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Abstract—This work proposes a novel Gaussian mixture-sound field landmark model for localization
applications, based on the principle that sound fields produced by sources at different locations
can be distinguished in terms of their statistical patterns. The experimental results indicate that
two microphones are sufficient to differentiate among the patterns. The proposed method is robust
against environmental noise and performs accurately in a complex environment. Moreover, it cannot
only detect the non-line-of-sight locations when the direct path between the microphones and the
location is blocked, but also can distinguish the locations aligned with respect to the line connecting
the microphones. However, using only two microphones, these scenarios are difficult to handle
by traditional direction-of-arrival or beamforming methods in microphone array research. The
experiments were conducted on a quadruped robot platform with an eRobot agent using embedded
Ethernet technology. Because of its high accuracy and low-cost, this method is suitable for robot
localization in real environments. The experimental results also show that the proposed method with
only two microphones outperforms the conventional multiple signal classification method (MUSIC)
technique with six microphones at various signal-to-noise ratios.

Keywords: Gausian mixture model; robot; sound field landmark; localization.

1. INTRODUCTION

Self-localization is one of the most important technologies for autonomous navi-
gation in robotics [1, 2]. The sensor cost, system flexibility, shelter effect (non-
line-of-sight) and precision are important issues in robot localization [3]. Local-
ization technologies have been developed for indoor mobile robots [1, 2] based on
various sensors, such as the inertial navigator sensor, ultrasonic sensor array, omni-
directional image sensor, radio frequency identification (RFID), wireless local area
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620 L.-W. Wu et al.

network (WLAN) and infrared (IR). Inertial navigation sensors utilize gyroscopes,
accelerate sensors and odometer recorders to calculate the robot’s location. How-
ever, the inertial navigator has inherent error accumulation problems, and typically
requires assistance from other sensors such as an ultrasonic sensor array, laser range
scanner or IR to compensate for the system errors and to provide the initial location
information [4–8]. For instance, Saito [9] proposed a teaching and playback navi-
gation system which records data from an odometer and an ultrasonic range sensor.
Ohya et al. [10] presented a navigation method using a camera and an ultrasonic
sensor. However, the shelter effect occurs when the direct path from the robot to the
sensor is blocked and could significantly influence the accuracy of these sensors.
Methods based on WLAN [11, 12] and RFID [13] that can overcome shelter effect
have been proposed. The WLAN-based methods [11, 12] require more than three
access point (AP) stations in the operation zone, and their accuracies are currently
limited to 1.5 and 2 m. These results are insufficiently accurate for general indoor
applications. In Ref. [13], a RFID-based technology was demonstrated to achieve
simultaneous localization and mapping using massive deployed RFID tags in space.
However, tag cost, receiving range, antenna size, convenience of deployment and
accuracy still need further investigations [14]. Lately, many researchers have em-
ployed omnidirectional image sensors, which can acquire a 360◦ view around a
robot, for their navigation systems [15]. For example, Matsumoto [16] proposed a
teaching and playback navigation method using a memorized omnidirectional view
sequence, and attained satisfactory experimental results in an indoor environment.
In Matsumoto’s method, the robot only used its views to match the memorized views
and decide its motion. However, the omnidirectional image sensor is more expen-
sive than the sensors mentioned above. Additionally, vision algorithms always need
more memory and computational effort than other methods mentioned above.

The characteristics of sound have already been used for localization or navigation
by animals, such as bats and dolphins. Instead of using passive sound from other
animals, these animals produce active sound into the environment and analyze the
response to obtain localization or navigation information. Similarly, blind people
can use their ears, experience and sound characteristics of an environment to locate
themselves. An environment’s sound field is perceived by animals or human beings
through the phase differences and the magnitude ratio, called the interaural time
difference (ITD) and the interaural level difference (ILD), respectively, among
sound-receiving sensors. Many authors have explored the idea of using the ITD of
two microphones for sound localization, by generalized cross-correlation (GCC)-
based methods. However, the ILD is seldom applied for localization since it
is considered unreliable [17], and lacks an explicit and stable relationship to
be formulated by a straightforward algorithm [18]. Indeed, both ITD and ILD
represent meaningful physical quantities for a sound field perception. It is the
variation in a complicated sound field that makes them hard to be used by simple
algorithms. Nakadai et al. proposed auditory epipolar geometry [19, 20] to extract
the directional information of sound sources by the integration of ITD and IID at the
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GM-SFLM for robot localization 621

