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On the Longest Edge of Gabriel Graphs
In Wireless Ad Hoc Networks

Peng-Jun Wan and Chih-Wei Yi, Member, IEEE

Abstract—In wireless ad hoc networks, without fixed infrastructures, virtual backbones are constructed and maintained to efficiently
operate such networks. The Gabriel graph (GG) is one of widely used geometric structures for topology control in wireless ad hoc
networks. If all nodes have the same maximal transmission radii, the length of the longest edge of the GG is the critical transmission
radius such that the GG can be constructed by localized and distributed algorithms using only 1-hop neighbor information. In this
paper, we assume a wireless ad hoc network is represented by a Poisson point process with mean n on a unit-area disk, and nodes
have the same maximal transmission radii. We give three asymptotic results on the length of the longest edge of the GG. First, we
show that the ratio of the length of the longest edge to \/g is asymptotically almost surely equal to 2. Next, we show that for any &,
the expected number of GG edges whose lengths are at least 2 h‘%{ is asymptotically equal to 2¢~¢. This implies that ¢ — oo is an
asymptotically almost sure sufficient condition for constructing the GG by 1-hop information. Last, we prove that the number of long
edges is asymptotically Poisson with mean 2¢7¢. Therefore, the probability of the event that the length of the longest edge is less
than 2,/2% is asymptotically equal to exp(—2e7¢).

™m

Index Terms—Wireless ad hoc network, Gabriel graph, asymptotic probability distribution, the longest edge, poisson point process,
topology control.
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1 INTRODUCTION

wireless ad hoc network is a collection of wireless
devices (transceivers) distributed over a geographic
region. Each node is equipped with an omnidirectional
antenna and has limited transmission power. A communica-
tion session is established either through a single-hop radio
transmission if the communication parties are close enough,
or through relaying by intermediate devices otherwise. Since
they have no need for a fixed infrastructure, wireless ad hoc
networks can be flexibly deployed at low cost for varying
missions such as decision making in the battlefield, emer-
gency disaster relief, and environmental monitoring.

In wireless ad hoc networks, each node is associated with a
maximal transmission radius. The network topology of a
wireless ad hoc network is a graph in which two nodes have
an edge between them if they are within each other’s
transmission range. A spanner is a subset of the network
topology in which the total cost, e.g., distance or energy
consumption, between any pair of nodes is only a constant
fact larger than in the original network topology. Hence,
spanners are good candidates of virtual backbones. The
topics about how to construct and maintain spanners are
called topology control. Geometric structures, including
Euclidean minimal spanning trees (EMST), relative neighbor
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graphs (RNG), Gabriel graphs (GG), Delauney triangulations
(DT), and Yao's graphs (YG), are widely used ingredients for
constructing spanners [1], [2], [3]. A topology control
algorithm is localized if each node only needs to collect
information from few hops neighbors.

In this paper, we study the critical transmission radius
for Gabriel graphs. In the GG, two nodes have an edge
between them if and only if there is no other node on the
disk using the segment of these two nodes as its diameter.
Assume all nodes have the same maximal transmission
radius 7. Then, the induced network topology is exactly the
r-disk graph over the set of nodes V, denoted by G,(V). To
construct the GG only by 1-hop neighbor information, the
transmission radius r should be large enough such that the
GG is a subgraph of the r-disk graph. Thus, the transmission
radius should be not less than the length of the longest edge
of the GG. On the other hand, for each node, if it can gather
the information of nodes that are not farther than its farthest
neighbor in the GG, it can decide all GG edges incident to it.
Therefore, the length of the longest edge of the GG is called
the critical transmission radius for GGs.

For modeling radio networks, Gilbert [4] proposed a
random geometric graph model in which devices are
represented by an infinite random point process over the
entire plane and two devices are joined by an edge if and only
if their distance is at most r. For modeling wireless ad hoc
networks which consist of finite radio nodes in a bounded
geographic region, a bounded (or finite) variant of the
Gilbert’s model has been used by Gupta and Kumar [5] and
others. In this variant, instead of an infinite random point
process, the ad hoc device is typically presented by a uniform
point process or Poisson point process over a disk or a square
by proper scaling. The largest nearest-neighbor link problem
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hasbeen studied by Dette and Henze [6], and the longestedge
of the EMST that is related to the connectivity problem has
been studied by Penrose [7]. Based on their results, the
probability of the event that the length of the longest edge of
the EMST is less than /22

=" for some constant ¢ is equal to
exp(—e~¢) asymptotically. Recently, Kozma et al. [8] proved

that the maximal length of an edge in the DT of a uniform

3/Inn

n-point process in a unit disk is O(

In what follows, ||z|| is the Euclidean norm of a point
r € IR?.| A is shorthand for 2-dimensional Lebesgue measure
(or area) of a measurable set A C IR? or the cardinality of a
countable set A. All integrals considered will be Lebesgue
integrals. The topological boundary ofaset A C IR*isdenoted
by 0A. The disk of radius r centered at x is denoted by B(z, r).
The special unit-area disk centered at the origin is denoted by
. For any set S and positive integer k, the k-fold Cartesian
product of S is denoted by S*. An event is said to be
asymptotically almost sure (abbreviated by a.a.s.) if it occurs
with a probability that converges tooneasn — co. Aneventis
said to be asymptotically almost rare (abbreviated by a.a.r.) if it
occurs with a probability that convergesto zeroasn — oco.The
symbols O, o, ~ always refer to the limit n — oco. To avoid
trivialities, we tacitly assume n to be sufficiently large if
necessary. For simplicity of notation, the dependence of sets
and random variables on n will be frequently suppressed.

The remainder of this paper is organized as follows: In
Section 2, we give a brief review of our main results. In
Section 3, we present several useful geometric results and
integrals. In Section 4, we derive the asymptotic length of
the longest edge. In Section 5, we drive the asymptotic
expected number of long edges. In Section 6, we drive the
asymptotic distribution of the length of the longest edge.
We summarize this paper in Section 7.

2 MAIN RESULTS

In this paper, we assume a wireless ad hoc network is
represented by a Poisson point process over a unit-area disk
with mean n, denoted by P, and all nodes have the same
maximal transmission radius r,, which is a function of n. We
use G(P,) to denote the Gabriel graph over P,,. For simplicity,
the edges of GGs are called Gabriel edges. If G is a geometric
graph, we use A\(G) to denote the maximal length of an edge of
G and N(G,1) to denote the number of edges of G whose
length is at least . Our first main result is the next theorem.

Theorem 1. For any constant ¢ > 0, we have

(1— 5)2\/% S AG(Prn)) < (1+¢)2 lwnrﬂ -

According to Theorem 1, if each node sets its maximal

lim Pr
n—00

transmission radius to r, = 3 % for some constant 3, then
the r,-disk graph over P,, a.a.s. contains the GG if 3 > 2, and
on the contrary, the r,-disk graph a.a.r. contains the GG if
B < 2. Therefore, 3 = 2 is the threshold for constructing the
GGby 1-hop information. For reference, weremark that 3 = 1

is the threshold for the r,,-disk graph being connected [5], [9].
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Inn+€

™

Now, we assume r,, = 2 for some constant £. For a
given &, we call the edge whose length isnotless thanr, along
edge. The next theorem gives us the asymptotic expectation of
the number of long Gabriel edges.

Theorem 2. For the expectation of the number of long Gabriel

edges, we have
Inn+¢&
nm

Since Pr[X = 0] =1 — Pr[X > 1] > 1 — E[X] for any non-
negative integer value RV X,

lim E =2¢7¢,

n—oo

N(G(m,Q

Inn+¢&
™m

N(G(Pn), g/t 5) = 0}
nm

N(G(Pn), gy /mtE Z: 5)

~1—2¢e7¢.

