) > 0, we obtain a contradiction that

0 ≤
dzk(t1)

dt
≤ −

{
µk − λ−

n∑
j=1

η j |αk j |

−

n∑
j=1

η j |βk j |eλτk j

}
K δ < 0.

Hence assertion (3.8) holds and zi (t) ≤ K for all t > 0,
i = 1, . . . , n, by taking δ → 1+. We thus obtain |xi (t) −

x̄i | ≤ e−λt max1≤ j≤n{supθ∈[−τ,0] |x j (θ) − x̄ j |}, for t > 0 and
i = 1, . . . , n. Therefore, x(t) converges to x̄ exponentially. This
completes the proof. �
In the above theorem, we have imposed a restriction:
βi i > 0, i = 1, . . . , n (positive self-feedback delays) for the
activation functions in class A. The situation is different for the
activation functions in class B, thanks to the zero slopes of these
functions in the saturated parts. In addition, for the piecewise
linear functions gi in (2.1), since the slopes νi := (vi −

ui )/(qi − pi ) in the middle parts are fixed, there cannot exist
parameters µi , αi j , βi j , and ηi satisfying both (H3) and (H1

B).
Indeed, a contradiction arises in µi > νi (

∑n
j=1 |αi j | + |βi j |)

versus νi (αi i + βi i ) > µi . Thus, the definition of 3w for the
activation functions in B and the standard activation function
gs are as indicated in (3.5) and every 3w lies in the saturated
parts corresponding to the activation functions.

Corollary 3.3. Each of these 2n subsets 3w of C([−τ, 0],Rn),
defined in (3.6), lies in the basin of attraction for the unique
equilibrium in 3w, under the assumptions of Theorem 3.2.

Corollary 3.4. Under condition αi i + βi i −
∑n

j=1, j 6=i (|αi j | +

|βi j |) − |Ii | > µi , i = 1, . . . , n, there exist 2n exponentially
stable equilibria for (1.1) with activation function gs in (2.2).

Proof. The condition yields (2.5), and (H2) with p̃i = −1 and
q̃i = 1 for all i = 1, . . . , n. The assertion hence holds. �

Remark 3.1. (i) There exists a globally attracting set for
system (1.1), according to [30]. Therefore, every solution
of system (1.1) is bounded in forward time.

(ii) System (1.1) with µi = 1, i = 1, . . . , n, and the standard
activation function gs was investigated in [26]. It was
proved therein that under condition

αi i −

n∑
j=1, j 6=i

|αi j | −

n∑
j=1

|βi j | − |Ii | > 1,

i = 1, . . . , n, (3.9)

there exist exactly 2n exponentially stable isolated
equilibria. It is obvious that our condition in Corollary 3.4
is weaker than condition (3.9). In addition, it was shown
that the set {x | x = (x1, . . . , xn), xi < −1 or xi > 1}

is positively invariant. Our Theorem 3.1 has exploited a
larger positively invariant set 3̃

w
. The computations in

deriving the results in [26] heavily depend on the saturation
of the activation functions. Restated, as x j (t − τi j ) lies in
{ξ < −1} or {ξ > 1}, gs(x j (t − τi j )) is either −1 or 1,
and thus the delays in (1.1) do not have any actual effect
in these regions. The numerical simulations therein thus
dealt with ordinary differential equations. As mentioned
in Section 2, the transition from the linear regime to the
saturated regime in the standard activation function is
smooth in a practical situation. Our theory is based on
a geometrical observation and has been established with
these practical considerations being taken into account.

(iii) It can be further justified that the basins of attraction
for the equilibria are actually larger than 3w, through
additional derivations and estimates. In fact, they are
at least as large as the positively invariant sets 3̃

w
.

The justification can be found in [31]. We have shown
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(Theorem 3.2) that the solutions lying entirely in 3w

converge exponentially to the respective equilibrium in
3w. However, the convergence for the solutions lying
entirely in 3̃

w
may not be of exponential rate.

