
210890-8044/07/$20.00 © 2007 IEEEIEEE Network • January/February 2007

xisting mobile telecommunications networks main-
ly support traditional voice services. In the future,
beyond third generation (B3G) and fourth genera-
tion (4G) mobile telecommunications networks

will provision many advanced data applications. Before
these mobile applications can be launched for service, it is
essential to conduct testing in order to ensure that these
applications are correctly implemented. Under the support
of National Telecommunication Program (NTP) in Taiwan,
this article describes system design for an Open Mobile
Alliance (OMA) service interoperability test (SIOT) plat-
form called NTP-SIOT. This platform supports test case
development for advanced mobile services (i.e., 4G ser-
vices) based on the TTCN-3 specifications [1, 2]. In NTP-
SIOT, we have developed several OMA multimedia
messaging service (MMS) [3, 4], and instant message and
presence service (IMPS) test cases that have been approved
by OMA. This article shows how applications such as MMS
can be tested in this platform. Typically, the OMA test
cases are split into two categories: conformance and interop-
erability test cases. The conformance test cases are used to
verify the adherence to normative requirements described
in the technical specifications. The interoperability test
cases verify that implementations of the specifications work
satisfactory. Our test cases support both conformance and
interoperability tests.

This article describes how MMS conformance tests can be
achieved in NTP- SIOT. We first briefly introduce the MMS
service that utilizes the HTTP and short message service
(SMS) technologies. Figure 1 illustrates the MMS architec-
ture. In this architecture, the handset (see (1) in Fig. 1), con-
nects to the MMS server (see (2) in Fig. 1) through the
Wireless Application Protocol (WAP) gateway for content
delivery, and through the Short Message Service Center
(SMSC) for control message delivery.

The MMS service can be mobile originated (MO) or mobile
terminated (MT). In the MO procedure, a handset (an MMS
client; see (1) in Fig. 1) uses the HTTP post method to send
a multimedia message to the MMS Server following path (a)
in Fig. 1. In the MT procedure, the MMS server uses the SMS
to notify the handset of a multimedia message arrival (path
(b) in Fig. 1). The handset then uses the HTTP get method to
retrieve the multimedia message (path (a) in Fig. 1). Figure 2

shows the NTP-SIOT environment for testing the above MMS
procedures.

In this figure, the NTP- SIOT (see (2) in Fig. 2) acts as the
MMS server in both the MO and the MT procedures. It con-
nects to the tested handset (see (1) in Fig. 2) through the real
mobile network or a network emulator such as Anritsu
MD8470A [11]. In the MO test procedure, the NTP-SIOT
waits for a multimedia message sending from the handset, and
verifies if the multimedia message is correctly received. In the
MT test procedure, the NTP-SIOT sends a multimedia mes-
sage to the handset, and the tester (see (3) in Fig. 2) com-
pares the received multimedia message and the original
multimedia message to verify if the handset can receive and
process the multimedia message correctly.

In this article we first describe the NTP-SIOT architecture.
Then we show how the MO and the MT MMS test cases are
implemented in this test platform.

TTCN-3 Test System
NTP-SIOT is a Testing and Test Control Notation version 3
(TTCN-3) test system. This system manages test execution,
interprets or executes compiled TTCN-3 code, and realizes
proper communication with the systems under test (SUT). As
illustrated in Fig. 3, the TTCN-3 system consists of the follow-
ing parts.

The Test Management and Control (TMC; see (1) in Fig.
3) is responsible for test execution control and test event log-
ging. The TTCN-3 Executable (TE; see (2) in Fig. 3) is
responsible for the interpretation or execution of the TTCN-3
modules (i.e., abstract test suites). The SUT Adapter (SA; see
(3) in Fig. 3) adapts the TTCN-3 communication operations
(of the TE) with the SUT (see (5) in Fig. 3). The Platform
Adapter (PA; see (4) in Fig. 3) adapts the TE to a particular
execution platform by creating a single notion of time for a
TTCN-3 test system, and implementing external functions as
well as timers.

