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Heterogeneity-Projection Hard-Decision Color
Interpolation Using Spectral-Spatial Correlation
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Abstract—This paper presents a novel heterogeneity-projec-
tion hard-decision (HPHD) color interpolation procedure for
reproduction of Bayer mosaic images. The proposed algorithm
aims to estimate the optimal interpolation direction and perform
hard-decision interpolation, in which each pixel only needs to be
interpolated once. A new heterogeneity-projection scheme based
on a novel spectral-spatial correlation concept is proposed to
estimate the best interpolation direction directly from the orig-
inal mosaic image. Using the proposed heterogeneity-projection
scheme, a hard-decision rule can be decided before performing
the interpolation. The advantage of this scheme is that it provides
an efficient way for decision-based algorithms to generate im-
proved results using fewer computations. Compared with three
recently reported demosaicing techniques, Gunturk’s, Lu’s, and
Li’s methods, the proposed HPHD outperforms all of them in
both PSNR values and S-CIELAB A E?, measures by utilizing 25
natural images from Kodak PhotoCD.

Index Terms—Adaptive filtering, color artifacts, color filter
array (CFA) demosaicing, color reproduction, digital cameras,
image representation.

1. INTRODUCTION

IGITAL color images from single-chip digital still cam-
Deras are obtained by interpolating the output from a color
filter array (CFA). The CFA consists of a set of spectrally se-
lective filters that are arranged in an interleaved pattern so that
each sensor pixel samples one of three primary color compo-
nents. These sparsely sampled color values are termed mosaic
images. To render a full-color image from a mosaic image, an
image reconstruction process, commonly known as CFA inter-
polation or CFA demosaicing, is required to estimate for each
pixel its two missing color values. The simplest demosaicing
methods apply well-known interpolation techniques, such as
nearest-neighbor replication, bilinear interpolation, and cubic
spline interpolation, to each color channel separately. However,
these single-channel algorithms usually introduce severe color
artifacts and blurs around sharp edges [1]. These drawbacks mo-
tivate the need of more advanced algorithms for improving de-
mosaicing performance. An excellent review on advanced de-
mosaicing algorithms can be found in [2].
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In recent years, there have been investigations on more
sophisticated demosaicing algorithms. In [3], Lu and Tan
presented an improved hybrid CFA demosaicing method that
consists of two successive steps: an interpolation step to render
full-color images and a postprocessing step to suppress visible
demosaicing artifacts. Muresan and Parks proposed an im-
proved edge-directed demosaicing algorithm based on optimal
recovery interpolation of grayscale images [4]. They first
utilized a grayscale image interpolation algorithm based on op-
timal recovery estimation theory to interpolate the green plane.
The red/blue channels were interpolated using interchannel
color difference adaptive filtering. These two demosaicing
algorithms in general produce high quality visual results,
especially in reconstructing sharp or well-defined edges of the
image. However, in fine details or textured regions, where edges
tend to be short and in different directions, these algorithms
introduce undesirable errors and give degraded performance.

Meanwhile, two iterative demosaicing techniques were pro-
posed by Gunturk ez al. [5] and Li [6], respectively. In [5], a pro-
jection-onto-convex-set (POCS) technique was presented to es-
timate the missing color values in red and blue channels using
alternating projection scheme based on high interchannel corre-
lation. In [6], Li formulated the CFA demosaicing as a problem
of reconstructing correlated signals from decimated versions and
proposed a successive approximation strategy by adopting color
difference interpolation iteratively. Although these iterative de-
mosaicing algorithms perform well in textured regions and reveal
low computational complexity, they cannot produce satisfactorily
high quality visual results in well-defined edges of the image.

Another recent demosaicing approach divides the demo-
saicing procedure into interpolation stage and decision stage
[7]-[10]. In the interpolation stage, horizontally and vertically
interpolated images are produced respectively. In the latter
decision stage, a soft-decision method, in which the interpo-
lation must be performed before the decision procedure, was
employed for choosing the pixels interpolated in the direction
with fewer artifacts. Because the decision stage is essential for
these demosaicing approaches, we refer them as decision-based
demosaicing algorithm. For the decision stage, Hirakawa et al.
proposed a homogeneity metric to measure the misguidance
level of color artifacts presented in interpolated images [7].
Based on this measurement, the interpolation decision is made
by choosing the region with larger homogeneity values. In [8],
Wu et al. adopted the Fisher’s linear discriminant technique to
determine the optimal interpolation direction in a local window.
In [9], Grossmann and Eldar utilized the YIQ color space as
a tool to select the reconstructed regions with a smoother
chrominance component. Recently, Omer and Werman pro-
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posed an enhanced decision-based demosaicing algorithm that
combines the decision process with the standard demosaicing
algorithm such as edge-directed scheme [17] to improve its
performance in places the standard algorithm tends to fail [10].
The decision-based demosaicing algorithm performs well not
only in textured regions, but also in well-defined edges of the
image. However, the main drawback of these demosaicing
algorithms is that they are not efficient in the interpolation stage
because each pixel needs to be interpolated at least twice, one
in horizontal direction and the other in vertical direction, for
the next soft-decision procedure. This drawback also greatly
increases the computing efforts in the latter decision stage.
Therefore, it is still a challenge in CFA demosaicing design
to develop an efficient color interpolation method with high
performance in both textured and edge regions.