4. Periodic orbits for systems with periodic inputs

In this section, we study the periodic solutions of the delayed
neural networks with periodic input:

dxi (t)

dt
= −µi xi (t)+

n∑
j=1

αi j g j (x j (t))

+

n∑
j=1

βi j g j (x j (t − τi j ))+ Ji (t), (4.1)

where i = 1, . . . , n, each Ji : R+
−→ R is a continuous

function of period T , i.e., Ji (t + T ) = Ji (t) for all t ≥ 0. There
have been investigations on the existence of a single periodic
solution for system (4.1), cf. [18]. The results in this direction
of study can be achieved by constructing a suitable Lyapunov
functional or Poincaré mapping. In this section, we establish
existence of multiple stable periodic solutions via constructing
suitable Poincaré mapping.

Theorem 4.1. Under conditions (H1
A), (H2), (H3), and βi i >

0, i = 1, . . . , n, there exist 2n exponentially stable T -period
solutions for system (4.1) with activation functions of class A.
The same conclusion holds for (4.1) with activation functions
of class B, under conditions (H1

B), (H2).

Proof. Recall the notations in Section 2: x(t;φ) =

(x1(t;φ), . . . , xn(t;φ)), the solution of (4.1) with x(θ;φ) =

φ(θ), θ ∈ [−τ, 0], and xt (θ;φ) = x(t +θ;φ), θ ∈ [−τ, 0], t ≥

0. Consider ϕ,ψ ∈ 3w, for some w = (w1, . . . , wn), with
wi = “l” or “r”, defined in (3.6). Then x(t;ϕ), x(t;ψ) ∈ 3w

for all t ≥ 0, by positive invariance of 3w. From (4.1) we have

d
dt

[xi (t;ϕ)− xi (t;ψ)] = −µi [xi (t;ϕ)− xi (t;ψ)]

+

n∑
j=1

αi j
[
g j (x j (t;ϕ))− g j (x j (t;ψ))

]
+

n∑
j=1

βi j
[
g j (x j (t − τi j ;ϕ))− g j (x j (t − τi j ;ψ))

]
,

for t ≥ 0, i = 1, 2, . . . , n. Similar to the proof of Theorem 3.2,
we obtain

|xi (t;ϕ)− xi (t;ψ)| ≤ e−λt max
1≤ j≤n

(
sup

θ∈[−τ,0]

|x j (θ;ϕ)

− x j (θ;ψ)|

)
,

for t ≥ 0 and i = 1, . . . , n, where λ > 0 is a small constant.
Therefore,

‖xi (t + θ;ϕ)− xi (t + θ;ψ)‖ ≤ e−λ(t+θ)
‖ϕ − ψ‖

≤ e−λ(t−τ)
‖ϕ − ψ‖,
for θ ∈ [−τ, 0] and t ≥ τ , and then

‖xt (θ;ϕ)− xt (θ;ψ)‖ ≤ e−λ(t−τ)
‖ϕ − ψ‖, for all t ≥ 0.

(4.2)

We choose a positive integer m such that e−λ(mT −τ)
= κ < 1.

Define a Poincaré mapping P : 3w
→ 3w by P(ϕ) =

xT (·, ϕ). Then we can derive from (4.2) that

‖Pm(ϕ)− Pm(ψ)‖ ≤ κ‖ϕ − ψ‖.

This inequality implies that Pm is a contraction mapping, hence
there exists a unique fixed point φ ∈ 3w such that Pm(φ) = φ.
Note that

Pm(Pφ) = P(Pmφ) = P(φ).

Thus P(φ) ∈ 3w is also a fixed point of Pm , and so P(φ) = φ,
i.e. xT (·;φ) = φ. Let x(t;φ) be the solution of (4.1) with initial
condition φ at t = 0, then x(t +T ;φ) is also a solution of (4.1).
Note that xt+T (·;φ) = xt (·; xT (·;φ)) = xt (·;φ), for all t ≥ 0;
therefore

x(t + T ;φ) = x(t;φ), for all t ≥ 0.