position of the ears of a humanoid robot. To overcome the inaccuracy when sounds
come from the periphery, they further proposed a method to model the humanoid
head by scattering theory [21]. Instead of estimating the ITD and the ILD, this
study proposes a Gaussian mixture-sound field landmark model (GM-SFLM) to
model the ITD (the phase difference) and the ILD (the magnitude ratio) distributions
of a sound source in different locations. The experimental results demonstrate
that the GM-SFLM could accurately locate the robot in a non-stationary noisy
indoor environment, and overcome the shelter effect and the microphone mismatch
problem.

The proposed GM-SFLM is composed of the phase difference Gaussian mixture
model (GMM) and the magnitude ratio GMM. These two GMMs are combined
using proper weights and a method for determining the weights based on the
measurement of confidence level is proposed to improve the location detection
correct rate. Other parameters such as the mean, variance and mixture weights
within each GMM are derived from a set of location-dependent and content-
independent sound field data by maximizing the log-likelihood of the a posteriori
probability using the expectation-maximization (EM) algorithm [22], which can
guarantee a monotonic increase in the model’s log-likelihood value. With this
a priori GM-SFLM, the proposed system is able to localize robots in complex
environments. Moreover, the proposed localization system does not depend on the
geometric relationship between source locations and microphones, and can handle
both near-field and far-field problems. The experiment indicates that when the robot
is under the shelter effect, this system still provides high detection accuracy. Since
only two uncalibrated microphones are needed, a PC with a stereo recording sound
card can be employed to detect the robot’s location, which may reduce the cost and
power consumption of the system.

This paper is organized as follows. The following section discusses the related
works. Section 3 presents the system architecture and the localization procedures.
Section 4 describes the proposed GM-SFLM-based method in detail. Section 5
shows and discusses the experimental results. Conclusions are drawn in the final
section.

2. RELATED WORKS

Audible range sound devices are relatively inexpensive and common to many
mobile robots. Generally, sound devices (such as speakers) are used to generate
the sound for robots to communicate with people, present robot emotions or
alert users. If sound is allowed to be used for localization applications, then the
hardware cost and implementation complexity is minimal. Furthermore, the audible
range sound is omnidirectional, slowly fading and capable of transmitting a long
distance in a complex enclosure. The concept of employing a microphone array to
localize sound has been developed for over 30 years. The major procedures can be
separated into three categories: steered-beamformer-based methods [23, 24], GCC
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622 L.-W. Wu et al.

methods [25, 26] and methods based on eigenstructure analysis [27]. Among these
categories, GCC-based methods are the most appropriate for realizing with only
two microphones. These methods estimate the time delay between microphone
pairs and apply the sound propagation relation to obtain the source direction. The
performance of conventional GCC-based methods is sensitive to the reverberation
and noise. Brandstein et al. proposed Tukey’s biweight to the weighting function to
overcome the reflection effect [28].

In the robotic field, the methods mentioned above have also been broadly adopted.
These methods can help the robot to locate the sound source of interest [29–33]
or to localize the robot itself. Wang et al. proposed an acoustic robot navigation
system [34] in which 24 microphones were separated into two linear arrays and
mounted onto two orthogonal walls. The sound source’s location (which is also the
robot’s location) is determined by maximizing the likelihood function constructed
by the propagation relation and the GCC-based delay estimation. Owing to the
array geometry, this system can estimate the robot’s location in a two-dimensional
environment. Valin et al. proposed a multiple microphone-based method with
probabilistic post-processoring [35] to improve the robustness when some of the
microphones are unable to receive the sound properly.

When only two microphones are used, the methods mentioned above estimate
only the direction of the sound source, not the location. It means that the methods
cannot distinguish between different sound sources that are aligned relative to the
array. Furthermore, barriers may exist between the microphones and sound source
(the so-called the shelter effect) in real applications. Under these circumstances,
these methods estimate only the directions of reflection or diffraction and cannot
determine the real source direction. In practice, microphone mismatch is also
an important issue [36, 37], since the methods above assume that microphones
are mutually matched. Pre-matched microphones are relatively expensive and the
microphone calibration procedure is not always reliable because the characteristics
of microphone change with sound direction and are hard to measure precisely.