Pr |:)\(G(Pn)) <2

=Pr

>1—-E

Therefore,

Inn+¢
™

=1,
f*}OC‘ n—oo

lim lim Pr |:)\(G('Pn)) <2

and £ — oo is an a.a.s. sufficient condition for A(G(P,)) <

1“:—:5 In the next theorem, we give the asymptotic
probability distribution of the number of long Gabriel edges,
and thatimplies the asymptotic probability distribution of the
length of the longest edge.

Theorem 3. For any constant &, the total number of Gabriel edges
whose lengths are at least 2 % is asymptotically Poisson
with mean 2e¢.

Since
Inn +¢&
P
r{AG(Py)) <2 p—
—Pr N(G(P,L),Q Inn+ 5) _ o} :
nmw
according to Theorem 3, we have
lim Pr {)\(G(Pn)) <2 In n;—f = exp(—2¢e7%).
n—00 T

3 PRELIMINARIES

In this section, we shall give some definitions and lemmas
that will be used to prove our main results.

3.1

The results in this section are purely geometric, with no

Geometry Preliminaries

probabilistic content. Let ID denote a unit-area disk, Ry = %
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Fig. 1. The partition of the unit-area disk ID.

denote the radius of ID), and o denote the origin. Without
loss of generality, we assume ID) is centered at the origin. For
a given transmission radius r, the unit-area disk ID is
partitioned into ID),(0), D), (1), and ID),(2) as shown in Fig. 1:
D, (0) is the disk of radius \/L;— r centered at the origin,
ID,.(1) is the annulus of radii ﬁ —rand /1 — 72 centered at
the origin, and I, (2) is the annulus of radii 4 /% — 72 and

centered at the origin. Then,

1
Nz

D, (0)] = (1 — /)%, [D,(1)] = zm(% _ )
and [ID,(2)| = 72

If R is a positive number, for any finite set of nodes
V ={x1, -, 2z}, we use Gg(z1,- -, x;) or Gp(V) to denote
the R-disk graph over {z1, - -, z;} in which there is an edge
between two nodes if and only if their Euclidean distance is
at most R. For any positive integers kand m with 1 <m < k
and any positive number R, let Cj,,(R) denote the set of
(z1,--,xp) € D* satisfying that Gogr(x1, - - -, x)) has exactly
m connected components. For any two points u and v, let
D, denote the disk with the segment uv as a diameter, i.e.,
D,, = B(% , @) We have

1
Dl = gllu— ol

For any r = (ry,---,7%) € (0,Ro)" and z = (z1,---,23) €
IV, B(zy,71),- - -, B(xy, ri) are called feasible if

i — il = /|2 = 72|

for any i # jand ||z; — o|| < \/ R} — 7 for any i. We remark
that ||z; — o] < y/R% — r? if and only if z; € ID,,(0) U, (1),
\/|r? = 73| if and only if both disks B(z;, ;)

and B(xz;,r;) do not contain each other’s diameter. Let 1], be

and H.CIJ7 — l’]” Z

an indicator such that 1/ =1 if B(zy,r),---, B(xy, ;) are
feasible, and 17 =0 otherwise. In what follows, we only
consider feasible disk sets. We use v,(z) to denote the area

of Ule B(z;,r;) NID, and sometimes by slightly abusing the
notation, to denote the union region itself. If k=1, for
z€,(0), v(z) =m? and, for z € D,(1), v.(z) >im?

Fig. 2. If z € D, (1), then 8(z,r) = 2/axb.

Furthermore, the following lemma proved in [10] gives a
tighter lower bound for v,(z).

Lemma 4. For any z € ID,(1),

1 1
v (z) > 571'7'2 + (ﬁ — Ha:H)r
The next lemma gives a lower bound for the area of the
r-neighborhood of more than one nodes.
Lemma 5. Let R < ﬁRU, c=003 2= (x1, ,x%) € DF, and
r=(r, ) € AR, R]k. Assume x; has the largest norm
among xi,---,xy, and |lz; — ;|| < 2R if and only if
|t —j| <1.If1, =1, then
k-1
vr(2) > vy (1) + CRZ lzria — |-
=1
The proof of Lemma 5 is given in the Appendix.
Corollary 6. Assume R < 1 Ry and ¢ = 0.03. If x = (1, - - -,
a) € Ca(R), v = (r1,-+-,m) € AR, R]k, 1" = 1,and x; has
the largest norm among x, - - - , xy, then

ve(x) > vy (1) + cR %Ei)i”% — a1

Proof. Without loss of generality, we assume that ||z, — 1|
achieves max ||zi — z1]|. Let P be a min-hop path between
<i<k

z1 and zj, in Gap(x1, T2, - - -, 1) and t be the total length of

P. Then, every pair of nodes in P that are not adjacent
nodes in P are separated by a distance of more than R.

Thus, by applying Lemma 5 to the nodes in P, we obtain
I/({,.l‘xyep})({(ri | z; € P}) > vy, (21) + cRt.

Since v,(x) > v((r|mery ({zilzi € P}) and ¢ > ||z, — 24,

the corollary follows. 0

For z € D and r € IR, let f(x,r) denote the (total) central
angle corresponding to the portion of 0B(x, ) in which, if a
diameter of B(x,r) has endpoints, it is fully contained in 1.
For example, in Fig. 2, € D, (1), b and ¢ are intersection
points of 9B(z,r) and JID, and segment ac is a diameter of
B(z,r). Then, §(x,r) = 2/axb. If x € ID,(1), we use t(x) to
denote the distance between x and JID. We have
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Fig. 3. A polyquadrate is a collection of grids that intersect with a
polygon.

O(z,r) = 2w, if x € D?,(0);
9(m7r)<4arcsmt(r)<42 (r) if x € W,(1); (1)
O(z,r) =0, if z € D, (2).

An e-tessellation is to divide the plane by vertical and
horizontal lines into a grid in which each cell is with width e.
Without loss of generality, we assume the origin is a corner in
the grid. A collection of grid cells intersecting with a polygon
oraconvex compactsetis called a polyquadrate. For example,
in Fig. 3, the shaded grid cells form a polyquadrate. The
horizontal span of a polyquadrate is the horizontal distance
measured by the number of grid cells from the left to the right.
The vertical span of a polyquadrate is with similar definite,
but for the vertical distance.

Lemma 7. If S consists of m grid cells and n is a constant, the
number of polyquadrates with span less than n and
intersecting with S is ©(m).

Proof. Since n is a constant, the number of polyquadrates that
have spans less than n and contain a specified grid cell is
also constant. Since S consists of m grid cells, the lemma
follows. ]

3.2 Extremes of a Collection of Poisson RVs

The next lemma gives an a.a.s. upper bound and lower

bound of a collection of Poisson RVs.