This shows that x(t;φ) is exactly a T -period solution of
(4.1) in 3w, and all other solutions of (4.1) in 3w converge
exponentially to it as t → +∞. Thus, there exist 2n

exponentially stable T -period solutions for system (4.1). �

We remark that the above result can be extended to
the existence of 2n stable periodic solutions of the delayed
neural network (4.1) with periodic coefficients and connection
weights, i.e., the situation that µi = µi (t), αi j = αi j (t), βi j =

βi j (t) are T -periodic. The extension can be confirmed
by modifying the assumptions to adapt to the considered
circumstances and by similar arguments as the proof of
Theorem 4.1. The investigation can also be generalized to
almost periodic coefficients and solutions.

5. Quasiconvergence

We shall discuss the monotone property for system (1.1)
with activation functions of class A in this section. The
derivation can be adapted to activation functions of class B. Let
us first recall the following definition.

Definition 5.1. Let E be the set of all equilibrium points for
a system with phase space C. We say that φ ∈ C is a
quasiconvergent point if its ω-limit set ω(φ) ⊂ E . The set
of such points is denoted by Q. A point φ ∈ C is called a
convergent point, if ω(φ) consists of a single point of E .

Note that quasiconvergence yields convergence for continuous-
time dynamical systems, if all equilibria are isolated. In order
to apply the theory of monotone dynamical systems, we need
the following notations and definitions. Consider the standard
componentwise partial order “≤” and inequality “<” on Rn :

x ≤ y ⇔ xi ≤ yi , for all i,

x < (�)y ⇔ x ≤ y and xi < yi for some (all) i.
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Then the partial order “≤”, called the standard order, and the
inequality “<” on C = C([−τ, 0],Rn) are defined by

φ ≤ ψ ⇔ φ(θ) ≤ ψ(θ) for all θ ∈ [−τ, 0],

φ < ψ ⇔ φ ≤ ψ and φ 6= ψ,

φ � ψ ⇔ φ(θ) � ψ(θ) for all θ ∈ [−τ, 0].

Definition 5.2. Let “<” be a partial order. (i) A semiflow Φ
is said to be monotone provided Φt (φ) ≤ Φt (ψ) whenever
φ ≤ ψ and t ≥ 0. (ii) Φ is called strongly order preserving
(SOP), if it is monotone and whenever φ < ψ , there exist open
subsets U, V of C with φ ∈ U and ψ ∈ V and t0 > 0 such that
Φt0(U ) ≤ Φt0(V ).

It has been shown in [32] that if the phase space can be
approximated from below or above, then IntQ is dense in
C for a SOP system, under a compactness assumption. The
assumptions of this theorem can all be justified in our situation
herein.

Notably, the one-dimensional delayed equation

dx(t)

dt
= −ax(t)+ bg(x(t − τ)), a > 0, b < 0,

fails to be monotone under the standard ordering in C; so do
the higher-dimensional cases [32]. We shall adopt a special
order introduced in [33] to conclude the monotone behavior
for system (1.1). Let M be an n × n essentially nonnegative
matrix, which means that M + λI is entrywise nonnegative for
all sufficiently large λ. Define

KM = {ψ ∈ C|ψ ≥ 0 and e−t Mψ(t) ≥ e−s Mψ(s),

for − τ ≤ s ≤ t ≤ 0}. (5.1)

Then KM is a cone in the space C, that is, under addition and
scalar multiplication by nonnegative scalars, KM is closed in C
and KM ∩ (−KM ) = ∅. Moreover, KM is a normal cone, which
means that every order interval is a bounded set in C. According
to [33], KM induces a partial order on C.

Definition 5.3. If φ,ψ ∈ C, we say φ≤M ψ whenever ψ−φ ∈

KM . We write φ <M ψ to indicate that φ≤M ψ and φ 6= ψ .