3. SYSTEM IMPLEMENTATION

The experimental platform used in this work is a dog-like pet robot, which includes
a quadruped robot (named ‘eRobot’ hereafter) that can be transparently controlled
through a wireless network. Figure 1 illustrates the localization scenario, where a
robot localization agent is mounted in an arbitrarily indoor position. The eRobot
can move and bark for model training and location detection.

Figure 2 depicts the eRobot, which has 16 d.o.f. in motion and an embedded
Ethernet [38, 39] for distributed and parallel access of the actuators and sensors.
A tiny network bridge integrates both wired and wireless networks (IEEE802.3 and
IEEE802.11b) (see Fig. 3). Through this bridge, the actuators and sensors can be
controlled and accessed transparently from any network-connected computer (e.g.,
the robot localization agent in Fig. 1). For detailed construction of the eRobot, refer
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GM-SFLM for robot localization 623

Figure 1. The overall system architecture.

Figure 2. Photograph of eRobot (named O-Di robot).

to Refs [40, 47]. eRobot motion planning is performed using the two-wheel model
[41] which includes commands such as forward, backward, turn around, etc.

The robot localization agent, which controls the eRobot to bark during localiza-
tion, is realized on an x86-based PC. This agent contains two microphones and
computes the GM-SFLM to locate the robot. Using the GM-SFLM, the robot lo-
calization agent can landmark, recollect and manage the eRobot’s location by the
barks from the eRobot. Figure 4 illustrates the robot localization methodology ar-
chitecture, which can be separated into three stages.
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624 L.-W. Wu et al.

Figure 3. Photograph of tiny network bridge module.

Figure 4. Robot localization methodology architecture.

3.1. First stage: pre-recording stage

In the first stage, called the pre-recording stage, the eRobot moves and barks in
the locations of interest when the environment is quiet to obtain the pre-recorded
database (denoted as S1(ω) and S2(ω) at each frequency ω from each microphone).
The database is employed to acquire the sound field characteristic of each location.
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GM-SFLM for robot localization 625

3.2. Second stage: silent stage

In the second stage, called the silent stage (e.g., no barking), the environmental
noise represented as E1(ω) and E2(ω) is recorded to collect the environmental
noise characteristic. Assuming that noise is additive, the received signal can be
expressed as a linear combination of barking signal and environmental noise. Under
this assumption, the GM-SFLM is trained using signals X1(ω) = S1(ω) + E1(ω)

and X2(ω) = S2(ω) + E2(ω). Details of the training procedures of the GM-SFLM
are described in Section 4.

3.3. Third stage: barking stage

The third stage is the barking stage, in which the GM-SFLM is duplicated into the
location detector to determine the robot’s location. Since the testing sequence frame
length is short in the barking stage, the noise characteristic is assumed to be the same
as that in the silent stage. Hence, the GM-SFLM obtained in the silent stage can be
adapted to the barking stage for location detection. Figure 5 shows the flowchart

Figure 5. The flowchart of the robot localization system.
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626 L.-W. Wu et al.

of the overall localization procedure. Additionally, a wireless Ethernet is adopted
to accomplish the stage synchronization and communication between the robot and
the robot localization agent.

4. ROBOT LOCALIZATION USING THE GM-SFLM

This section describes the proposed GM-SFLM, the procedures of obtaining the
model parameters and the location detection algorithm.

4.1. GM-SFLM description

To establish a sound field landmark, the localization agent (Fig. 1) needs to construct
models for the eRobot’s barking sound at different locations. Generally, two
microphones can provide the phase difference (i.e., time-delay) and the magnitude
ratio information in the frequency domain expressed in:

Mx(ω) = ‖X2(ω)‖2

‖X1(ω)‖2
(1)

Px(ω) = phase(X2(ω)) − phase(X1(ω)), (2)

where ‖·‖2 denotes the two-norm operation. Theoretically, the phase and magnitude
relate directly to the sound wave arrival direction and distance of the sound source.
However, these simple relations only exist in free space or environments with simple
geometry. In reality, complex boundary conditions and local sound scattering make
these values impossible to use deterministically. Alternatively, in this work, the
complexity enables the sound source to be located using the distributions of the
statistical sound patterns at different source locations. GMMs [42] are introduced
to model the distributions of the patterns. The sound pattern of a location contains
the phase difference and the magnitude ratio information that are modeled using
different GMMs, i.e., they are not joined together. Since the magnitude ratio
distribution and the phase difference distribution depend only on the location of
the sound source and are content-independent, they are easy to obtain whenever the
eRobot is barking.