Lemma 8. Let Y; be a Poisson RV with rate \; fori=1,---,1I,
and let ¢ > 0 and (3 > 0 be constants. Suppose I,, = O((;*)°).
If > cand \; > Blnn, we have

I,
hm Pr |:mlPY > 0}

If}/lanf":
we have

Yy, are independent, 3 € (0,c), and \; < flnn,

lim Pr |:ml{lY = 0}

n—oo

Proof. Let X; = 1{y,_¢; and X = S X;. We have

JANUARY 2007

I,
Pr |:H17i{lYE > 0} =Pr[X =0]=1-Pr[X > 0

Therefore, if 3> cand \; > Glnn,

1, 1
Pr{mi}lYi > 0} >1- ZPI[YL- =0=1- Zef)‘l
= i=1 i=1
1,

>1-— Ze—(ﬂnn —1— @((li)c)e—ﬂlnn
nn

=1

c—f3
= 1—@(”C ) ~1.
In“n

IfY1,Y5, -

,Y;, are independent, we have

I I, L
Pr[minY};:O} :1—Pr[minY; > 0] =1- I I Pr[Y; > 0]
i=1 i=1 11

I, I, In
=1-T[a-pPiy;=0))>1— He Y0 o= D2, PrlYi=0],
=i 1=

Therefore, if 5 € (0,¢) and A; < Slan,

In In
Pr(min Y}zO) 21—672 Pr(¥i=0) 72 ¢
1<i<I,
In_gn n \“) ,—Bnn n¢—f
>1-— e*ZHS o =1 efe((m) )e e 1— e_(—)(T':) ~ 1.

a

3.3 Palm Theory and Brun’s Sieve

Here, we state the Palm theory [11], [12] on the Poisson

point process.

Theorem 9. Let n > 0. Suppose k is a positive integer and h(), X)
is a bounded measurable function defined on all pairs of the form
(¥, X) with X C IR? being a finite subset and Y being a subset of
X satisfying h(Y, X) = 0 except when ) has k elements. Then,

>

VP

E

h(Y, Pn):| = Z—?E[h()(k, X UPL)],

where the sum on the left-hand side is over all subsets Y of the
random Poisson point set P, and, on the right-hand side, the
set Xy, is a binomial process with k nodes, independent of P,,.

The next theorem is called Brun’s sieve, which is a
traditional approach to the Poisson process and will be used
to prove Theorem 3.

Theorem 10. Assume m(n) is a nonnegative integer random
variable. Let By, - - -, By, be events, Y be the number of B;
that holds, and

S —
{in,e yS{1,

Pr[B;, A---
am(n)}

A B;).

¢l

Suppose there is a constant p such that, for every fixed k,

. 1
D ~ =
B[] ~ 24

Then, Y is also asymptotically Poisson with mean p.
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Proof. To prove this, we need to show that, for any &,

k
PrlY =k — %67“.

Forany i > j > 1, let

ng) _ Z

(i1, {Lm(n))

Pr[B;, A--- A B, | m(n) =1].

For convenience, let S© =1 and S,E“)
note that, for any j > 1,

E[$9] = 3" 8 Prlm(n) = i].
i=j
According to the inclusion-exclusion principle, we have

Pr[y =0]=1- 5" 4+ 5% —
> (i(l)ja@
i =0

(Z (Z S Pr[m

=>(-1yBis

J=

) Pr[m(n) =i

=)

In the general form, we have

PrlY = k| = (:) stk (kz 1) S+ 4

i=k \ j=k
_ 2( 1)/—k( i}{) <§;5§j>Pr[m(n)=Z]>>

Then, following the proof outline given in [13], Chapter §,
the theorem can be proved. 0

Here, we remark that Theorem 10, in which the number
of events is a random variables is an extension to the
traditional Brun’s sieve described in [13] which is an
implication of the Bonferroni inequalities.

3.4 Integral Preliminaries

First, we introduce a technique to obtain the Jacobian
determinant in the change of variables. Assume a tree
topology is fixed over z1,zs,- -, z), € IR?. Without loss of
generality, we may assume (zj_1, ;) is one of edges. Let
Zj1 = 3 (xh-1 + ax), 7 = 3||@k — 241, and 0 be the slope of
xp_1x). For 1 <1i < k— 2, we use p(z;) to denote z;’s parent
in the tree rooted at x;, and let z; = 1 (z; + p(z;)). Then,

= 1. In addition,

Oy, -+ apy, o) | |01 +p(a1), -+ 21 + p(@h), 2h)
8(217"'72’%71’7‘76) 8(2517"',Zk,1,7",0)
ni+p(@) | Tk +p(@re) )
_ 4k71 8( 9 } ) ) s T
6(21, Uy RE-1,T, 9)
_ 1[0 e, T — 2
6(2’]7"'72167177“79)
L -+ 0 0
e . :
=4 R 0
0 cosf) —rsinf
sinf rcosf
4+l

Now, we give several lemmas about the limits of integrals,
but leave their proofs in the Appendix.

In rL+

Lemma 11. Let re =2 £ for some constant &, and either

R,=3,/%%0r R, =2 % with &, = o(lnn) and &, — .

Then,
?/ / D e D Arf(z, r)dzdr ~ 2e¢
r:T—f ze
2

In the remainder of this section, we always assume r; =
In n+¢ _ Inn+&, o, _
2\ /= for some constant £, and R, = 2 — with €, =

o(Inn) and &, — oc.

Lemma 12. For any fixed integer k > 2,

k
17— (2) O oAy, —
( )/%% /76@1*?— H4n€(z,,r,,)dz,,dn o(1).

() i=1

Lemma 13. For any fixed integers 2 < m < k,

n2 k k
= 17 @ 1T 49.0( 2. ) dz:dr;
(2> \[e[%%]k \/zEC;‘m(%) ,€ 1];[ Ti (217”) Zi AT

=o(1).

Lemma 14. For any fixed integer k > 2,

H 4r;0(z;, r;)dzdr;

k
( > / / e*TLlIT(Z)
E[ € R,.]“ 2€C(Be) -

i=1
2675

Lemma 15. For any constant m > 3 and % > ¢ > i > 1, let 5%

7Zm—t) S C(m—t)l(%) SﬂtiSﬁ/iTlg
that z; is the one with largest norm and z; is the one with

denote the set of (z1,z9,- -

smallest norm among z,- - -, zy. Then,
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t
) / ’ e (v (@) eRullzi=21)) (H 60 2k, Tk)d?"k)
: ] 2€8%

B e
m—t
( dzk> ~o(1).
k=

4 ASYMPTOTIC LENGTH OF THE LONGEST EDGE

This section is dedicated to the proof of Theorem 1.

—_

4.1 Lower Bounds for the Longest Edge Length
In this section, we are going to prove the following lemma that
gives lower bounds for the length of the longest Gabriel edge.

Lemma 16. For any constant 3 € (0, 2),

1
nn} _1

n—00 ™

lim Pr {)\(G(Pn)) >

Assume [ and (3, are positive constants, and R, and R;
are given by nmnR} =3 Inn and nwR} = Inn, respec-
tively. Choose f31, 3; such that max(1, 3%) < 8 < 4 < 4 and
’(f—; - % < 1. Here, c is given by Lemma 5. It follows that
LRy < Ry < R,. Consider a (3 lﬁ—j) -tessellation and the
grid cells within ID). Let I,, denote the number of cells fully
contained in . Here, I, =O(;%). For each cell fully

Inn
contained in I, we draw a disk with radius % % at the
center of the cell. For 1 <17 < 1I,, let E; be the event that
there exist Gabriel edges whose midpoints are on the ith

disk and whose lengths are between R; and R,. Hence,

Pr

1
MG(Py)) > 5 nn} > Pr [at least one E; occurs)].
™m

We have that E,---,E}, are identical. If o; denotes the
center of the ith disk, v and v are two points such that their
midpoint is on the ith disk, and the distance between them
is between R; and Ry, then, for any point w € D,,, we have

1
+ 0,;—§(u+1))

1
w—g(u—kv)

<1R+1 /1nn<3 Inn
-2 2V nr 2V nmw

Therefore, u, v, and D,, are contained in the ith cell. (See
Fig. 4.) Hence, E,, - - -, E;, are independent. Then,

[w—oi <

Pr [none of E; occurs] = (1 — Pr[El])I” — elnIn(1=PrE])
< e In Pr(El)'

If I,, Pr(E,) — oo, we may have

Pr

NG(P) > 6 lmﬂ -1

In the following, we shall prove that I, Pr(E;) — oo.