Consider the functional differential equation, with F̃ ∈

C1(C,Rn)

dx(t)
dt

= F̃(xt ). (5.2)

Theorem 5.1 ([13,33]). The semiflow Φ generated by (5.2) is
SOP on C under order “≤M ”, if the following conditions hold:

(i) d F̃(φ)ψ−Mψ(0) � 0 for every φ ∈ C and everyψ ∈ KM
with ψ � 0,

(ii) If φ ∈ C, ψ ∈ KM and L is a (nonempty) proper subset of
{1, . . . , n} such that ψ j � 0 for j ∈ L and ψk(0) = 0 for
k 6∈ L, then (d F̃(φ)ψ)i > 0, for some i 6∈ L.

Herein, we set the n × n matrix M = diag(−µ1 −

ν1, . . . ,−µn − νn), where νi > 0 will be chosen later. Indeed,
the matrix M is essentially nonnegative. An n × n matrix
A = [Ai j ] is called irreducible if whenever the set {1, . . . , n}

is expressed as the union of two disjoint proper subsets S, S′,
then for every i ∈ S there exists j , k ∈ S′ such that Ai j 6= 0,
Aki 6= 0. Let γi = supξ∈R g′

i (ξ).

Proposition 5.2. Assume that one of the matrices A and B is
irreducible, where A = [αi j ], B = [βi j ], αi j ≥ 0, βi j ≥ 0 for
all i 6= j , αi i + βi i > 0 for all i , and the time lags {τi j } satisfy

τi i ≤ 1/(µi + e|βi i |γi ), (5.3)

for all i with βi i < 0. Then the semiflow Φ generated by the
solutions of system (1.1) is SOP under order “≤M ”.

Proof. Recall the previous definition of F̃ defined in (1.1):

F̃i (φ) = −µiφi (0)+

n∑
j=1

αi j g j (φ j (0))

+

n∑
j=1

βi j g j (φ j (−τi j ))+ Ii , i = 1, . . . , n.

For any φ = (φ1, . . . , φn) ∈ C and ψ = (ψ1, . . . , ψn) ∈ KM
with ψ � 0, we have

(d F̃(φ)ψ)i − (Mψ(0))i

= νiψi (0)+

n∑
j=1

αi j g
′
j (φ j (0))ψ j (0)

+

n∑
j=1

βi j g
′
j (φ j (−τi j ))ψ j (−τi j ) (5.4)

≥ [(νi e−τi i (µi +νi ) + βi i g
′

i (φi (−τi i ))]ψi (−τi i )

+αi i g
′

i (φi (0)))ψi (0)

+

n∑
j=1, j 6=i

αi j g
′
j (φ j (0))ψ j (0)

+

n∑
j=1, j 6=i

βi j g
′
j (φ j (−τi j ))ψ j (−τi j ), (5.5)

since ψi (0) ≥ e−τi i (µi +νi )ψ(−τi i ), from ψ ∈ KM , and
ψ(0) ≥ e−s Mψ(s), for all s ∈ [−τ, 0]. Here, we take νi > 0
satisfying νi = e|βi i |γi . If βi i < 0, then αi i > 0, and the
assumption τi i ≤ 1/(µi + e|βi i |γi ) yields νi exp[−τi i (µi +

νi )]+βi i g′

i (φi (−τi i )) > 0. Thus (d F̃(φ)ψ)i − (Mψ(0))i > 0,
from (5.5). When βi i ≥ 0, (d F̃(φ)ψ)i −(Mψ(0))i > 0 follows
from νi +αi iγi > 0 and (5.4). Next, we will prove that condition
(ii) in Theorem 5.1 holds. For any φ ∈ C and ψ ∈ KM , let L be
a (nonempty) proper subset of {1, . . . , n} such that ψ j � 0 for
j ∈ L and ψk(0) = 0 for k 6∈ L . Then ψi (−τi i ) = 0 for each
i 6∈ L , due to ψi (−τi i ) ≤ exp[τi i (µi + νi )]ψi (0). Since one of
matrices A and B is irreducible, there is some i 6∈ L such that

(d F̃(φ)ψ)i = −µiψi (0)+

n∑
j=1

αi j g
′
j (φ j (0))ψ j (0)

+

n∑
j=1

βi j g
′
j (φ j (−τi j ))ψ j (−τi j )
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=

n∑
j=1, j 6=i

αi j g
′
j (φ j (0))ψ j (0)

+

n∑
j=1, j 6=i

βi j g
′
j (φ j (−τi j ))ψ j (−τi j )

=

n∑
j∈L

αi j g
′
j (φ j (0))ψ j (0)

+

n∑
j∈L

βi j g
′
j (φ j (−τi j ))ψ j (−τi j ) > 0.