Test Management and Control (TMC)
The TMC consists of four entities [2]. The Test Management
entity (TM; see (6) in Fig. 3) is responsible for overall man-
agement of the test system. After initiation, test execution
starts with the TM that is responsible for invocation of TTCN-

EE

Yi-Bing Lin, National Chiao Tung University
Ching-Feng Liang, Kuei-Hui Chen, and Hsin-Yu Liao, ITRI

Abstract
This article describes system design for an Open Mobile Alliance Service Interoper-
ability Test Platform called NTP-SIOT. Based on the TTCN-3 specifications, we
show how 4G mobile applications such as OMA multimedia messaging service
can be tested in this platform.

NTP-SIOT: A Test Tool for
Advanced Mobile Services

LIN LAYOUT 1/4/07 1:19 PM Page 21

IEEE Network • January/February 200722

3 modules (e.g., the MMS_Testcases_C_CT_Sending module
consisting of a set of MMS sending test cases.) including
propagating module parameters and/or extra testing informa-
tion to the TE if necessary.

The Test Logging entity (TL; see (7) in Fig. 3) is responsi-
ble for maintaining the test log, for example, test component
creation, start and termination, and data delivery to/from the
SUT. The logging requests to the TL are posted externally
from the TE or internally from the TM.

The External CoDecs (ECD; see (8) in Fig. 3) supports
external codecs to the TE. The codecs are used for encoding
and decoding of TTCN-3 values into bitstrings to be sent to
the SUTs. The TE passes the TTCN-3 data to an appropriate
encoder to produce the encoded data. The received data is
passed to an appropriate decoder to translate the received
data into TTCN-3 values. Note that if the TE does not use the
built-in codecs (see EDS elaborated below), then the external
codecs in the ECD entity are used. The external codecs can
be used in parallel with, or instead of, the built-in codecs asso-
ciated with the TE. A standardized interface is specified for
porting the external codecs between different TTCN-3 sys-
tems and tools.

The Component Handling entity (CH; see (9) in Fig. 3) is
responsible for distributing parallel test components. Specifi-
cally, the TE can be distributed among several test devices,
and the CH implements communication among these test
devices. Each test device includes the TE, SA, PA, CD, and
TL entities. Both the CH and TM mediate the test manage-
ment and test component handling between the TEs on differ-
ent test devices.

TTCN-3 Executable (TE)
The TE is decomposed into three interacting entities (T3RTS,
ETS, and EDS) to execute or interpret a TTCN-3 module [1].
These entities are described as follows.

The Executable Test Suite entity (ETS; Fig. 3 (10)) exe-
cutes or interprets test cases, and handles the sequencing and
matching of test events [5]. The ETS interacts with the T3RTS
entity to send, receive, and log test events during test case
execution, to create and remove TTCN-3 test components, as
well as to handle external function calls, action operations,

and timers. The ETS entity indirectly interacts
with the SA through the T3RTS.

The Encoding/Decoding System entity (EDS;
see (11) in Fig. 3) is responsible for the encoding
and decoding of test data, which includes data
used in communication operations with the
SUT. If no encoding has been specified for a
TTCN-3 module, the encoding of data values is
tool specific. The EDS entity indirectly interacts
with the SA through the T3RTS.

The TTCN-3 Runtime System (T3RTS; see
(12) in Fig. 3) entity interacts with TM, SA, and
PA, and manages the ETS and EDS entities.
The T3RTS starts the execution of a test case or
function in the ETS entity. It queries the TM
entity for module parameter values required by
the ETS and sends logging information to the
TL entity. It also collects and resolves associated
verdicts returned by the ETS entity [5]. The
T3RTS entity instructs the SA to send messages
or procedure calls to the SUT or the PA. It noti-
fies the ETS entity of incoming messages or pro-
cedure calls from the SUT as well as timeout
events. Before sending/receiving messages and
procedure calls to/from the SA, or handling
function calls and action operations in the PA

for the ETS entity, the T3RTS invokes the EDS entity for
their encoding or decoding. The T3RTS entity is also respon-
sible for storing events sent from the SA (or the PA) to the
TE, but have not been processed. The T3RTS entity main-
tains several port queues for input test events. Timeout
events, which are generated by TTCN-3 timers, call timers, or
test case timers, are kept in a timeout list specified in [6].