Let A denote the first disk. Assume V is a point set and
Y c V. Let hy(Y,V) denote a function such that hy(Y =
{xl,xg},V) =1 only lf%(ZL’l + 1’2) € A, R1 < ||£L'1 — £EQ|| < RQ,
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Fig. 4. D,, is fully contained in the cell.

and there is no other node of V in the disk area D, ,,;
otherwise, hi (Y, V) = 0. Hence, F; is the event that there exist
two nodes X,Y € P, such that »({X,Y}, P,) =1. In the
remainder of this section, we use X, X5, X3, and X, to denote
independent random points with uniform distribution over
ID and independent of P,,. Let F; be the event that

h‘l ({X], X2}7 {X17X2} U Pn) = 1,
F; be the event that
hl({XlaXQ}y {Xl’ X27X3} U Pn)
: hl({X17X3}a {X17X23X3} U Pn) == 17
and Fj be the event that
ha({ X1, Xo}, { X1, Xo, X3, X4} UP,)
ch({ X5, Xa}, { X1, X0, X3, Xy} UP,) = 1.
We claim that

n? n’ n'

aPr[Fﬂ - ?PI‘[FQ] - gPI‘[Fg]. 2)
We shall prove this claim by the Palm theory and Boole’s
inequalities. For clarity, we use X}, X3, X}, and X} to

denote elements of P,. For any {z1,zs,z3} C V, let

ho({z1, @2, 23}, V) = ha({z1, 22}, V) - ha({z1, 23}, V)
+hi({x2, 21}, V) - hi({20, 23}, V)
+ hi({zs, 21}, V) - hi({s, 22}, V).

For any {z1,zs, z3, 24} C V, let
hs({z1, 22, 3,24}, V) = hi({z1, 22}, V) - hi({s, 24}, V)

+ hl({mhxi%}v V) : hl({x27x4}7 V)
+ hl({xl,x4}, V) . hl({ZL'z,l'g}, V)

Let F}({X}, X}}) be the event that

PT[E1] 2

hl({ngX;}a,Pn) =1
F({X1, X}, X}}) be the event that
h2({Xl17Xé7Xili}7,Pn) =1,
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and F{({X}, X}, X}, X)}) be the event that

According to the Palm theory (Theorem 9), we have
PrF{({X], X3})]

(X, Xp)CP,

Z hl({Xi7Xl2}71P7L)

(X Xp)CP, (3)

=E

- %E[hl({Xl, Xo}, {X1, Xo} UP,)]

2
n
= - Prfl,

PrF({ X}, X5, X3})]
(X, X, X,)CP,
{X], X}, X}}CP, (4)
= ?E[hQ({Xla Xo, X3}, { X1, X9, X3} UP,)]
n

== 3§PI'[F2] == —PI‘[FQ],

and

Pr[F({ X7}, X}, X}y, X })]

(X1, X1, X7 X/ }CP,
—E ha({X1, X5, X5, X4}, Pa)

(X1, X)X, X|}CP, (5)

TL3

BE]]

77/4 ’I’L4
= 3EPI‘[F2] = gPI‘[Fg}

Ehs({ X1, Xo, X3, Xu}, { X1, X0, X3, X4} UP,)]

Applying Boole’s inequalities and (3), (4), and (5), we have

>

{X1.X51CPy

(X)X} X5 }CP,
(X, X}.X}, X, }CP,
2 3 4
- %Pr[Fl] - %Pr[FQ} - %Pr[Fg}.
Hence, our claim is true.
In the next, we derive the probabilities of Fy, F5, and F3.

Let S; denote the set

Pr(Ey] > Pr{F({X}, X3})]

1
{(xl,l'z)‘i(l'l +1’2) S A,Rl < ||1'1 *1’2” < RQ}

We have

PI‘[Fl] = // Pl"[Fl ‘ X1 = l‘l,XQ = .rg]dxldl‘Q
Si

:// ef’l‘Dmlz-deldmz
S
2
:// e*ﬂﬂ(%ﬂwl,zz\\) dzxdy.
S

Let z =252 and r =i |21 — 22|. Then,

Pr[F] = / / e "™ 8rdrdz = / / e d(mr?)dz
2z€A Rl €A Rl
4 5 1 :
:—(—e’”” 2R>|A|:—2( ’%—n )lnn
n ’r:Tl

Let S5 denote the set

(6)

L2 € ARy < |lon — @2|] < Ros @1, 20 € Dayays
(x17x2am3)

LI e A; Ry < ||@y — ]| < Roja, 3 ¢ Daya,
Applying Lemma 5, if (1, z2,z3) € S», we have

Dy, 2y UD,

D) Tyag

PI‘ [FQ ‘ X1 = JL’],XQ = .772,X3 = $3] § 677L

2 T +T9 T 4@
< e=n(T@lzi—oall) +eRol 22 25))

Therefore,

PI[FQ}:/// PT[FQ | X1:$1,X2 = Z'Q,Xg = 1‘3}dl‘1d1‘2d1‘3
Ss

/// *” “Tl TQ“) +(’R)”,:IJF[2 qﬂs“)dxld;zada;i
S

T1+Tz

Let z1 = ,

JL1+£;

=3ller — 2|, 22 = ,and p = |21 — 2.

Then,

Pr[F] < 16/ / / ein(mfﬂR?Hzl*zZ”)27Tr1dr1dz1dz2
zn€eAJr RT €A

5
< 16/ / ”’Tr127rr1dr1dz1/ e~rella-alg,,
. _Rl
z2€A Jr= €A
Ry
T‘ o0
< 16/ / efn'ﬂfd(wrf)dzl 67“”32”27rpdp
€A m:ﬁ p=0
1(’_2
2
_ Ee—n‘m2 ‘Al . 27
n o (cnR2)2

Let S5 denote the set

{(Ilv xo,X3, IE4)

13+x1 c A Rl < H1‘3—$4” < R27I3,$4 ¢ Dxl o

1142¢$2 S A R1< ||.I‘1—12||< RQ’xth % DIM“}
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Applying Lemma 5, if (z1, 22, z3,24) € S35, we have Lemma 17. For any constant 3 > 2, we have
Pr(Fy | X1 =1, X = 29, X3 = 23, X = 4] Inn
2 e e lim Pr|[A(G(P,)) > /2| =o.
< efn'HD-'I'N'zUD’”:s-’M| < efn(”(%u‘r’l*“?‘l) +CR2||%7%H) oo
Therefore, Proof. Let d = 3y/22 and r = ¢. Pick a constant B €(2,6),
and let d = f; 17‘;" 7 —5' and = \/. Let C, be the
Xi=m collection of all feasible r-disks, whose diameters are
Pr[F3] = / / / / Pr|F; Xo = diydzedasde, contained in ID. If zy is a Gabriel of the GG, there is no
5 Xy = a3 node on D,,. Therefore, A(G(P,)) > d implies that there
Ty = T4

exists a disk of C, on which there is no node of P,.