Hence, it follows from Theorem 5.1 that the semiflow Φ
generated by the solutions of (1.1) is SOP under order “≤M ”.

�

Notably, condition (HA1 ) yields αi i + βi i > 0 for all i .
Thus, under conditions (HA1 ) and (H2), and the assumptions
in Proposition 5.2, there exist 3n equilibria for (1.1) and intQ
is dense in C. In fact, the assumptions of irreducibility of
A, B and non-inhibitory interactions, αi j , βi j ≥ 0 for all
i 6= j , can be removed via a decomposition approach in
competitive–cooperative systems after imbedding the network
into a larger system. Such a technique was adopted to study
global convergence to an unique equilibrium in [34,35]. It was
previously employed by Cosner [36] and Wu and Zhao [37]
in the study of population dynamics. This decomposition
approach fits in with our formulation for multiple equilibria
pertinently and skillfully.

Theorem 5.3. Assume that (HA1 ) and (H2) hold and the delay
time {τi j } satisfy (5.3). Then system (1.1) has 3n equilibria and
intQ is dense in C.

Proof. Define matrices A+
= [a+

i j ], A−
= [a−

i j ], B+
= [b+

i j ]

and B−
= [b−

i j ] by

a+

i j =

{
αi i , for j = i
α+

i j + s, for j 6= i, a−

i j =

{
0, for j = i
α−

i j + s, for j 6= i,

b+

i j =

{
βi i , for j = i
β+

i j + s, for j 6= i, b−

i j =

{
0, for j = i
β−

i j + s, for j 6= i,

where α+

i j = max{αi j , 0}, α−

i j = max{−αi j , 0}, similarly for

β+

i j , β
−

i j ; s > 0 will be suitably chosen. Since αi j = a+

i j − a−

i j

and βi j = b+

i j − b−

i j , system (1.1) becomes

dxi (t)

dt
= −µi xi (t)+

n∑
j=1

a+

i j g j (x j (t))

−

n∑
j=1

a−

i j g j (x j (t))+

n∑
j=1

b+

i j g j (x j (t − τi j ))

−

n∑
j=1

b−

i j g j (x j (t − τi j ))+ Ii , (5.6)
i = 1, . . . , n. Define yi = −xi , and set g̃i (ξ) = −gi (−ξ), i =

1, . . . , n. Then (5.6) is embedded into the following system:

dxi (t)

dt
= −µi xi (t)+

n∑
j=1

a+

i j g j (x j (t))

+

n∑
j=1

a−

i j g̃ j (y j (t))+

n∑
j=1

b+

i j g j (x j (t − τi j ))

+

n∑
j=1

b−

i j g̃ j (y j (t − τi j ))+ Ii

dyi (t)

dt
= −µi yi (t)+

n∑
j=1

a−

i j g j (x j (t))

+

n∑
j=1

a+

i j g̃ j (y j (t))+

n∑
j=1

b−

i j g j (x j (t − τi j ))

+

n∑
j=1

b+

i j g̃ j (y j (t − τi j ))− Ii , (5.7)

i = 1, . . . , n. Note that each g̃i also admits the characteristics
of gi . We define zk(t) and hk(ξ) by zi (t) = xi (t), zn+i (t) =

yi (t), and hi (ξ) = gi (ξ), hn+i (ξ) = g̃i (ξ), for i = 1, . . . , n.
Then (5.7) can be written as

dzi (t)

dt
= −µ̃i zi (t)+

2n∑
j=1

ãi j h j (z j (t))