In this paper, a novel heterogeneity-projection hard-deci-
sion (HPHD) color interpolation algorithm is proposed for
color reproduction from Bayer mosaic images. The proposed
algorithm aims to estimate the optimal interpolation direction
before performing color interpolation. Because the decision
stage is performed before the interpolation stage (termed
as hard-decision interpolation), each pixel only needs to be
interpolated once. To do so, a new heterogeneity-projection
scheme based on a novel spectral-spatial correlation concept is
proposed to estimate the best interpolation direction directly
from the original Bayer mosaic image. Using the proposed
heterogeneity-projection scheme, a hard-decision rule can be
decided before performing color interpolation. The advantage
of the proposed demosaicing algorithm is threefold. First,
the proposed heterogeneity-projection scheme can combine
with existent decision-based demosaicing algorithms. More
specifically, the proposed heterogeneity-projection scheme
can adopt into the decision step of existent decision-based
demosaicing algorithms. Second, each pixel only has to be
interpolated once. Therefore, the proposed algorithm is much
more efficient than other decision-based schemes. Finally, the
proposed demosaicing algorithm performs well not only in
textured regions, but also in well-defined edges of the image.

The rest of this paper is organized as follows. In Section II, the
spectral-spatial correlation concept will be described. Section IIT
presents the proposed heterogeneity-projection scheme based on
the spectral-spatial correlation. Section IV describes the proposed
HPHD interpolation algorithm. In Section V, experimental re-
sults and computational complexity of the proposed method are
discussed. The demosaicing results of the proposed method are
compared with those from other existing methods. Section VI
summarizes the contributions of this work. In Appendix A, an
experiment of tweaking parameters is presented to find the local
optimal parameters for the proposed method.

II. SPECTRAL-SPATIAL CORRELATION

Fig. 1 shows the most used CFA pattern, the Bayer pattern
[11], where R, G, and B denote, respectively, the pixels having
only red, green and blue color values. We limit our discussion to
the Bayer pattern in this paper. In the following, image spectral
and spatial correlations are first introduced. A novel spectral-
spatial correlation is then derived based on these correlations.

Fig. 1. Bayer CFA pattern (Bayer pattern).

A. Spectral and Spatial Correlations

Many existing demosaicing methods are developed using
image spectral and/or spatial correlation. The concept of
spectral correlation is based on the assumption that the color
difference signals are locally constant in chrominance smooth
areas [12]. Let [R G B] denote three color planes of a
nature color image, the concept of spectral correlation leads to
the following assumption.

Al) The color differences between green and red/blue chan-
nels satisfy the following conditions:

R(x/y) = G($7y) + Arg(l’,y) and
B(:I’,’,y) = G(."L‘y) + Abg(a:ay)

where A,,(z,y) and Ay,(z,y) are piecewise constant
within the boundary of a given object. O
The spatial correlation reflects the fact that within a homo-
geneous image region, neighboring pixels share similar color
values [13]. In other words, the difference between neighboring
pixel values along an edge direction in spatial domain is a
constant. Thus, we have the following assumption based on the
concept of spatial correlation [3].
A2) The rate of change of neighboring pixel values along an
edge direction is a constant. O
To illustrate this, let us consider the interpolation of Rs33 in
Fig. 1. Suppose that the pixel R33 is located on a horizontal
edge. Based on A1), the neighboring pixels of R33 along the hor-
izontal direction have the following relationship between green
and red/blue pixel values:

Arg(z — 1,y) = Apg(x,y) = Arg(z + 1,y) and
1411_(](1j - lly) :Abg(xay) = Abg(x + lay) (1)

So, we have

Ry3 — Gz = R33 — G33 = Ryz — Gy3 and
B3 — Gz = Bz — Gis3 = Bz — Gus. 2

The assumption A2) gives the following relationship on hori-
zontal edges

Ro3 — R3s = Rs3 — Ruz = dR,,
G23 — 633 :633 — G43 = dGh and
§23 - F:’,a =§33 - §43 =dBy, 3)
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where Gs3, Ras, Ra3, Bas, Bss, and Bys denote the missing
color values at the respective pixel locations. dGj,, dRj,, and
dBj, are constants.

