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Chih-Min Lin, Senior Member, IEEE, Kun-Neng Hung, and Chun-Fei Hsu, Member, IEEE

Abstract—The switching power supplies can convert one level of
electrical voltage into another level by switching action. They are
very popular because of their high efficiency and small size. This
paper proposes an adaptive neuro-wavelet (ANW) control system
for the switching power supplies. In the ANW control system, a
neural controller is the main controller used to mimic an ideal
controller and a compensated controller is designed to recover the
residual of the approximation error. In this study, an online adap-
tive law with a variable optimal learning-rate is derived based on
the Lyapunov stability theorem, so that not only the stability of the
system can be guaranteed but also the convergence of controller
parameters can be speeded up. Then, the proposed ANW control
system is applied to control a forward switching power supply.
Experimental results show that the proposed ANW controller can
achieve favorable regulation performance for the switching power
supply even under input voltage and load resistance variations.

Index Terms—Adaptive control, Lyapunov stability theorem, op-
timal learning-rate, switching power supply, wavelet neural net-
work (WNN).

I. INTRODUCTION

RECENTLY, the neural-network-based control technique
has represented an alternative design method for various

control systems [1]–[5]. The successful key element is the
approximation ability, where the parameterized neural net-
work can approximate an unknown system dynamics through
learning. Wavelets have been combined with the neural net-
work to create wavelet neural networks (WNNs). The training
algorithms for WNN typically converge in a smaller number of
iterations than the conventional neural networks [6]–[8]. Unlike
the sigmoid functions used in conventional neural networks,
the second layer of WNN is a wavelet form, in which the
translation and dilation parameters are included. Thus, WNN
has been proved to be better than the other neural networks
in that the structure can provide more potential to enrich the
mapping relationship between inputs and outputs [8]. There
has been considerable interest in exploring the applications of
WNN to deal with nonlinearity and uncertainties of real-time
servo control systems [9]–[12]. These WNN-based controllers
combine the capability of artificial neural networks for learning
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ability and the capability of wavelet decomposition for iden-
tification ability. Thus, the WNN-based control systems have
been adopted widely for the closed-loop control of complex
dynamical systems owing to its fast learning property and good
generalization capability [9], [10].

Due to the rapid development of power semiconductor
devices in personal computers, computer peripherals, and
adapters, the switching power supplies are popular in modern
industrial applications. To obtain high quality power systems,
the popular control technique of the switching power supplies
is the pulsewidth modulation (PWM) approach [13], [14]. By
varying the duty ratio of the PWM modulator, the switching
power supply can convert one level of electrical voltage into
the desired level. From the control viewpoint, the controller
design of the switching power supply is an intriguing issue,
which must cope with wide input voltage and load resistance
variations to ensure the stability in any operating condition
while providing fast transient response. Over the past decade,
there have been many different approaches proposed for PWM
switching control design based on PI control [15], optimal
control [16], sliding-mode control [17], [18], fuzzy control
[17], [19], and adaptive control [20] techniques. However, most
of these approaches require the time-consuming trial-and-error
tuning procedure to achieve satisfactory performance; some
of them can not achieve satisfactory performance under the
changes of operating point; and some of them have not given
the stability analysis.

The motivation of this paper is to design an adaptive neuro-
wavelet (ANW) control system for the switching power supply.
The proposed ANW control system is comprised of a neural
controller and a compensated controller. The neural controller
using a WNN is designed to mimic an ideal controller and a
compensated controller is designed to compensate for the ap-
proximation error between the ideal controller and the neural
controller. The online adaptive laws are derived based on the
Lyapunov stability theorem so that the stability of the system
can be guaranteed. Finally, the proposed ANW control scheme
is applied to control a forward switching power supply. The
experimental results demonstrate that the proposed ANW con-
trol scheme can achieve favorable control performance, even the
switching power supply is subject to the input voltage and load
resistance variations.

II. PROBLEM FORMULATION

The switching power supplies can convert one level of elec-
trical voltage into another level by switching action. Nowadays,
they are very popular because of its high efficiency and small
size [13]. Among the various switching control methods, PWM
which is based on fast switching and duty ratio control is the
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Fig. 1. Forward switching power supply.

most widely considered one. The switching frequency is con-
stant and the duty cycle, , varies with the load resistance
variations at the th sampling time. The output of the designed
controller, , is the change of duty cycle. Then, the duty
cycle is determined by adding the previous duty cycle 1
to the change of duty cycle , i.e.