+

2n∑
j=1

b̃i j h j (z j (t − τ̃i j ))+ Ĩi , (5.8)

i = 1, . . . , 2n, where the 2n × 2n matrices Ã and B̃ are defined
by

Ã = [ãi j ] =

[
A+ A−

A− A+

]
, B̃ = [b̃i j ] =

[
B+ B−

B− B+

]
,

and µ̃i , Ĩi , τ̃i j are given by µ̃i = µi , µ̃n+i = µi ; Ĩi =

Ii , Ĩn+i = −Ii , i = 1, . . . , n; τ̃i j = τ̃n+i, j = τ̃i,n+ j =

τ̃n+i,n+ j = τi j , i, j = 1, . . . , n.

Note that Ã, B̃ as defined are both irreducible; in addition,
ãi j > 0, b̃i j > 0, for all i 6= j . System (5.8) thus satisfies
the assumptions except that ãi i + b̃i i > 0, for all i , in
Proposition 5.2. It can be justified that conditions (HA1 ) and
(H2) for system (1.1) yield conditions analogous to (HA1 ) and
(H2) for system (5.8), by choosing sufficiently small s > 0.
Thus, ãi i + b̃i i > 0, for all i , and the semiflow generated
by the solutions of system (5.8) is SOP. Therefore, there exist
32n equilibria and IntQ is dense in C([−τ, 0],R2n) for system
(5.8). On the other hand, one also observes that if xi (0) +

yi (0) = 0, then xi (t) + yi (t) = 0 for all t ≥ 0 for solutions
(x1(t), . . . , xn(t), y1(t), . . . , yn(t)) of system (5.7). Restated,
the dynamics of system (5.8) on the positively invariant regions
{x1 = −y1, . . . , xn = −yn} are exactly the dynamics for
system (1.1). Thereafter, there exist 3n equilibria for (1.1) and
IntQ is dense in C([−τ, 0],Rn) for system (1.1), if (HA1 ), (H2)

and condition (5.3) hold. �
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Fig. 5. Illustration for the dynamics in Example 6.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
6. Numerical illustrations

In this section, four two-dimensional examples of system
(1.1) are presented to illustrate our theory. In particular,
Example 6.2 demonstrates the multistability of system (1.1)
with the standard activation function (2.2). This example adopts
parameters satisfying the criteria in our theory but not the
one in [26]. Example 6.3 demonstrates Theorem 4.1. The
parameters in Example 6.4 satisfy conditions (H1

∗), ∗ = A,B,
and (H2), but not (H3).

Example 6.1. Consider the following system with activation
functions g1(ξ) = g2(ξ) = tanh(ξ), which belongs to class
A:

dx1(t)

dt
= −x1(t)+ 4g1(x1(t))+ g2(x2(t))

+ 3g1(x1(t − 10))+ g2(x2(t − 10))

dx2(t)

dt
= −3x2(t)+ 2g1(x1(t))+ 7g2(x2(t))

+ g1(x1(t − 10))+ 5g2(x2(t − 10)).

Direct computation gives f̂1(x1) = −x1+7g(x1)+2, f̌1(x1) =

−x1 + 7g(x1) − 2, f̂2(x2) = −3x2 + 12g(x2) + 3, f̌2(x2) =

−3x2 + 12g(x2) − 3. Herein, the parameters satisfy our
conditions in Theorem 3.2:

Condition (H1
A):

0 < µ1/(α11 + β11) = 1/7 < 1,

0 < µ2/(α22 + β22) = 3/12 < 1.