\Tl 29|) 4Ry @1 4T -F3+.n,1
< [ [ [t s) i 2

dxidredrsdxy.
1daydrzd, Pr{A(G(P,)) = d] < Pr|min [C NPy = 0.
eC,

Let 2 =#5%, r =g ller —wall, 2 =535, ro =3 llws — 2, Divide the plane into an e-tessellation. The distance of
and p = ||z1 — z||. Then, any two points within a grid cell is at most (r — /). If A
RZ RZ and B, respectively, are r-disk and 7'-disk with the same
Pr[F3] < / / ’ / / : o~ HeRsl|lz—2|)) center, the grid cells intersected with B are contained in
“ Juealtn 20 A Jry= A since any point of B is apart from 0A by at least
(87r1dry dzl)(87rr2 dradzs) (r —1"). So, the polyquadrate induced by B is contained
in A. Let {Py,---, P;,} denote the set of polyquadrates
< / / o Ordrydz induced by /-disks of C,,, and Y; denote the number of
B zned Jr=B nodes of P, on F,. Since any r-disk of C, contains at least
(87r— (& - &) / R > one P;, we have
2\ 2 2) ), .
Y (8) Pr gliél‘CﬁPn|:0:| SPr{nli{lYi:O}
< <4/ / . e"”“fd(wr%)d,zl) e = s
_By n
acd in=3 :1—Pr[mi{1Yj>O].
Ry (Ry R o0 =
(871'—2 (—2 - —1) / 7""R2/’27Tpdp>
2\2 2/ /) Note that Y; is a Poisson RV with rate n|P;|. Assume that
nn/ 5  » A2 E is the collection of polyquadrates induced by r'-disks
=\7 (n ten 4) WR‘ (Ry — R1) with center on ID,.(0) and F is the collection of
) : polyquadrates induced by feasible 7/-disks with their
_Am R (n*‘%‘ _ nf?) Inn. center on D \ D,+(0). Since EUF = {P,---, Py},
cnt Ry
I,
Combining (2), (6), (7), and (8), we have Pr {1}1:1{15/1 = 0} =Pr {glellblyl =0or glellFIYL = 0}
L dr = (0 R\ a & < Pr|min¥; =0| + Pr|min¥; =0
R O o1 (e ) [ < Pepip ¥ = 0]+ Pr| iy = 0]
1 2 R, o For any P, € E, we have
~§(1—c—2(1—§2>)(n T—n 4)1nn.

1 1 .
i n|P| > n-m(2r)’ == 1Inn > Inn.
Since % ( — %) < 1and I, = (1), we have 4 4

Applying Lemma 7, we also have |E| = 0(%) = O(;2).

Y Py Inn
Pr[E] = Q((” T-n *) In ") Therefore, by Lemma 8,
and . .
PriminY; =0 =1 —-Pr|minY; > 0| ~ 0.
5 PeE PEE
I, Pr[E] = Q(nFT) — 00.
For any P, € F, we have
This complete the proof of Lemma 16. ]

1 /1 2 1
n|P| > =n|-7(2r")" ) >=Inn.
4.2 Upper Bounds for the Longest Edge Length 2\4 2
In this section, we are going to give upper bounds for the Applying Lemma 7, we also have |F|= @(;_;) e

length of the longest Gabriel edge. (1 /ﬁ) Therefore, by Lemma 8§,



WAN AND YI: ON THE LONGEST EDGE OF GABRIEL GRAPHS IN WIRELESS AD HOC NETWORKS 119

Pr{minY} = O] =1- Pr{minYi > 0:| ~ 0.
PeF PeF

Put all together, and the lemma is proved. ]

Lemmas 16 and 17, respectively, give lower and upper
bounds for the length of the longest Gabriel edge. Hence,
Theorem 1 is now an immediate consequence of Lemmas 16
and 17.

5 EXxPeECTED NUMBER OF LONG EDGES

In the previous section, we proved that the ratio of the
length of the longest Gabriel edge to /22 is a.a.s. equal to 2.

In this section, we are going to prove Theorem 2, which

gives the expectation of the number of long Gabriel edges.

Proof of Theorem 2. Assume Y and V are point sets and
Y C V. Let h,(Y,V) denote a function such that A, (Y =
{z1,22},V) =1 only if ||z; —ax3]| > r and there is no
other node of V in the disk area D, ,,; otherwise,
h(Y,V) = 0. Let X; and X, denote independent random
points with uniform distribution over ID and indepen-
dent of P,,. According to the Palm theory,

E[N(G(Pn),r)] = E

>

{x.x,}cP,

he({X1, X3}, Pa)

n2

= oy Bl ({X1, X0}, { X0, X0} UP)).

Let F(r) be the probability of the event that X, X, is a
Gabriel edge and || X; — X;|| > r. Then,

F(r) = E[h,({X1, Xo { X1, X2 }UP,)]
and F(r)=[[

[y g

. . X =
Pr| X, X, is a Gabriel edge

T
dxidxs
2 = T2

—nw 5 (ELEE2)
= e ey —aoll/2\72 dl‘1d$2,
z).29€
oy ~ag||>r

_ > —nw,(z)
= e "W Arg(z, p)dzdr.
/p /ze]D

—r
=3

In the last equality, we let z =32 and p = §||z; — 22|

According to Theorem 1,

F<2 /lnn—i—f) NF(Q /lnn+§> F<3 lnn)
nw nm nm

3, /i
_/p_,/m;;ﬁf 8)

Hence, applying Lemma 11,

Inn+¢
nm

e~ (2) 47"9(27 p)dzdp-

E

N(G(Pn), 2

6 ASYMPTOTIC PROBABILITY DISTRIBUTION OF THE
MAXIMAL LENGTH

Let R, = 24 /% for some sequence ¢, such that &, — oo,
& = o(Inn), and m(n) = n(n — 1)/2. For applying Theorem
10 (Brun’s sieve) to prove Theorem 3, let B; be the event that
the edge between the ith pair of nodes is a Gabriel edge
whose length is at least r. but less than R, for
1 <i<m(Po(n)), and Y be the number of B; that holds.
Then, Y is exactly the number of Gabriel edges whose
lengths are at least ¢ = 24 /1“:—:5 but less than R,. According
to Theorem 2, Y is a.a.s. equal to the number of Gabriel

edges whose length is at least re.

For any fixed integer k, let K; denote the collection of set
{i1, -+, i} C{1,---,m(Po(n))} such that ¢; ,---,e; are not
incident to the same nodes, and K> be the collection of set
{i1,--+,i} C{1,---,m(Po(n))} such that e;,---,e; have
some common endpoints. Then,

Sk — Pr[B;, A--- A By]

{i1,+ ik} S{1,-;m(Po(n))}

= > PrB,A---AB]
{in, ik EK

+ ). Pr[B,A---AB.
{il,'“,ik}EKz

In Lemma 18, we shall prove that the expectation of the sum
over {i1,---,i;} € K, are asymptotically equal to (2¢7¢)". In
Lemma 19, we shall prove that the expectation of the sum
over {iy,---,i} € Ky are asymptotically equal to zero.
Therefore, Theorem 3 follows Lemmas 18 and 19 by
applying Theorem 10.

In the proofs of Lemmas 18 and 19, for applying the Palm
theory, let X; ={Xj,---,X;} denote a uniform I[-points
process over ID) and independent of P, and B; be the event
that the edge between the ith pair of nodes of X; is a Gabriel
edge over X; U P, whose length is at least r¢ but less than
R, for 1 <i <m(l). In addition, let e; denote the edge of
Xoi1Xo; (Or @9;_129;), z; = 252 be the midpoint of edge
e;, and r; = || 2==2| be the radius of D,, .. |l&] is
shorthand for ||z9—1 — 9|, i.e., the length of edge e;.

Lemma 18. For any fixed k,

E| > PriBin-AB|~ (29"
{Z‘lx--,ik}EI(l

Proof. Applying the Palm theory and due to the identity
property, we have

>

{i1, ik Y€K,

) n2k! <(22k‘) (2k;2) e (g) Pr[Bi A A Bd)

E PI“[Bil/\'”/\B{,k]

(2k) k!