(1)

This duty cycle signal is then sent to a PWM output stage that
generates the appropriate switching pattern for the switching
power supplies. In this paper, a forward switching power supply
is discussed as shown in Fig. 1, where and are the input
and output voltages of the converter, respectively, and
are the diodes, is the inductor, is the output capacitor, is
the resistor, and is the transistor which control the converter
circuit operating in different modes. When the transistor is ON,

appears across the primary and then generates

(2)

where is the turns of primary power winding, is the turns
of slave power winding, and denotes the voltage drop oc-
curring by transistor and diodes and represents the unmodeled
dynamics in practical applications. The diode on the sec-
ondary ensures that only positive voltages are applied to the
output circuit while diode provides a circulating path for
inductor current. By the averaging method, the output voltage
can be expressed as [13]

(3)

Since , , and are considered as constants, dif-
ferentiating both sides of (3) with respect to time yields

(4)

where is the control gain which is a
positive constant and is the controller output. The con-
trol problem of forward switching power supplies is to control
the change of duty cycle so that the output voltage can
provide a fixed voltage under the occurrence of the uncertainties
such as the wide input voltages and load variations. The output
error voltage is defined as

(5)

Fig. 2. Block diagram of the ANW control for switching power supply.

where is the output reference voltage. The control law of the
duty cycle is determined by the error voltage signal to provide
fast transient response and small overshoot in the output voltage.
If the system parameters are well known, an ideal controller can
be designed as

(6)

If is chosen to correspond to the coefficients of a Hurwitz
polynomial, that is a polynomial whose roots lie strictly in the
open left half of the complex plane, then 0. Since
the system parameters may be unknown or perturbed, the ideal
controller in (6) can not be precisely implemented.

III. DESIGN OF ADAPTIVE NEURO-WAVELET CONTROL

In order to efficiently control the output voltage of the
switching power supplies, an ANW control system shown in
Fig. 2 is introduced. The configuration of the ANW control
system consists of a neural controller and a compensated
controller, i.e.

(7)

where is the neural controller and is the compensated
controller. The neural controller uses a WNN to mimic the ideal
controller and the compensated controller is designed to com-
pensate for the difference between the ideal controller and the
neural controller. Substituting (7) into (4), we get

(8)

The error equation governing the system can be obtained by
combining (6) and (8), i.e.

(9)
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A. Wavelet Neural Network

A four-layer WNN shown in Fig. 3, which comprises an input
layer (the layer), a mother wavelet layer (the layer), a wavelet
layer (the layer), and an output layer (the layer), is adopted
to implement the neural controller. The signal propagation and
the basic function in each layer are now introduced. In this sub-
section, the superscript denotes the number of layer. For every
node in the input layer, the net input and the net output are
represented as follows.

Layer 1: Input Layer:

(10)

(11)

Layer 2: Wavelet Layer:
A family of wavelets is constructed by translations and di-
lations performed on the mother wavelet. In the mother
wavelet layer each node performs a wavelet that is de-
rived from its mother wavelet. For the th node

(12)

(13)

where and are, respectively, the translation and
dilation in the th term of the th input to the node of
mother wavelet layer and is the total number of the
wavelets with respect to the input nodes.
Layer 3: Inference Layer:
Each node in the wavelet layer is denoted by , which
multiplies the input signals and outputs the result of the
product, i.e., the product of mono-dimensional wavelets
with respect to the input node. For the th rule node

(14)

(15)

where represents the th input to the node of wavelet
layer and is the number of wavelets.
Layer 4: Output Layer:
The single node in the output layer is labelled as , which
computes the overall output as the summation of all input
signals

(16)

(17)

where the connecting weight is the output action
strength of the th output associated with the th wavelet
and represents the th input to the node of output layer.

There are many kinds of wavelets that can be used
in WNN. In this paper, the Gaussian wavelet function

is selected as a mother wavelet
and one can take direct products of such scalar wavelets in the
multidimensional case in which is the frequency. Define the

Fig. 3. Structure of wavelet neural network.

vectors and collecting all parameter of hidden layer in
WNN as

(18)

(19)

Then the output of the WNN can be represented in a vector form

(20)

where , , and
.