Condition (H2):

f̂1(p1) = −2.8524 < 0, f̌1(q1) = 2.8524 > 0,

f̂2(p2) = −3.4414 < 0, f̌2(q2) = 3.4414 > 0.
Condition(H3):

µ1 = 1 > 0.98 = (|α11| + |β11|)η1 + (|α12| + |β12|)η2,

µ2 = 3 > 1.98 = (|α21| + |β21|)η1 + (|α22| + |β22|)η2,

where η1 = 0.1 and η2 = 0.14 are chosen in (H3); â1 =

−4.9994, d1 = −1.8184, p1 = −1.6283, b̂1 = −0.3491,
q1 = 1.6283, d1 = 1.8184, ĉ1 = 9.0000, ǎ1 = −9.0000,
b̌1 = 0.3491, č1 = 4.9993, â2 = −2.9793, d2 = −1.6392,
p2 = −1.3170, b̂2 = −0.3518, q2 = 1.3170, d2 = 1.6392,
ĉ2 = 4.9996, ǎ2 = −4.9996, b̌2 = 0.3518, č2 = 2.9793.
The dynamics of this system are illustrated in Fig. 5, where
evolutions of 72 initial conditions have been tracked. The
constant initial conditions are plotted in red color, and the time-
dependent initial conditions are plotted in purple. There are four
exponentially stable equilibria in the system, as confirmed by
our theory. The simulation demonstrates convergence to these
four equilibria from initial functions φ lying in the respective
basin for the equilibrium.

Example 6.2. Consider the following system with the standard
activation function (2.2):

dx1(t)

dt
= −x1(t)+ 2g1(x1(t))+ g2(x2(t))

+ 3g1(x1(t − 5))+ g2(x2(t − 5))

dx2(t)

dt
= −x2(t)− g1(x1(t))+ 4g2(x2(t))

+ 2g1(x1(t − 5))+ 5g2(x2(t − 5))+ 1,

where g1(ξ) = g2(ξ) = gs(ξ) =
1
2 (|ξ + 1| − |ξ − 1|).

The parameters satisfy the criterion in Corollary 3.4: α11 +

β11 − (|α12| + |β12|) − |I1| = 3 > 1 = µ1, α22 + β22 −

(|α21| + |β21|)− |I2| = 5 > 1 = µ2. Therefore, there exist 2n

exponentially stable equilibria. The parameters herein do not
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Fig. 6. Illustration for the dynamics in Example 6.2 ( p̃i = −1, q̃i = 1).

Fig. 7. Illustration for the dynamics in Example 6.2 ( p̃i = −1, q̃i = 1).
satisfy the criterion (3.9) for the theory in [26]: α11 − |α12| −

(|β11| + |β12|) − |I1| = −3 which is not greater than µ1 = 1.
The dynamics of the system are illustrated in Fig. 6. We allow
initial conditions from larger basins of attraction in Fig. 7, to
demonstrate the assertion in Remark 3.1(iii).

Example 6.3. Consider the following system with periodic
inputs and the standard activation function (2.2):

dx1(t)

dt
= −x1(t)+ 2g1(x1(t))+ g2(x2(t))

+ 3g1(x1(t − 2))+ g2(x2(t − 2))+ cos(t)
dx2(t)

dt
= −x2(t)− g1(x1(t))+ 4g2(x2(t))

+ 2g1(x1(t − 2))+ 5g2(x2(t − 2))+ 1 + sin(t),

where g1(ξ) = g2(ξ) = gs(ξ) =
1
2 (|ξ + 1| − |ξ − 1|). The

existence of four limit cycles for the system is illustrated in
Fig. 8.

Example 6.4. Consider the following system with activation
functions g1(ξ) = g2(ξ) = tanh(ξ), which belongs to class A,

dx1(t)

dt
= −x1(t)+ 7g1(x1(t))+ 0.5g2(x2(t))

− 4g1(x1(t − τ11))+ 0.5g2(x2(t − τ12))
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Fig. 8. Illustration for the dynamics in Example 6.3 ( p̃i = −1, q̃i = 1).

Fig. 9. Illustration for the dynamics in Example 6.4 with activation function gi (ξ) = tanh(ξ) and τ11 = 0.08, τ12 = 10, τ21 = 10, τ22 = 0.08.
dx2(t)

dt
= −x2(t)+ 0.5g1(x1(t))+ 7g2(x2(t))

+ 0.5g1(x1(t − τ21))− 4g2(x2(t − τ22)).