Denoting Px(ωb) and Mx(ωb) as the phase difference and the magnitude ratio,
respectively, at frequency ωb, b = 1 − B and Px = [Px(ω1) · · · Px(ωB)]T,

Mx = [Mx(ω1) · · · Mx(ωB)]T as the associated vectors. The GMMs are defined as
the weighted sum of N1 and N2 mixtures of Gaussian component densities shown
below:

G(Px |λP) =
N1∑

i=1

ρP,igi(Px) (3)

G(Mx |λM) =
N2∑

i=1

ρM,igi(Mx), (4)
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GM-SFLM for robot localization 627

where ρP,i and ρM,i are the i-th mixture weights, and gi(Px) and gi(Mx) are the
Gaussian density function defined later. The terms λP and λM in (3) and (4) represent
the sets of mean vectors, covariance matrices and mixture weights from N1 and N2

component densities as:

λP = {ρP, µP, �P} (5)

λM = {ρM, µM, �M}, (6)

where ρP = [ρP,1 · · · ρP,N1] denotes the phase difference mixture weight vector with
dimensions 1 × N1, ρM = [ρM,1 · · · ρM,N2] denotes the magnitude ratio mixture
weight vector with dimensions 1 × N2, µP = [µP,1 · · · µP,N1] denotes the phase
difference mean matrix with dimensions B × N1, µM = [µM,1 · · · µM,N2] denotes
the magnitude ratio mean matrix with dimensions B × N2, �P = [�P,1 · · · �P,N1]
denotes the phase difference covariance matrix with dimensions B×BN1 and �M =
[�M,1 · · · �M,N2] denotes the magnitude ratio covariance matrix with dimensions
B × BN2.

The corresponding vectors and matrices defined above are:

µP,i = [µP,i(ω1) · · · µP,i(ωB)]T and µM,i = [µM,i(ω1) · · · µM,i(ωB)]T

�P,i =



σ 2

P,i(ω1) 0 0

0
. . . 0

0 0 σ 2
P,i(ωB)



 and

�M,i =







σ 2

M,i(ω1) 0 0

0
. . . 0

0 0 σ 2
M,i(ωB)







 .

Both gi(Px) and gi(Mx) in (3) and (4) can now be given using these notations as:

gi(Px) = 1

(2π)B/2|�P,i |2 exp

(
−1

2
[Px − µP,i]T�−1

P,i [Px − µP,i]
)

(7)

gi(Mx) = 1

(2π)B/2|�M,i |2 exp

(
−1

2
[Mx − µM,i]T�−1

M,i[Mx − µM,i]
)

. (8)

Notably, the mixture weights in (3) and (4) must satisfy the constraints:

N1∑

i=1

ρP,i = 1 and
N2∑

i=1

ρM,i = 1. (9)

The proposed GM-SFLM at each location is defined as the linear combination of
the phase difference GMM and the magnitude ratio GMM as:

FGM−SFLM = αPG(Px |λP) + αMG(Mx |λM), (10)

where αp and αM represent the weighting factors. The covariance matrices, �P and
�M, are selected as diagonal matrices. Although both the phase difference and the
magnitude ratio between microphone pairs may not be statistically independent,
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628 L.-W. Wu et al.

the GMM with diagonal covariance matrices can model the data correlations by
increasing the mixture number [43].

4.2. GM-SFLM parameters estimation

The parameters λP and λM in (5) and (6) can be estimated by the maximum
likelihood (ML) approach, which estimates the model parameters by maximizing
the log-likelihood of the GMMs as:

log G(Px |λP) =
T∑

t=1

log G(P (t)
x |λP) (11)

log G(Mx |λM) =
T∑

t=1

log G(M (t)
x |λM), (12)

where the superscript (t) denotes the t-th frame, and Px = {P (1)
x , . . . , P (T )

x } and
Mx = {M (1)

x , . . . , M (T )
x } are the sequences of the T -th input feature vectors.