SUT Adapter (SA)
The SA adapts the communication between the TE and the
SUT. It maps the TTCN-3 test component ports to Test Sys-
tem Interface (TSI) Ports and implements the real TSI (Fig. 3
(c)) defined in [5]. The SA is responsible for propagating the
TE’s requests and SUT action operations from the TE to the
SUT, and notifying the TE of any received test events form
the SUT by buffering them in the TE’s port queues.

Platform Adapter (PA)
The PA implements TTCN-3 external functions and provides
a TTCN-3 test system with a single notion of time. External
functions and timers are implemented in this entity. Timers
that have been declared in the TTCN-3 modules are explicitly
classified in the TE. Timers that are created by the TE for
guarding TTCN-3 procedure calls or execute operations are
known in the TE as implicit timers. Both explicit and implicit
timers created within the TE are implemented by the PA.
Every timer is assigned a unique Timer Identification (TID).
The PA treats both explicit and implicit timers in the same
manner. The interface with the TE invokes external functions.
It also starts, reads, stops timers, and queries the status of
timers using their TIDs. The PA is responsible for notifying
the TE of expired timers.

Interfaces in a TTCN-3 Test System
Two interfaces are defined in a TTCN-3 test system: the
TTCN-3 Control Interface (TCI; Fig. 3a) and the TTCN-3
Runtime Interface (TRI; Fig. 3b). The TCI specifies the inter-
face between TMC and TE. The TRI defines the interface
between TE and SA/PA. All operation definitions are speci-
fied using the Interface Definition Language (IDL) [7, 8]. A

n Figure 1. The MMS architecture.

SMSC

(a)

(b)

Mobile
network

WAP gateway

MMS
client

(1)

MMS
server

(2)

n Figure 2. NTP-SIOT for MMS.

Tester
(3)

Network
simulator

Mobile network

WAP gateway

NTP-SIOT
(2)

Mobile
phone

(1)

LIN LAYOUT 1/4/07 1:19 PM Page 22

IEEE Network • January/February 2007 23

TCI/TRI operation call is an atomic
operation invoked by the calling
entity. The called entity implements
the TCI/TRI operation, and returns
control to the calling entity after
the operation is performed.

TTCN-3 Control Interface (TCI)
A TCI interface is bidirectional
where calling and called parts reside
in the TE and in the TMC. The TCI
consists of four subinterfaces [2].
The TCI Test Management Inter-
face (TCI-TM) supports operations
for managing test execution, pro-
viding module parameters and
external constants, and offering test
event logs. For example, the tciS-
tartTestCase operation called by
the TM starts a test case in the cur-
rently selected module of the TE
with the given parameters.

The TCI Test Logging Interface
(TCI-TL) includes operations for
retrieving test execution informa-
tion. For example, the tliMRe-
ceive_m operation is called by the
TE to log a received message for
the communication with the SUT.
The TL presents the information
provided in the parameters of this
operation to the user.

The TCI Component Handling
Interface (TCI-CH) consists of
operations that implement the man-
agement and communication
between TTCN-3 test components
in a centralized or distributed test
system. For example, the tciCre-
ateTestComponent operation is
called by the CH at the local TE
when a remote TE requests to cre-
ate a test component. The local TE
creates the required TTCN-3 test
component and passes its reference
pointer back to the remote TE
through the CH.

The TCI Coding/Decoding Inter-
face (TCI-CD) provides operations
to retrieve and access codecs. For
MMS testing in NTP-SIOT, TCI-CD is implemented in JAVA
with the following source files: MMS_Codec.java is the main
codec program, MMS_Constants.java defines constants used
in TCI-CD, MMS_Encoder.java implements encoding for
MMS tests, and MMS_Decoder.java impelements decoding
for MMS tests. The MMS encode operation is invoked by the
TE to encode a value into a binary packet data unit (PDU)
based on the encoding rules. Parts of the pseudo code are list-
ed in Fig. 4.

In the MMS encode operation, if no encoding rule in Fig. 4
lines 1–4 are matched, then Fig. 4 line 5 is executed for excep-
tion handling.