1 /m2\"
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It is sufficient to show that, for any fixed k,

o\ K
(%) Pr[Bi A ABy ~ (2. (9)
For k =1, we have

PrB; | X1 =21, Xs =29 = e_ml”'"r""z”/z(¥)~

Hence,
n2 n2
?PI‘ [Bl] = ? ;LNQF]]D Pr [Bl | X1 :wl,Xz = wg]d.rgdl‘l
re<lley —woll<Rn
nZ
- efmlel ff)H/Z( 7 )d.erxl
2 z1,m9€

re<ley —wa | <Fn

1(77
. /Zlelm

The last asymptotic equality is given by Lemma 11. So,

Vry <Z‘)4r10(z1, r1)dz dr 2.

the asymptotic equality (9) is true for k = 1.
Now, fix k > 2. We have

TZ,? k
(7> PrBi A--- ABy

for any 1 <1 < 2k,
/ /Pl" B1 N B
X =
T, (2‘5
re<ler I<Rn
re<legl<Fn
2k
i=1
Let 2= (z1,-+,2;) and r = (r1,---,7;). We have

Pr(BiA---ABy |forany 1 <i <2k X; =] < e~ 3,

(10)
In addition, if z € Cyy, (%),

PrByA---ABg |forany 1 <i <2k, X; =1x;] = e (),

(11)
From (10) and Lemmas 12 and 13,

(%) Pr [Bl A---ABjand z € ID)k\Ckk (%)]

k

1re—nv,.(z) 47”79 Z2i, 15 dz;dr;
( ) / € ) / D"\ () z E ( )
From (11) and Lemma 14,

n? F R
(?) Pr {Bl A---ABjand z € Ckk(él)}

H 4TL0(217 T’Z)dZZd’f‘l

2\ k
_ (n_> / / e W (2)
2) Jrele]" Jeeou (%) -

i=1
~ (2¢79)".
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So, the asymptotic equality (9) is also true for any fixed
k > 2. Hence, Lemma 18 is proved. O

Lemma 19. For any fixed k,

Bl D

{i1,ir} €K

PI’[Bil/\ /\sz] NO(].)

Proof. For 3 <m <2k —1, let KJ' be the collection of set
{i1,-+,ix} € Ky such thate; , -+, ¢;, have some common
endpoints and the total number of nodes incident to
€is €, is m. Then, Ky = UQk le and

m=3

> Pr[Bi,A---ABy]

{ir, ikt €K
2k—1

=3 Pr[Bi A--- A Bl
m=3 {iy, iy }EK}'

For any {iy,---,i;} € K, €;,,---,e; contain a subgraph
that is a forest incident to m nodes and with at least one
tree composed of more than two nodes. Let 7,,, denote the
collection of k-edges forest topologies that are incident to
exactly m nodes and contain at least one tree component
composed of more than two nodes. Applying the Palm
theory, we have

E| Y  Pr[B,A--ABy]
{i1,ip €K
2k—1

<>y O(n’”)Pr[/\F QB,;]
m=3 TET,

Note that, for a fixed k, we have |7,,| = O(1). Therefore, it
is enough to prove that, for any forest topology 7 € 7.,

n™ Pr [/\( . BI} ~o(1).

Let 7={T\,---,T;} denote a forest composed of
el, +,em_¢ incident to X1, ---, X,, such that at least one
tree contains more than two nodes. Let E, be the event
By A -+ A By,—,. Withoutloss of generality, we assume e; is
contained in T} for 1 < ¢ < t. Let II; denote the collection of
all i-partition of {1,2,---,t}. Forany w = {P;, P5,---, P;}
€ IL, et me ()= Yyep, IV (TD), Vie ) = User, V(TL), 7 (i)
= {T}. : k € P;}, and S(w) be the set of z € D" " such that
U..ev.(;) B(2:,%) forms a connected component.
For a fixed topology 7, let

S =
"
PR forany 1 <k <m —1,7¢ < |logg — 22| < Ry,
and ||z = [[2xl] = ]|
S =

R
{ze C(m,m(?") |zill > ||2;]| for any 1 < 5 < m—t}.

First, consider t =1, i.e
e, ,em_1. We have

, Xi1,--+,X,, form a tree by
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Fig. 5. Two intersecting domains.

n™ Pr [ET} < Z nm/ “Pr E :| HdmL
1<i#j<m—1 zesy

1<itj<m—1 ri=n J 2€8i

m—1
<H dzk> dr;
k=1

~ 0.

for1<i<m

._J;1

The last equality is given by Lemma 15. Now, we
consider ¢ > 1. For Pr[E; A {Z € C(;,—1 (%)}, we have

n™ Pr {ET A {Z € Clm—t1 (P;”> }]

< Pr[E; | X; =x; for 1 <i<m)] dx;
Z /Leb” ‘ H

1<i#j<m—t

< O( ) Z / / 771 Vy; (zi)+cRy || zi— z/H)
1<iZj<m—1 fe[r—“f’ zeS

QT
—t

(H rk()(zk, Tk)d’f‘k-> ( dzk>
k=1 k=1

~ 0.

The last equality is given by Lemma 15. For Pr[E; A
{Z €S},
Lemma 13, we have

applying the same argument used in

n"Pr(E. ANZ € S5})
<0(1) H (n"=YPr (B, ;) ~o(1).

J=1

Putting it all together, we have

n™ Pr[E Z Z n"Pr[E. N{Z € Sz}
i=1 well;
Z Z (Hnm’” Pr(E, )) ~o(1).
i=1 well;
Therefore, the lemma is proved. a

7 CONCLUSION
The Gabriel graph is one of the widely used geometric

structures in topology control of wireless ad hoc networks

yy

At

and can be constructed by distributed and localized
algorithms. If all nodes have the same transmission radii,
the maximal length of Gabriel edges is the smallest transmis-
sion radius for constructing the GG by only 1-hop neighbor
information. In this paper, we assume a wireless ad hoc
network is represented by a Poisson point process with mean
n on a unit-area disk. We first showed that the ratio of the

maximal length of Gabriel edges to |/ is a.a.s. equal to 2.

Next, we proved that, for any constant¢, the expected number

Inn+g
m 7

of long Gabriel edges, whose lengths are at least 2 is

a.a.s. equal to 2¢¢. This implies that, if { — oo, itis a.a.s. that
the maximal length is less than 2 lng%f Last, we proved that
the number of long Gabriel edges is asymptotically Poisson

with mean 2e~¢. Therefore, the probability of the event that

In n+§

the maximal length of Gabriel edges is less than 2 is

asymptotically equal to exp(—2e~¢).

APPENDIX

First, we give two technical lemmas. Assume S and 7" are
two convex compact sets, and 95 and 07 intersect only at
two points z and y. Let v and v be two points to the different
side of zy such that uv and zy are perpendicular. T’ is
obtained by shifting 7' away from S along uv by distance
At. Then, we have the following lemma:

Lemma 20. If the boundaries of S and T at x and y can be expressed

by continue functions along the axis parallel to uv, then
ISUT'| = |SUT| = (= — yll +0(1)) At.

Proof. For convenience, assume v is on 7. After shifting 7'
apart from S by At, z, y, and v on T are moved to z/, ¢/
and v respectively. See Fig. 5. Then, |SUT'| — |SUT| is
equal to the area of the shaded region between zy and
z'y. Since the boundaries can be expressed by continue
functions, the height of the shaded region can be
estimated by |z —y|| + o(1). The distance between zy
and 2’y is equal to At. So, the area of the shaded region
can be expressed by (||z — y|| + o(1))At. O

Lemma 21. Assume R is a constant, %R <ry<ri <R, and

|lze — x| > /13 —7r3 Let t = ||zg — x| and f(t) =
|B(x2,72) \ B(x1,71)|- Then,

f(t) > 0.16Rt.