However, direct maximization of the log-likelihood function for the mixture models
is numerically difficult due to their nonlinearity and strong coupling. This work
applies the iterative EM algorithm [22] which can guarantee a monotonic increase
in the model’s log-likelihood value. The iterative procedure can be separated into
the following two steps:
Expectation step:

G(i|P (t)
x , λP) = ρP,igi(P

(t)
x )

∑N1
i=1 ρP,igi(P

(t)
x )

(13)

G(i|M (t)
x , λM) = ρM,igi(M

(t)
x )

∑N2
i=1 ρM,igi(M

(t)
x )

, (14)

where G(i|P (t)
x , λP) and G(i|M (t)

x , λM) are a posteriori probabilities.

(i) Estimate the mixture weights:

ρP,i = 1

T

T∑

t=1

G(i|P (t)
x , λP) (15)

ρM,i = 1

T

T∑

t=1

G(i|M (t)
x , λM). (16)

(ii) Estimate the mean vector:

µP,i =
∑T

t=1 G(i|P (t)
x , λP)P

(t)
x∑T

t=1 G(i|P (t)
x , λP)

(17)

µM,i =
∑T

t=1 G(i|M (t)
x , λM)M (t)

x∑T
t=1 G(i|M (t)

x , λM)
. (18)
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GM-SFLM for robot localization 629

Figure 6. SFLM training procedure.

(iii) Estimate the variances:

σ 2
P,i(ωb) =

∑T
t=1 G(i|P (t)

x , λP)P
(t)
x

2(ωb)∑T
t=1 G(i|P (t)

x , λP)
− µ2

P,i(ωb) (19)

σ 2
M,i(ωb) =

∑T
t=1 G(i|M (t)

x , λM)M(t)
x

2(ωb)∑T
t=1 G(i|M (t)

x , λM)
− µ2

M,i(ωb), (20)

where b = {1, . . . , B}.
However, the EM algorithm only guarantees to find a local maximum log-

likelihood model which is sensitive to the choice of initial model. K-means [43]
is by far the most widely used method to obtain the initial model. Charles [44]
proposed an accelerated K-means algorithm, which utilizes the triangle inequality
to significantly reduce the computational power requirement. Charles’ method is
also suitable for discovering an appropriate initial model to lower the iteration
number of the EM algorithm. Figure 6 depicts the location model training procedure
with the total location number L.

The values of αP and αM can be chosen arbitrarily. However, poor choices of these
parameters would lead to a poor localization result. This work provides a method
to determine these parameters based on the sum of the correlation values among
locations of the phase difference GMM and magnitude ratio GMM. The GMM with
the higher correlation value sum would be assigned a low weight, since the ability
to discriminate is considered lower under this circumstance, and vice versa. Under
this principle, αP and αM are determined by the following formula:

min

{∑

qp

αp{CP(qP)UCP(qP)
T} +

∑

qM

αM{CM(qM)UCM(qM)T}
}

(21)
s.t. αPαM = 1, αP > 0, αM > 0,
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630 L.-W. Wu et al.

where qP ∈ Qp and qM ∈ QM are the B-dimensional random vectors in the
operation ranges, Qp and QM:

CP(qP) = [
C(qP|λP(1)) C(qP|λP(2)) · · · C(qP|λP(L))

]
,

CM(qM) = [
C(qM|λM(1)) C(qM|λM(2)) · · · C(qM|λM(L))

]
,

and:

U =





0 1 1 · · · · · · 1
0 0 1 1 · · · 1
... 0 0

. . . · · · 1
...

... 0
. . . 1 1

...
...

...
... 0 1

0 0 0 0 0 0





with dimension L × L.

In addition:

C(qP|λP(l)) = H(qP|λP(l))√∑
qp

H 2(qP|λP(l))

C(qM|λM(l)) = H(qM|λM(l))√∑
qM

H 2(qM|λM(l))
,

H(qP|λP(l)) = G(qP|λP(l)) −
∑

qp
G(qP|λP(l))

N(qP)
,

and:

H(qM|λM(l)) = G(qM|λM(l)) −
∑

qM
G(qM|λM(l))

N(qM)
,

where N(qP) and N(qM) denote the total selected numbers of qP and qM.
The values of αP and αM can be obtained by solving (21). The proof is given in

the Appendix:

αP =
√√√√

∑
qM

CM(qM)UCM(qM)T

∑
qp

CP(qP)UCP(qP)T
(22)