The MMS decode operation invoked by the TE decodes a
message according to the decoding rules and returns a
TTCN-3 value. Parts of the pseudo code are listed in Fig. 5.
In lines 1 and 2 of this operation, the message is decoded as a
character string. In lines 3 and 4, the message is decoded as

an MMS PDU. Line 5 determines the PDU type of message
and its TTCN-3 parser. Line 6 invokes the function decode
Pdu to covert the MMS PDU into a TTCN-3 value.

TTCN-3 Runtime Interface (TRI)
The TRI consists of two subinterfaces, triCommunication
and triPlatform. The triCommunication interface supports
the communication of a TTCN-3 ETS with the SUT. This
interface is implemented in the SA to initialize the TSI,
establish connections to the SUT, and handle message or
procedure based communication with the SUT. In addi-
tion, the triCommunication interface offers an operation
to reset the SA.

The triPlatform interface represents a set of opera-
t ions, which adapts an ETS to a particular execution
platform. Specifically, it provides mechanisms to start,
stop, read a timer, enquire its status, and add timeout

n Figure 3. The TTCN-3 system.

System under test (SUT) (5)

Test case 001Encoding/decoding
system (EDS) (11)

SUT adapter (SA)
(3)

Executable test suite (ETS)
(10)

TTCN-3 executable (TE) (2)

TCI (a)

TRI (b)

TSI (c)

TTCN-3 runtime
systems (T3RTS)
(12)

Test management (TM)
(6)

Component handler (CH) (9)External codecs (ECD)
(8)

Test logging (TL)
(7)

Test system user

Test Management and Control (TMC) (1)

Platform adapter (PA)
(4)

LIN LAYOUT 1/4/07 1:19 PM Page 23

IEEE Network • January/February 200724

events to the expired timer l ist . In addition, it offers
operations to cal l TTCN-3 external functions and to
reset the PA.

In the TRI operations, the TE is responsible for encoding
test data to be sent and decoding received test data. Explicit
error handling is specified only for TRI operations called by
the TE. The SA or PA reports the status of a TRI operation
in the return value of a TRI operation. The TE may react to
an error that occurred either within the SA or PA and issue a
test case error. For TRI operations called by the SA or PA,
no explicit error handling is required, since these operations
are implemented in the TE. For MMS testing in NTP-SIOT,
the TRI is implemented in a JAVA program MMS_Tes-
tAdapter.java.

In this program, the connection operations are implement-
ed to:

•Resolve TRI communication operations on TSI
ports that have mappings to multiple test compo-
nent ports

•Provide multicast communication in TCI
•Pass information about the TSI and connections

from the TE to the SA
•Support initialization after the invocation of a

TTCN-3 test case
An example is triMap, which is called by the TE when
it executes a TTCN-3 map operation. This operation
instructs the SA to establish a dynamic connection to
the SUT for the referenced TSI port. For MMS test-
ing in NTP-SIOT, two ports are defined in the TE.
The server port s_p is used when the test system is
viewed as an HTTP server. The client port c_p is
used when the test system is viewed as an HTTP
client.

The communication operations are used to:
•Define encoded test data
•Indicate a source or destination address within the

SUT or multicast communication in TRI
•Support procedure-based TRI communication oper-

ations
An example is triEnqueueMsg called by the SA after
it has received a message from the SUT. This opera-
tion passes the message to the TE, indicating the com-
ponent where the TSI port is mapped. Decoding of
received message is done in the TE. Another example
is triSend , called by the TE when it executes a

TTCN-3 unicast send operation on a component port, which
has been mapped to a TSI port. This operation instructs the
SA to send a message to the SUT. For MMS testing in NTP-
SIOT, two messages are sent by triSend: response message
such as m-send-conf (to confirm the multimedia message
delivery), and push message such as m-notication-ind (to
notify the arrival of multimedia message; this push message is
sent to the handset through the SMS) [9].

The timer operations are used to specify timer identifiers,
and timer durations in seconds. The miscellaneous operations
are used to specify the names of a test case or an external
function in a TTCN-3 module, and indicate the success or
failure of a TRI operation. An external function example is
viewSmilFile, which allows viewing the SMIL file with pro-
vided SMIL player:

public void viewSmilFile(CharstringValue player-
Location, CharstringValue smilFileLocation)

where playerLocation indicates the location of the SMIL
player program, and smilFileLocation indicates the loca-
tion of the SMIL file to be played. Another external function
is getCurrentTime that allows a test case to retrieve the cur-
rent system time.