Proof. Assume r; is fixed. If ¢t <7y + ry, let yjyo be the
common chord of 9B(xz1,71) and dB(zs,12). See Fig. 6a.
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Fig. 6. The area of two intersecting disks.

>

1
f(t) > 2|Aaby;| =2 - 5(7"2 +t—r)ry
2

1 L (VE=2) -ty

Rly/ri—1?—(ri—t)) ==R

2 i =2+ (11— t)

1 2 — 1
“R =t g Rt>0.16Rt.

f(t) > 0.16Rt +

Letto=/ri — (& R)2. For any ¢ € [0,], the minimum of

f(t) occurs as 7y = /17 — t2. So, without loss of general-
ity, we assume ry = \/ﬂ Let a (respectively, b) be
the intersection point of the ray z;25 and circle 0B(z1, )
(respectively, 0B(x2,73)). See Fig. 6b. Then,

>
T%*t2+(’r1*t> %+1_4+\/§

Note that the maximum of :iff occurs as 1 = R,

ro=1R, and t=Y2R. For any fixed t € [t,2R)], the

minimum of f(t) occurs as r; =3R. If t <1+,

according to Lemma 20, we have f'(t) = |jy1 — y.|. If

t =1y, y1y2 is the diameter of B(xy,73). Therefore, for

t € [to,2R)], f'(t) is decreasing, and f(t) is concave. Since
0.16 Rty

f@2R) =
ALY _Z 16R =
) 8R> 0.16R .

we have

f(2R) — 0.16Rty _ 0.16Rty
2R—1t,

Let At =t — ty. Then,

=0.16R.

f(2R) — 0.16Rt,
2R — 1,
= 0.16R(ty + At) = 0.16Rt.

At > 0.16Rty + 0.16 RAL

Note that the final inequality does not depend on r;.
Therefore, the lemma is proved. ]

In the remainder of the Appendix, we give the proofs of

Lemmas 5, 11, 12, 13, 14, and 15.

Proof of Lemma 5. We prove the lemma by induction on k.

We begin with k=2. Let t = ||zp — z1]| and f(t) = |B(z,
7‘2) \ B(:L'17 T1)|. Since |B($2, 7"2) \ B(xl, 7”1)| > |B(£L’17 1“1) \
B(zy,rg)| if 72 > 11, without loss of generality, we may
assume 1| > 9. According to Lemma 6, we have
f(t) > 0.16Rt. If r4 +ry <t<2R, since B(xz,12) and
B(zy,r) are disjoint, we have

1 /1.\*
m(@——w&mjzlﬂﬁm)z—w<—R)::é%R@R)ZOOBRt

3 \2

Now, we only need to consider 0 <t <r; +ry. If
z1 € D, (0), then v, (x1,z2) — vy, (1) is exactly f(t) and,
thus, the lemma follows immediately from f(¢) > 0.16Rt.
So, we assume that z; ¢ ID(0). Note that, for the same
distance ¢, v,(z1,22) — vy (21) achieves its minimum
when both z; and z; are in OID. It is sufficient to prove
the lemma for z;,z; € 9ID. Let ¢, be the line perpendi-
cular to oz; and through z;. Furthermore, if z; moves
out of D, v,.(z) becomes smaller. So, consider that x5 is on
{,. We use d; (respectively, d») to denote the intersection
point of dB(z2, ) and ¢; (respectively, D) far from z;.
Let a; be the intersection point of ¢; and y;y», and b; be
the intersection point of ¢; and dB(z1, ) near to z2. We
use ¢; to denote the point on ¢; and in B(zs, rs) such that
ller — di]l = |lar — b1]|. Let z; and 2, be the two points in
0B(z9,m5) such that z1zp is perpendicular to ¢, and
through ¢;. Let ¢, denote the line perpendicular to oz
and through ds. We use y3 (respectively, a; and ¢;) to
denote the intersection point of ¢, and ox; (respectively,
y1y2 and z22), and by to denote the intersection point of
4y and 0B(zy,r1) near xs. (See Fig. 6¢.) We have

llai —cill = |lar — zal| + [[v2 — c1] < |lar — 2]
+ |z — 1] = ¢,

and if R <1Rj,

2 2
lar — asl) =l — ofl = y/ llda — ol” — llds — g

< Ry —/ R} — 3R)*

B 9R? L 9B SR

_ < SIS
Ro+\/R2— (3R)? Totsm To

The area of ajasbsb;, surrounded by the segments a;as,
a1b1, azby, and arc b by, is larger than the area of cicadad;,
surrounded by the segments c;cy, c1dy, cody, and arc dids.

Therefore, if R < 55 Ry, we have

—_

f(t) = [lar = ea| - llar — az]|

> 0.08Rt — @Rt = 0.03Rt
Ry
and, thereby, the lemma for k = 2 follows.
Next, we assume the lemma is true for at most

k — 1 nodes and we shall show that the lemma is true for
k nodes. If k = 3, then
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WT% Vs 2
VT('r) > Vr, ($1) + VT:;($3) > Vr, (7"1) +T > Vr, (7"1) +ER
2
> vy, (21)+0.03R - 4R> vy, (1) + 0.03R Y _ [|wi1 — .

i=1

If £ > 3, then by the induction hypothesis,
ve() > vy, s Tp-2) + Vi (@)
k—3
Vi
> v, (1) +0. 0332 g1 — x| + =2
k—3
> vy, (21) + 0.03R Y _ [lwip1 — ;]| + 0.03R - 4R
i=1
k—1
> vy, (21) + 0.03R Y _ [l — .
i=1

1““’7-}%2)(%1, e

2
rk

Therefore, the lemma is true by induction. ]
Proof of Lemma 11. First, we calculate the integration over
D, (0).
Rn

— / e ™ z>4r9(z r)dzdr
r* zeID),(0)

lw

=— / / e 8rdzdr
eI, (0

Rn

2
~ 2n? / ; e " 2rrdr = 2n° / )

2

1 2 [

— 2|2 —

:2n2 _ L ) ~ 2¢ '3
n r:é

Next, we calculate the integration over ID,(1). Let ¢
denote the distance from z to 9ID). According to Lemma 4
and (1), there exist constants ¢; and ¢, such that v,(z) >
$mr? 4 eirt and r0(z,r) < cyt. Then,

efnﬂrQ d (7_‘_7,2)

vy

Ru

— / / e~z 4r9(z r)dzdr
*5 2D, 1)
<o@1)n’ / é / e ety
r=% Jt=0

Rn
9 N T
§O(1)n267§'m§/2 / e~ "dtdr
7’7% t=0

Rp

-0 (1 n2€——, Inn+§) / / 7r‘1nrttdtd,r
< Ji=0

Rﬂ

< O (1)ne2ntd) / / e~ "t dtdr
< Ji=0
I(’n

-0 (1)?1267_’ lnn+£)/

T

{(nr) 2dr<O( n eié(ln"’%)(nrg)szn

-1
< O (1)e 2t (, /hm> =0(1)(Inn) =
n

Now, we calculate the integration over ID,(2). Since
0(z,r) =0 for any z € ID,(2),

Rn
—/ / @4z, r)dzdr = 0.
=% JzD, 2

o(1).