Direct computation gives f̂1(x1) = −x1+7g(x1)+2, f̌1(x1) =

−x1 + 7g(x1) − 2, f̂2(x2) = −3x2 + 12g(x2) + 3, f̌2(x2) =

−3x2 + 12g(x2) − 3. Herein, the parameters satisfy condition
(H1

A) : 0 < µ1/(α11 + β11) = µ2/(α22 + β22) = 1/3 < 1,
and condition (H2) : f̂1(p1) = −2.8524 < 0, f̌1(q1) =

2.8524 > 0, f̂2(p2) = −3.4414 < 0, f̌2(q2) = 3.4414 > 0.
In addition, â1 = −1.8572, p1 = −1.1462, b̂1 = −0.5902,
q1 = 1.1462, ĉ1 = 3.9980, ǎ1 = −3.9980, b̌1 = 0.5902,
č1 = 1.8572, â2 = −1.8572, p2 = −1.1462, b̂2 = −0.5902,
q2 = 1.1462, ĉ2 = 3.9980, ǎ2 = −3.9980, b̌2 = 0.5902,
č2 = 1.8572. Note that g′(ξ) is decreasing for ξ > 0 and
increasing for ξ < 0. Condition (H3) does not hold since
µ1 = 1 < (|α11| + |β11|)g′(â1) + (|α12| + |β12|)g′(â1) '

11 × 0.0929 + 1 × 0.0929 = 1.1148. We choose τ11 =

0.08, τ12 = 10, τ21 = 10, τ22 = 0.08 to satisfy (5.3): τ11 =

τ22 = 0.08 < 1/(1 + 4e) ' 0.08475. The dynamics of this
system are illustrated in Fig. 9.

Fig. 10 depicts the dynamics for the system with the same
parameters but with time lags τ11 = τ12 = τ21 = τ22 = 10,
which do not satisfy criterion (5.3). It appears that two of the
four equilibria become unstable. The dynamics are apparently
different if we replace the activation function tanh(ξ) by the
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Fig. 10. Illustration for the dynamics in Example 6.4 with activation function gi (ξ) = tanh(ξ) and τ11 = τ12 = τ21 = τ22 = 10.

Fig. 11. Illustration for the dynamics in Example 6.4 with the standard activation function gi (ξ) = gs(ξ) =
1
2 (|ξ + 1| − |ξ − 1|) and τ11 = τ12 = τ21 = τ22 = 10.
standard activation function gs(ξ) =
1
2 (|ξ+1|−|ξ−1|). There

still exist four stable equilibria, as illustrated in Fig. 11.

7. Conclusions

With a geometrical observation, parameter conditions (H1
∗)

and (H2) assuring the existence of 3n stationary solutions
for a general n-dimensional neural network with delays, have
been derived. Under the same conditions, 2n out of these 3n

equilibria are stable if the activation functions of class B are
employed for the system. Additional assumptions (H3) and
βi i > 0 are required to guarantee the same assertion of multiple
stable equilibria, if activation functions of class A are adopted.
Further analysis has been performed to establish existence
of 2n limit cycles for the network with time-periodic inputs.
The derived parameter conditions are concrete and can be
examined easily. We have also applied the theory of monotone
dynamics to confirm the strongly order preserving property for
the networks. Subsequently, that generic points in the phase
space are quasiconvergent as well as existence of 3n equilibria
comprise the phase structure for the system, under conditions
(H1

∗), (H2), and that delays τi i are small enough for those
neurons i with βi i < 0. We have provided several numerical
simulations to illustrate these theories for the two-neuron cases.
It is interesting to see the distinct dynamics between system
(1.1) with the activation functions in class A and with the
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ones in class B. When we take parameters satisfying conditions
(H1

∗), (H2), and τi i not satisfying condition (5.3), there exist 32

equilibria for system (1.1) with activation functions in classes
A and B. There are still four stable equilibria if the activation
function of class B is employed, as illustrated in Example 6.4,
and confirmed by our Theorem 3.2. However, if we adopt the
activation function in class A, two of these four equilibria
become unstable.
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