MMS Conformance Test Scenarios
We use mobile-originated (MO) MMS and mobile-terminated
(MT) MMS to show how MMS test suits are implemented in
NTP-SIOT.

An MMS MO test case is illustrated in Fig. 6. This test case
verifies that messages with the SMIL layout portrait (a text
followed by an image) is correctly sent from the client (the
handset under test; i.e., the SUT). The TE first maps the main
test component port to the system server port s_p (Fig. 6, line
1); the triMap operation at the TRI is invoked). Then it pops
up an action window that instructs the tester (see (3) in Fig.
2) to send a multimedia message from the client (see (1) in

n Figure 4. The MMS encode operation.

public TriMessage encode (Value value) {
 // Build binary packet data unit (PDU) from a TTCN-3 “value”
1. if (the TTCN-3 value indicates “mSendReq”) {
 create a PDU representing the MMS request message;
2. } else if (the TTCN-3 value indicates “mSendConf”) {
 create a PDU representing the OK message for confirmation;
3. } else if (the TTCN-3 value indicates “mRetrieveConf”) {
 create a PDU representing the retrieving info. request;
4. ...
 }
5. if (an exception occurs during encoding) {
 }
}

n Figure 5. The MMS decode operation.

// Decode message based on the decoding hypothesis
public Value decode (TriMessage message, Type hypothesis) {
1. if (the hypothesis indicates that message is a char string) {
2. directly decode the message as a character string;
 }
3. if (the hypothesis indicates that message is an MMS PDU) {
4. retrieve the encoded MMS PDU “pdu” from the message;
 }
5. determine the type of pdu (e.g., send MMS request) and the
 corresponding parser “parser” (e.g., parser for send MMS request);
// invoke the decodePdu function to convert pdu into a TTCN-3 value
6. decodePdu (parser, pdu, value);
7. return value;
 }

n Figure 6. MO MMS test case.

testcase MMS_1_2_con_102 () {
//runs on MMS _Server system MMS_Server
1. map (s_p);
2. start the TWait timer;
3. if (s_p.receive () == “MMS_sendreq_102_r”) {
4. stop the TWait timer;
5. set verdict to “pass”;
6. s_p.send (MMS_sendconf_s);
7. } else if (s_p.receive () == “MMS_sendreq_any”) {
8. stop the TWait timer;
9. set verdict to “fail”;
10. s_p.send (MMS_sendconf_s);
11.} else if (s_p.receive) {
12. stop the TWait timer;
13. set verdict to “fail”;
14. s_p.send (MMS_sendconf_err_s);
15.} else if (TWait times out) {
16. set verdict to “inconc”;
 }
}

LIN LAYOUT 1/4/07 1:19 PM Page 24

IEEE Network • January/February 2007 25

Fig. 2). Immediately after the action window is pooped up,
the TWait timer starts at the PA (Fig. 6, line 2). The TE
receives a message from the client. One of the following four
situations occurs.
1. The received message matches the MMS_sendreq_102_r

template (lines 3–6, Fig. 6; the NTP-SIOT receives a cor-
rect multimedia message): When the s_p.receive func-
tion is executed (Fig. 6, line 3), the TE invokes the decode
operation in Fig. 5. After the message is decoded (through
the decodePdu fuction in Fig. 5, line 6), the
MMS_sendreq_102_r template is matched. This template
declares the matching condition and requested value of
each field in a SMIL file description command

smil := {{smil_top_left_r(“text,”0,0),
smil_left_r(“img,”0)}}

which represents a text followed by an image. The test
case stops the TWait timer at the PA (Fig. 6, line 4),
and sets verdict to pass (Fig. 6, line 5). It then sends
the client a message encoded using the MMS_send-
conf_s template (Fig. 6, line 6). This template is used
to encode an “OK” message. Note that when function
s_p.send is invoked, line 2 in Fig. 4 is executed to
encode this message.