B. Control System Design

The neural controller is designed to estimate the ideal con-
troller in (6). By the universal approximation theorem [21], there
exists an optimal neural controller such that

(21)

where is a minimum approximation error and is the optimal
parameter vector of . The approximation error is assumed to
be bounded by a positive constant (i.e., ). This ap-
proximation error bound is generally unobtainable in prac-
tical applications, so that it will be estimated in the following
derivations. Moreover, the optimal neural controller can not
be obtained, so that an online estimation neural controller is de-
fined as

(22)

where is an estimate of the optimal parameter vector . De-
fine the estimation error as

(23)
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Fig. 4. Snapshot of the experiment setup.

where . Define a tracking index as

(24)

which is the input of the neural network. Then, the error (9) can
be rewritten as

(25)

To relax the requirement of the uncertain bound , a bound
estimation mechanism is developed to observe the bound of the
approximation error. Define the estimation error of the bound

(26)

where is the estimated error bound. To guarantee the sta-
bility of the adaptive neuro-wavelet control approach, a Lya-
punov function candidate is defined as

(27)

where is a constant learning-rate, and is a variable
learning-rate, which will be discussed in the following sub-
section to speed up the convergence of controller parameter.
Differentiating (27) with respect to time and using (25), we get

(28)

where 2 . For achieving 0, the adaptive laws
and the compensated controller are chosen as

(29)

(30)

(31)

where is a sign function. Then (28) can be rewritten as

(32)

Since is negative semidefinite, that is
, it im-

plies that , , and are bounded. Let function
, and integrate

with respect to time, then it is obtained that

(33)
Because is bounded, and

is nonincreasing and bounded, the
following result can be obtained:

(34)

Moreover, since is bounded, by Barbalat’s Lemma [22],
0. That is, 0 as . As a result, the

stability of the proposed adaptive neuro-wavelet system can be
guaranteed.

C. Convergence Analyses

The adaptive law shown in (30) calls for a proper choice
of the learning-rate . For a small value of learning-rate,
the convergence of controller parameter can be guaranteed
but the convergent speed is very slow. On the other hand, if
the learning-rate is too large, the parameter convergence may
become more unstable. In order to train the WNN efficiently,
an optimal learning-rate will be derived to achieve the fast
convergence of output tracking error. First, the adaptive law
shown in (30) can be rewritten as

(35)

The central part of the training algorithm for a WNN concerns
how to obtain recursively a gradient vector in which each el-
ement in the training algorithm is defined as the derivative of
an energy function with respect to a parameter of the network.
This is done by means of the chain rule, and this method is gen-
erally referred to as the back-propagation learning rule, because
the gradient vector is calculated in the direction opposite to the
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Fig. 5. Experimental results of ANW control with � = 0.0005.

flow of the output of each node. In order to describe the online
training algorithm of the WNN, a cost function is defined as

(36)

According to the gradient descent method, the adaptive law of
the weight also can be represented as

(37)

Comparing (35) with (37), yields . Then, the
convergence analysis in the following theorem is to derive spe-
cific learning-rate to assure convergence of the output tracking
error.

Theorem 1: Let be the learning-rate of the WNN
output weights, and let be defined as

, where and is
the Euclidean norm in . Then, the convergence of the output
tracking error is guaranteed if is chosen as

(38)

Moreover, the optimal learning-rate which achieves the fast con-
vergence can be obtained as

(39)

Proof: Since

(40)

Then, a discrete-type Lyapunov function is selected as

(41)

The change in the Lyapunov function can be expressed as

(42)

Moreover, the error difference can be represented by

(43)
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Fig. 6. Experimental results of ANW control with � = 0.007.

where is the output error change and represents the
change of weight vector. Using (35) and (40), we get

(44)

Then (43) becomes

(45)

Thus

(46)

From (42) and (46), can be rewritten as

(47)

If is chosen as 0 2 , then
the Lyapunov stability of 0 and 0 is guaranteed so
that the output tracking error will converge to zero as .
Moreover, the optimal learning-rate which achieves the fast con-
vergence is corresponding to 2 0,
i.e.

(48)

which comes from the derivative of (47) with respect to and
equals to zero. This shows an interesting result for the variable
optimal learning-rate which can be online tuned at each instant.

In summary, the online learning algorithm of the ANW con-
troller is based on the adaptation law (30) for the weight adjust-
ment with the optimal learning-rate in (39). The effectiveness of
the adaptive neuro-wavelet control switching power supply can
be verified by the following experimental results.