αM =
√√√√

∑
qp

CP(qP)UCP(qP)T

∑
qM

CM(qM)UCM(qM)T
. (23)

4.3. Location detection

The parameters λP(1), . . . , λP(L), λM(1), . . . , λM(L), αP and αM represent the GM-
SFLM of L locations, and the location is determined by finding the maximum
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GM-SFLM for robot localization 631

a posteriori probability for a given observation sequence:

l̂ = arg max
1�l�L

FGM−SFLM(l) = arg max
1�l�L

αPG(λP(l)|PY) + αMG(λM(l)|MY)

= arg max
1�l�L

αP
G(PY|λP(l))p(λP(l))

p(PY)
+ αM

G(MY|λM(l))p(λM(l))

p(MY)
, (24)

where PY = {P (1)
Y , . . . , P

(V )
Y } and MY = {M (1)

Y , . . . , M
(V )
Y } are the phase difference

and the magnitude ratio computed from the testing sequences denoted as Y1(ω) and
Y2(ω) and illustrated in Fig. 4, and V denotes the testing sequence length. The
probabilities p(λP(l)) and p(λM(l)) could be selected as 1/L since the probability
in each position is equally likely for a blind search. Since the probability densities
p(PY ) and p(MY ) are the same for all position models, the detection rule can be
recast as:

l̂ = arg max
1�l�L

αP

V∏

v=1

G
(
P

(v)
Y |λP(l)

) + αM

V∏

v=1

G
(
M

(v)
Y |λM(l)

)
. (25)

5. EXPERIMENTAL RESULTS

The first experiment was conducted using two microphones in a small room as
shown in Fig. 7. A total of 12 locations were defined for the test. The barking
signal of eRobot is illustrated in Fig. 8. Since the major frequencies of the barking
signal were limited to 1.7 kHz, the two microphones were spaced 0.1 m apart to
avoid the spatial aliasing effect [45]. In this experiment, the same barking sounds
are used in the first and the third stage. However, it is not necessary to restrict
the sounds produced by the robot as long as they have similar major frequencies
because the proposed features of phase difference and magnitude ratio distributions
are content independent. Considering the size of the eRobot, the location blocks
were assigned a radius of 0.4 m. The shelter effect occurred in this experimental
environment when the robot barked in the partitioned room, e.g., locations 1, 2
and 3 in Fig. 7. Additionally, locations 4 and 5 do not have direct sound paths to the
two microphones because of the table barrier. Figure 9 depicts the relative physical
configuration of the experimental environment and the robot. The experiment was
performed under four different signal-to-noise (SNR) conditions—the first in a quiet
environment and the others with background speech. Table 1 lists the SNR ranges
of the four cases. The received signals were sampled at 8 kHz and the window for
the short time Fourier transform (STFT) contained 256 zero padding samples and
32-ms speech signals, totaling 512 samples. Figure 10 shows the processed frame
and the overlapping condition.

The covariance values update in (19) and (20) may lead to numerical difficulties,
as the covariance matrices become nearly singular. In the experiment, the lower
bounds of the variances σ 2

P,i and σ 2
M,i were set to 0.02 and 0.01, respectively. The

selected frequency number B was set as 6, the training frame number was 500,
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632 L.-W. Wu et al.

Figure 7. Room map of the robot location experiment (the environment is complex and includes a
partition room).

Figure 8. The waveform and spectrogram of the barking signal.
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GM-SFLM for robot localization 633

Figure 9. The relative physical configuration of the experimental environment and the eRobot.

Table 1.
The SNR ranges of the four different conditions

Conditions Measured SNR ranges (dB)

1 – (quiet)
2 12.30–16.79
3 5.41–10.22
4 −12.89 to −8.71

Figure 10. A processed frame and overlapping condition.

and the frame length of the training sequence T and the testing sequence V were
set to 200 and 20, respectively. In other words, a 5-s barking sound recorded in the
pre-recording stage was used in the silent stage for training and a 200-ms sound was
used in the barking stage for testing (see Fig. 4). Additionally, five different mixture
numbers of GM-SFLM, 1, 2, 4, 6 and 8, were used to evaluate the performance.
Nine values separated uniformly in the operation ranges were specified for each
element of qP and qM to set the values of αP and αM using (22) and (23). Figure 11
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634 L.-W. Wu et al.