2. The received message matches the MMS_sendreq_any
template (Lines 7–10, Fig. 6). This template indicates thtat
NTP-SIOT receives a multimedia message with unexpect-
ed content. The test case stops the TWait timer, and
delivers a message encoded by the MMS_sendconf_s tem-
plate (the “OK” message) to the client. It then sets verdict
to fail.

3. The TE receives other type of PDU from the client (lines
11–14, Fig. 6): the test case stops the TWait timer, and
delivers an error message “unknown message format”
encoded by the MMS_sendconf_err_s template to the
client. It then sets verdict to fail.

4. The TE receives nothing from the client (lines 15 and 16):
the PA notifies the TE that TWait is expired (Fig. 6, line
15). The test case sets verdict to inconc (Fig. 6, line 16);
indicating that an inconclusive exception occurs).
In situations 1–3, the SA receives the test event (the multi-

media message) from the client, and passes it to the TE
through the triEnqueueMsg operation. This test event is
buffered in the TE’s port queue. The TE then invokes the
decode operation at the CD to obtain the decoded message.
After the decoded message is processed, the TE invokes the
encode operation at the CD to encode the return value, and

then invokes the triSend operation to deliver the encoded
message to the client through the SA.

Figure 7 illustrates the MMS MT test case, which verifies
that a multimedia message is correctly received by the client
(the handset under test), and that the received message is rea-
sonably presented without error. The TE first maps the main
test component port to system client port c_p (Fig. 7, line 1),
and then sends an SMS message encoded using the MMS_noti-
fication_201_s template (Fig. 7, line 2) to the client
through path (b) in Fig. 1. The test case pops up an action
window that instructs the tester to retrieve the message at the
client. The system client port is unmapped (Fig. 7, line 3) and
then remapped to system server port s_p (Fig. 7, line 4). The
TWait timer is started (Fig. 7, line 5). If NTP-SIOT receives a
response from the client (Fig. 7, line 6), then TWait is stopped
(Fig. 7, line 7), and a return value encoded by the
MMS_retrieveconf_201_s template is sent back to the client
(Fig. 7, line 8); note that when the function s_p.send is
called, line 3 of the encode operation in Fig. 4 are executed. If
TWait is expired, then set verdict to inconc and the test case
is stopped (Fig. 7, lines 9–11). Figure 7, lines 12–14 check if
the multimedia message is correctly delivered to the handset.

Conclusions
This article has described the architecture and operations of
NTP-SIOT, an MMS test system that was developed based on
the TTCN-3 specifications. This system has been jointly devel-
oped by the National Telecommunication Program (NTP) and
the Industrial Technology Research Institute (ITRI) in Tai-
wan. We used the MO and MT MMS procedures to illustrate
how conformance tests can be implemented and conducted in
NTP-SIOT. Currently, six IMPS tests cases developed in
NTP-SIOT have been approved by OMA (for IMPS 1.2 and
1.3), including
OMA-IOP-IMPS-2005-0052-Group-Max-Active-User,
OMA-IOP-IMPS-2005-0053-PRES-Mood
OMA-IOP-IMPS-2005-0054-PRES-Language
OMA-IOP-IMPS-2005-0055-PRES-Address
OMA-IOP-IMPS-2005-0056-PRES-Location
OMA-IOP-IMPS-2005-0051-Group-history-function-
ality [10]

Acknowledgment
This work was sponsored in part by NSC Excellence projects
NSC 94-2752-E-009-005-PAE, NSC 94-2219-E-009-001, and
NSC 94-2213-E-009-104, NTP VoIP Project under grant num-
ber NSC 94-2219-E-009-002, NTP Service IOT Project under
grant number NSC 94-2219-E-009-024, Intel, Chung Hwa
Telecom, IIS/Academia Sinica, ITRI/NCTU Joint Research
Center, and MoE ATU.

References
[1] ETSI, “Methods for Testing and Specification (MTS); The Testing and Test

Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI),” ES 201
873-5 V3.1.1, 2005.

[2] ETSI, “Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI),” ES 201
873-6, V3.1.1, 2005.

[3] OMA, “Enabler Test Specification for MMS 1.2,” OMA-IOP-ETS-MMS-V1_2-
20040409-A, 2004.