IV. EXPERIMENTAL RESULTS

The block diagram of the computer control system for the
converter is depicted in Fig. 4. A servo control card is installed
in the control computer, which includes multi-channels of D/A,
A/D, PIO, and encoder interface circuits. The proposed ANW
control system is realized in the Pentium using the “Visual C”
language, and its control interval is set at 40 ms. The ampli-
tude of the dc-link voltage is controlled by the forward switching
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Fig. 7. Experimental results of ANW control with variable optimal learning-rate.

power supply according to the output of the proposed ANN con-
trol system. Two experimental cases are addressed as follows:
1) nominal case (the input voltage is set as 20 V) and
2) input variation case (the input voltage is changed to
25 V). In both cases, some load resistance variations with step
changes aretested: 1) from 20 to 4 at 300 ms, 2) from 4 to
20 at 500 ms, and 3) from 20 to 4 at 700 ms. The circuit
parameter values of the forward dc–dc converter are chosen as

4 3, 20 , 500 H and 2200 F.
The converter runs at a switching frequency of 20 KHz and the
controller runs at a sampling frequency of 1 KHz. The duty cycle
is generated by a PWM IC UC1825; the generated duty cycle
is directly proportional to the analog output of the controller.
The experiment of the proposed adaptive neuro-wavelet control
system is implemented based on the scheme shown in Fig. 2.
The input of the wavelet neural network is the tracking index
s. The wavelet neural network used in the study can be charac-
terized with the number of elements in layers 2,
5 and 25. In (30), for computing , is set as zero at
the first experiment. After converges, this convergent value is
then used as in the following experiments.

A. ANW Control With Constant Learning-Rates

To illustrate the influence of different learning-rates, first
is chosen as a small value. The experimental results of the ANW
control with 0.0005 for the two cases are shown in Fig. 5.

The converter responses are shown in Fig. 5(a) and (d); the as-
sociated control efforts are shown in Fig. 5(b) and (e); and the
estimated bound are shown in Fig. 5(c) and (f), respectively.
To speed up the tracking performance, the experimental results
of the ANW control with 0.007 for these two cases are
shown in Fig. 6. From the experimental results, it can be seen
that when a large learning-rate is chosen for achieving fast tran-
sient time, the overshoot is relatively large. From the observa-
tion, there exists a trade-off between the rise time and the over-
shoot for the choice of learning-rate. The design of the control
parameters must undergo the trail-and-error procedure and the
dependency on the expertise experience is unavoidable.

B. ANW Control With Variable Optimal Learning-Rate

The variable optimal learning-rate is used for the ANW con-
trol. The experimental results are shown in Fig. 7. Since the
learning-rate is automatically tuned, tracking performance is
better than that of constant learning-rates. However, since the
controller parameters are initialized from zero, the ANW control
has the drawback of large overshoot at the initial learning phase.
After training, the trained ANW control is applied to control
the forward switching power supply again. The experimental
results of the trained ANW control system for these two cases
are shown in Fig. 8. From the experimental results, it is seen that
the regulation performance of the trained ANW control is fur-
ther improved when the initial values are trained, and they can
achieve favorable robust characteristics for the load variations.
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Fig. 8. Experimental results of trained ANW control with variable optimal learning-rate.

Fig. 9. Transient response comparison.

A transient response comparison among these experiments is
shown in Fig. 9. After the ANW control has been sufficiently
trained by the developed learning algorithm, the trained ANW

control demonstrates a remarkable performance in voltage sta-
bilization, all in rise time, settling time, overshoot and load vari-
ation regulations. In conclusion, the trained ANW control can
achieve better performance than the other ones.

V. CONCLUSION

This paper has successfully implemented an ANW control for
a forward switching power supply. The effectiveness of the pro-
posed ANW control is verified by various experimental results.
From the experimental results, the output voltage of the forward
switching power supply can be maintained to follow the desired
output voltage with favorable transient response and regulation
performance. The major contributions of this paper are: 1) the
successful development of an ANW control system in which
the Lyapunov stability theorem is used to online tune the pa-
rameters, 2) the successful development of an online training
methodology with variable optimal learning-rate for the ANW
control system, 3) a computer-based experiment setup has been
created, and 4) the successful application of the ANW to control
the forward switching power supply.
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