Figure 11. The relative probability of 12 locations.

shows the relative probability distributions (RPD) of one trial using the mixture
number of 8. The RPD is defined as

RPD(l) = αPG(λP(l)|PY ) + αMG(λM(l)|MY )

max1�l�L[αPG(λP(l)|PY ) + αMG(λM(l)|MY )] × 100%. (26)
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GM-SFLM for robot localization 635

The experiment is performed when the robot stops and the experimental results
indicate that the RPD of the correct eRobot location is distinctly separated from the
other locations and shows that the proposed method could easily detect the location.

Tables 2–5 show the correct rates for each experimental condition (Table 1) with
different mixture numbers in the GM-SFLM. The trial number of each location
is 100.

Notably, the experiment was performed blindly, without prior knowledge of the
robot’s position and heading direction. The analytical results demonstrate that
the correct rate is high especially when the mixture number is properly selected
and indicate that the sound field characteristic can be captured by modeling its

Table 2.
Experimental result (%) in condition 1 using the GM-SFLM

Mixture
number

Location number

1 2 3 4 5 6 7 8 9 10 11 12

1 99 69 31 99 25 100 100 100 83 100 100 100
2 100 100 96 100 63 100 100 100 100 100 100 100
4 100 100 100 100 97 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100 100 100 100 100

Table 3.
Experimental result (%) in condition 2 using the GM-SFLM

Mixture
number

Location number

1 2 3 4 5 6 7 8 9 10 11 12

1 100 72 41 95 19 100 96 77 95 72 75 82
2 100 99 89 100 90 100 100 100 99 99 98 100
4 100 99 100 100 48 100 100 100 100 100 94 100
6 100 100 100 100 100 100 100 100 100 100 97 100
8 100 100 100 100 100 100 100 100 100 100 100 100

Table 4.
Experimental result (%) in condition 3 using the GM-SFLM

Mixture
number

Location number

1 2 3 4 5 6 7 8 9 10 11 12

1 99 37 69 86 8 100 95 100 98 93 84 81
2 100 98 96 94 83 100 97 100 99 95 92 94
4 100 99 100 100 92 100 100 100 100 99 91 100
6 100 99 100 99 95 100 100 100 100 100 94 100
8 100 100 100 100 96 100 100 100 100 100 98 100
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636 L.-W. Wu et al.

Table 5.
Experimental result (%) in condition 4 using the GM-SFLM

Mixture
number

Location number

1 2 3 4 5 6 7 8 9 10 11 12

1 76 10 21 31 5 32 74 67 72 75 81 42
2 97 62 22 78 74 75 78 79 95 79 82 74
4 100 99 93 94 86 89 98 100 96 94 90 88
6 100 100 94 94 96 97 100 100 100 97 97 94
8 100 100 100 100 98 100 100 100 100 98 98 99

complexity. The correct rate between Locations 1 and 2 is also interesting. When
the mixture number is 1 (i.e., using a simple Gaussian distribution), the correct rate
at Location 1 is much higher than it is at Location 2. However, these two locations
are close to each other. Significantly, both the phase difference and the magnitude
ratio modeled by the GM-SFLM are physical quantities from wave propagation,
rather than artificially formed variables. This observation demonstrates that under
the shelter effect, the sound field characteristic changes drastically even with a small
movement in space of the source. Location 5 exhibits similar results when compared
with Locations 4 and 6.

To demonstrate that the locations cannot be found using the sound arrival delay
between the microphones, Fig. 12 plots the phase differences and magnitude ratios
at 0.65625 kHz at Locations 1 to 5. The data in Fig. 12 were obtained when the
robot was motionless and the environment was quiet. Note that all the selected
frames contained the barking sound and a local spectral peak of 0.65625 kHz.
The plot shows that the values do not correspond accurately to the sound arrival
direction. In brief, the phase differences of Locations 1–5 for the non-line-of-
sight cases are not constant to represent the accurate arrival direction, so does the
magnitude ratio. Furthermore, the overlapped variation of the values makes it hard
to determine the range for location detection. Nevertheless, the proposed approach
provides an accurate and robust location detection result in a complex environment.
Another interesting phenomenon is the values of αP and αM, which are determined
by (22) and (23). As the values of αP and αM vary with mixture numbers, GMMs
of the modeled locations, and SNR conditions, it is hard to show all the values of
αP and αM under all conditions. Generally, it is believed that the ITD dominates at
lower frequency and the ILD dominates at higher frequency. However, the values
of αP are not always larger or smaller than the values of αM. This is because the
values of αP and αM depend on the correlation values among locations instead of the
traditional physical concept of IID and IPD, and the phase difference distribution at
lower frequency may have a higher correlation than the magnitude ratio distribution,
which means that αP is smaller than αM. Consequently, we are unable to determine
which distribution would dominate. This work demonstrates that the sound field
can be applied for localization when the complexity is accurately modeled.
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GM-SFLM for robot localization 637

Figure 12. The measured phase difference and magnitude ratio at Locations 1–5.