[4] Y.-B. Lin and A.-C. Pang, Wireless and Mobile All-IP Networks, Wiley, 2005.
[5] ETSI, “Methods for Testing and Specification (MTS); The Testing and Test

Control Notation version 3; Part 1: TTCN-3 Core Language,” ES 201 873-1,
V3.1.1, 2005.

[6] ISO/IEC, “Information Technology — Open Systems Interconnection — Con-
formance Testing Methodology and Framework — Part 3: The Tree and Tab-
ular Combined Notation (TTCN),” ISO/IEC 9646-3, 1998.

[7] C.-M. Chou et al., “CCL OSA: A CORBA-based Open Service Access Sys-
tem,” Int’l. J. Wireless and Mobile Comp., 2005.

n Figure 7. MT MMS test case.

testcase MMS_1_2_con_201 () {
// runs on MMS_Mixed system MMS_Mixed
1. map (c_p);
2. c_p.send (MMS_notification_201_s);
3. unmap (c_p_);
4. map (s_p);
5. start the TWait timer;
6. if (s_p.receive ()) {
7. stop the TWait times;
8. s_p.send (MMS_retrieveconf_201_s);
9. } else if (TWait times out) {
10. set verdict to “inconc”;
11. return;
 }
12. if (the received message matches the sent message) {
13. set verdict to pass;
 } else {
14. set verdict to “fail”);
 }
}

LIN LAYOUT 1/4/07 1:19 PM Page 25

IEEE Network • January/February 200726

[8] I. Pyarali and D. C. Schmidt, “An Overview of the CORBA Portable Object
Adapter,” ACM Std. View Mag., vol. 6, no. 1, Mar. 1998.

[9] OMA, “Multimedia Messaging Service Encapsulation Protocol,” OMA-MMS-
ENC-V1_2-20050301-A, 2005.

[10] Open Mobile Alliance, Enabler Test Specification for OMA IMPS CSP,
OMA-ETS-IMPS_CSP-V1_2_1-20051115-A, 2005.

[11] Anritsu Corp., MD8470A Signaling Tester Product Introduction, http://
www.us.anritsu.com/products/ARO/North/Eng/showProd.aspx?ID=659

Biographies
YI-BING LIN [M’96, SM’96, F’04] (liny@csie.nctue.du.tw) is chair professor and
vice president (dean) of Research and Development, National Chiao Tung Uni-
versity, Taiwan. He is also with the Institute of Information Science, Academia
Sinica, Nankang, Taipei, Taiwan. His current research interests include mobile
computing and cellular telecommunications services. He has published more
than 200 journal articles and more than 200 conference papers. He is a co-
author of the books Wireless and Mobile Network Architecture (with Imrich
Chlamtac; Wiley, 2001) and Wireless and Mobile All-IP Networks (with Ai-
Chun Pang; Wiley, 2005). He is an ACM Fellow, AAAS Fellow, and IET/IEE
Fellow.

CHING-FENG LIANG received M.S. degree in electronic engineering from National
Taiwan University of Science and Technology (NTUST) in 1993 and joined the
Information and Communication Laboratory (ICL) of Industrial Technology
Research Institute (ITRI) as an engineer. He has led more than 10 projects of Tai-
wan Ministry of Economic Affairs (MoEA) to study and develop the technologies
of mobile network and services including GPRS/3G core network, WLAN/Cellu-
lar interworking and number portability service. He received the ITRI Award in
2005 and the Outstanding Project Award of Taiwan MoEA in 2003. He is cur-
rently the manager of the Core Network Department of ICL/ITRI.

KUEI-HUI CHEN is a senior engineer at ICL, ITRI since 2000. She received B.S.
and M.S. degrees from the Department of Computer Science and Engineering,
Yuan Ze University in 1998 and 2000. Her research interests include mobile
communication, wireless network, embedded system, and distributed computing.
She is leading the project of service interoperability testing (SIOT) platform devel-
opment.

HSIN-YU LIAO is currently a senior engineer at ICL, ITRI. She received her bache-
lor degree from Computer Science and Engineering Department at Yuan-Ze Uni-
versity in 1995. Her research interests include embedded system, network
communication, and multimedia software technology.

LIN LAYOUT 1/4/07 1:19 PM Page 26