Therefore,

T
2 )2 J.cID
O

Proof of Lemma 12. Let S denote the set of (21,22, -+, 2;) €
Cha (&) satlsfymg that z; is the one with largest norm
among zi, -, 2, and z; is the one with longest distance
from z; among 2, - - -, 2. Then,

TLQ k . k
- r —nv(z) ] . s
< 2 ) / r_fﬁ k /zeC“ h’_,, 126 H47‘29(2’“ T‘Z)dzzdrl
71)( ) / [ / 1e ) H4rz zi,ri)dzidr;.
2 2

So, it suffices to prove

Qk/ / 1r 77?V,(Z
e Ry,]

Note that, for any (z1, 22, - - -

G(zi, ri)dz;dr; = o (1).

=1

Lz) €5,if 17 =1,

1
vr (21) + cRy |22 — 21| S vp(2) < kZﬂ'Ri
for some constant ¢ by Corollary 6, otherwise, 17 = 0, and
zi € B(z1, ||z — z1|]), for 3 <i<k;

23 € B(z1,(k—1)R,).

Thus,

2k / / 1’ —nn(2) 9(2}“ ’I‘l)led’l"Z
re Rn
7 2€ =

T i=1

e~ (z1)+eRalz2—21)) H 7 9(2“ Tt)dzzdﬁ

=1

koor3
H / _27rydr; / dz;
=3 Jri=s z€B(21,[|za—2)

B
<O (Ry(Ry—1¢))"~ / / " G 0z, 1)z dry
? LE]D)
/ —neR,,|\zz—zl|\||Z —z ||2(k72)dz
20€B(z1,(k—1)R,)

Rn
< O( ) Qk( _7,,£ k 1/ / —ny, (21)
n 7L 717{ Zle]D)

7"19(2177”1)dz1dr1/ e 23
(nR 2(/6 1)

0
k 1 ol
/ / e~ (=1)
=y X 21 E]]D
7’19(2’1,T1)d2’1d’l‘1

= 0(1) (R'}?; Tf)kl(ze—f) = o(1).

n* (R, (R, —r¢))

=0(1)
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Here, p = ||z2 — z1||, the second to last equality follows

from Lemma 11, and the last equality is based on
fote — o(1). u

Proof of Lemma 13. For any m-partition II = {K;, K>,
K,y of {1,2,--- k}, let ID¥(TT) denote the set of
(21,20, -, 2,) € D¥ such that, for any 1< j<m, the
Uiex, B(z,%) forms a connected component. Then,
Ckm( ») is the union of IV*(II) over all m-partitions II of
{1,2,--,
m-partition IT of {1,2, - -

k}. So, it is sufficient to show that, for any
7k}/

k
2k r,—nv(z) . o A —
n 1le ri0(z;,ri)dzidr; = o(1).
/re 3y /zelD)k(m : 11 e

Now, fix an m-partition II = {K;, K, -, K,,} of
{1,2,--+,k}. For 1 < j < m, let |; = |Kj|, and r") and let
2U), respectively, denote the subsequence of r and =z
corresponding to K. Then,

and for any z € D*(IT),

m

Z v, (J
Thus,

k
2k 7, —nv(2) Oz )z drs
n /re[%%]k /ngD)k(H) 1le Hrle(zl,rz)dzldm

i=1

(J)
Z
2 Hr,&(z,,rl)dz,dn

5
Z
[Em]’ / D (1 o

/ Z
m
2% / /
i & D" (H ]':1

(Y Hn (zi,7ri)dzidr;

3

‘9(2'7', ’l”l)ledT’?

3

J
l;
2l; 17 (2) ZL,’I“l dzlde
s /76[5’“]1/&0“ H
=o(1),

7 z
% T / / =) 1—’[
=n 1; e—m/, z
i—1 Jre éRT ZGCll(T") -1
ﬁ(
j=1
where the last equality follows from Lemma 12 and the
fact that at least one I; > 2. O

Proof of Lemma 14. For any z € Cy;, (%),

k
v (z) = Z: vy, ().

JANUARY 2007

Thus,

D L L1

= - (2) TT 4 0z, i) dzidr;
2 0z, ri)dzdr;

(2 re[$5]" Jaecu (B 11

:( ) / / (X0, vata)
%RT Z€OM R—

‘2
H 4r;0(z;, r;)dzdr;

TL2 k " k
= <_) / / 7” 1: V”"(Z1>) H4TL0(ZI,TL)dZLdTL
2 re[E)" i=1
< ) / / e (Emt)
e ID"\Cy (B

H 4r;0(z;, r;)dz;dr;.
i=1

We shall show that the first term is asymptotically equal
to (2¢7¢)", and the second term is asymptotically
negligible. Indeed,

n2\* ' k
<—) / ) k_/ . 67"(21:1 Vry (Zﬁ) H4T29(Z17TL)dZLd7’Z
2 I '_Eﬁ ZE]]D i=1
- (%)
e "ri\G 4 0(z;, ;) dzdr;
2, k
/ /]D @ gz, 7Y dzdr | ~ (26_5) ,
s S

where the last equahty follows from Lemma 11. If
(21,22, -+, 2) € Ckl( 2) satlsfymg that z; is the one with
largest norm among z,---,%; and 2 is the one with
longest distance from z; among z,---,z; it can be
proved that

k
1
vr (21 + cRy |21 — 22| < Zl/,,., (zi) < kZWRi.

i=1

Note that this is similar to Corollary 6, but with no need
of the feasible condition. Thus,

k k
PO PEACH H 4r;0(z;, ri)dzidr;
rels ] DM o () ;
( )/ / _"Z vy (2 1_147“7 zi, 13 )dzidr;
] 211" S e ()

= o(1),
where the last equality can be proved by the arguments
used in Lemma 12 and Lemma 13. 0

Proof of Lemma 15. Withoutloss of generality, assumes = 1.
Inaddition, assume j = 2. (If 1 < j < ¢, the following proof
stil works. If t + 1 < j < m — ¢, the following proof works
after some minor modifications.) Note that

—2z])), for3<i<m-—t,
—t—1)Ry).

zi € B(z, |22
29 € B(z1,(m
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(In the following, we assume ¢t > 2.) Thus,

t
,/ e () +eRullzi=z1l) Hm@(zk,rk)drk
s Jees =
—t

< k=1 >
Rﬂ

/ / 7m/,l 21) r 6(21 ;T )d21 d’l“]
,17£ 21€]]D

7'71(’RnHZ2*ZlHdZZ
726B (z1,(m—t—1)Ry)
Rp m—t
_Trdr; / dz
( /T; 2 ><H %€B(21,||22—21)) )
Rn
O( ) m( n( 71—7"6 t 1/ / —nml 21)
ZLE]]D

7‘19(21 ,T1 )le d7‘1

IE

\m

—ncRy || z—2

I ||Z2 — ||2(m7t72)d

Rn
t— 1/ / 7IL1/,1(z1
Z1€]D)

rlﬁ(zl,rl)dzldrl/ _"”R””’p m=t) ddp

n" (R, (Rn e
_ o™\ — 1 / / (a1)
(TLR 75 R; zleﬂl)

r16(z1,71)dz1dr
“o( Ru(&=9) \'
n'™ ((R,, —Te )7m)

nm—t-1 (nRQ )m*t*l

/ / Wy z‘)rlé?(zl,rl)dzldrl)
zle]]))

W (“"m‘f)l )<e5) — (1),

(&
2€B(z1,(k—1)R,)

< O(W)n" (Ru(Ry

22

Q/_\/_O\
=

In

where the second to last equality follows from Lemma 11
and the last equality is based on ¢, =o(lnn) and
m—t—1>1. O
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