The second experiment was performed to demonstrate the location detection
result when the robot was moving on a line from the robot localization agent.
The configuration of the experiment is illustrated in Fig. 13. Table 6 shows the
correct rates of each location when the mixture number is 8 and the trial number of
each location is 60. As the locations are aligned to the microphones, it is hard to
discriminate them by using traditional methods. However, as shown in Table 6, the
correct rates of the proposed method still remain more than 80% even under low
SNR conditions.

A well-known eigenstructure-based DOA estimator named MUSIC [27] with six
microphones was used to compare with the proposed method. The distance between
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638 L.-W. Wu et al.

Figure 13. Room map of the robot location experiment (the environment is complex and includes a
partition room).

Table 6.
Correct rate (%) using the GM-SFLM when the robot is on a line from the robot localization agent

Condition
Location number

1 2 3 4 5 6 7 8

1 98.33 100 97 98 100 100 98 100
2 97 100 99 100 100 99 100 100
3 97 100 97 98 100 100 97 98
4 83 100 95 98 98 100 92 88
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GM-SFLM for robot localization 639

Table 7.
Experimental results (%) of the MUSIC algorithm

Condition
Location number

6 7 8 9 10 11 12

1 100 55 84 83 87 68 59
2 100 56 84 83 86 69 58
3 100 56 85 83 86 69 57
4 99 48 87 76 78 62 41

microphones was 0.1 m. The experimental conditions were the same as the proposed
method and the arithmetic mean-based frequency band combination was adopted.
The frequency bands selected were those of the proposed method. Locations
1–5 were not taken into consideration in the experiment because they were under
the non-line-of-sight condition. Since the proposed method utilizes a priori
information of sound field characteristics, a non-blind the MUSIC approach [46]
that measures the transfer functions from the possible locations to the microphones
is adopted. Table 7 shows the correct rates of the localization results based on the
MUSIC method. As shown in Table 7, the MUSIC-based method could not provide
satisfactory correct rates, especially under low SNR cases.

6. CONCLUSIONS

This work proposes a robust robot localization system based on the sound field
using only two microphones in an indoor environment. The proposed method can
overcome practical issues such as the microphone’s mismatch, near-field effect,
shelter effect, and problems common in complex environments such as scattering
and coherent reflection. The key point is that these issues make the sound field
sophisticated enough to be discriminated with the proposed method if properly
modeled. This work proves that the proposed method can capture the sound field
characteristic with a very high localization correct rate. The accurate and robust
experimental results indicate a promising direction of using sound as a means of
localization where the devices are relatively inexpensive. However, several issues
can be explored further, such as the relation of the proposed model to acoustic
scattering theory and three-dimensional landmarks. These areas will be the work
of continuing research by the authors.
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APPENDIX: PROOF OF (22) AND (23)

The problem is formulated as:

min

{∑

qp

αp{CP(qP)UCP(qP)
T} +

∑

qM

αM{CM(qM)UCM(qM)T}
}

s.t. αPαM = 1, αP > 0, αM > 0.

According to the constraint, set αM = 1/αP. Then, the cost function becomes:

min

{∑

qp

αp{CP(qP)UCP(qP)
T} +

∑

qM

1

αp
{CM(qM)UCM(qM)T}

}
.

Setting the first derivative with respect to αP be zero gives:
∑

qp

CP(qP)UCP(qP)
T −

∑

qM

α−2
p CM(qM)UCM(qM)T = 0.

Therefore:

αP =
√√√√

∑
qM

CM(qM)UCM(qM)T

∑
qp

CP(qP)UCP(qP)T

αM =
√√√√

∑
qp

CP(qP)UCP(qP)T

∑
qM

CM(qM)UCM(qM)T
.
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