B. Spectral-Spatial Correlation (SSC)

A significant characteristic of Bayer pattern is that for each
pixel, the surrounding pixels are one of the primary components
in different channels. It is then interesting to investigate the re-
lationship between neighboring pixels in different color chan-
nels. Consider the following situation: On a horizontal edge,
two green pixels surround a red pixel on horizontal direction.
Take the difference between the center red pixel and right green
pixel, we then have

= [R(z.y) = G(z,y)] + [G(z,y) = Gz +L,y)] @

where G/(,y) denotes the missing green value at center red
pixel location. Recall assumptions Al) and A2), expression (4)
becomes such that

SHEet) = Rz, y) — Gz + 1,y) = Argl@,y) + dGh. (5)

Similarly, the difference between a blue pixel and its right green
pixel is given by

Sper ) = B(a,y) — Ga + 1,y) = Ayg(x,y) + dGy. (6)
The same results also can be obtained along vertical direction
on a vertical edge such that

Sf;y’yﬂ) =R(z,y) — G(r,y+1) = Ary(z,y) + dG,, and
Syt = B(a,y) — Gla,y + 1) = Ayg(w,y) + dGy. (1)

g
Expressions (5)—(7) show that the difference between sur-
rounding pixels in different color channels is equal to the
summation of spectral and spatial correlations. We refer these
relationships (5)—(7) as spectral-spatial correlation (SSC).
SSC has two important characteristics. First, SSC can be easily
and directly calculated from the original Bayer mosaic image.
Second, SSC inherits the characteristics of spectral and spatial
correlations. In other words, SSC is also piecewise constant
within the boundary of a given object or along an edge direc-
tion. Therefore, we have the following assumption based on
these observations:
A3) The SSC defined in (5)—(7) within the boundary of a given
object or along an edge direction is also piecewise con-
stant. O
Assumption A3) is a significant clue for us to find the direc-
tional smooth regions in Bayer mosaic images directly before
performing the interpolation. In Section III, we will present the
method of heterogeneity-projection based on A3).

III. HETEROGENEITY-PROJECTION FOR
BAYER MOSAIC IMAGES

The proposed heterogeneity-projection scheme transfers
the original Bayer mosaic image directly into horizontal and
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vertical heterogeneity maps, respectively. Using these two het-
erogeneity maps, the interpolation direction can be determined
easily by choosing the smallest heterogeneity values.

A. Heterogeneity-Projection

Assumption A3) implies that the nth-order directional finite
derivative of SSC along an edge direction tends toward a small
value. For example, consider a red pixel R(z,y) locates on a
horizontal edge, the SSC values of R(x,y) and its neighboring
pixels along horizontal direction can be found such that

Shizatl) — Ayg(z,y) + dGy,

g
Sg£z+1,x+2) = — Apy(z+2,9) + dGy, ®

where S"THY = Gz + 1,y) — R(z + 2,y). Based on

the basic definition of the first-order derivative of a 1-D discrete

function, the first-order horizontal derivative of SSC are given
by [14]

h(z,z+3) — qh(z,z+1 h(z+2,243
dSh{==+3) = ghlzx+l) _ ghl )

= Arg(xa y) - Arg(a7 +2, y)7
dSh(Ha+d) = ghletlat?) _ ghle+da+d)

Recall Al) and A3), one can see that dSi<***® and
dSp T both will approach to zero along this hori-
zontal edge. Because the higher-order derivative of a discrete
function is a linear combination of the first-order ones, it
implies the higher-order horizontal derivative of SSC will also
approach to zero along the horizontal edge. Thus, we have the
following assumption.

A4) If pixels locate on a directional edge, then the corre-
sponding nth-order directional finite derivative of SSC
along the edge direction approaches to zero. O

Assumption A4) poses a question that how the nth-order
directional derivative of SSC can be directly calculated from

Bayer mosaic image. To resolve this problem, a hetero-

geneity-projection scheme is developed to transfer the row

data of Bayer mosaic image directly into nth-order directional
derivative of SSC. Note that the value of nth-order directional
derivative of SSC is defined as heterogeneity measure, because
it leads to a small value within a directional smooth region.
Denote RGixny = [R1 G2 Rs ...]ixn as arow data
of Bayer mosaic image, N is the presetting window size, and

Hj, is the corresponding horizontal heterogeneity value. To cal-

culate the horizontal heterogeneity value Hj, from RG1x n, we

propose the following steps. First, the row data RG1 v is trans-
ferred into a 1 X (N — 3) vector of first-order horizontal finite
derivative of SSC using a linear transformation such that

dS1><(N—3) = [dsfgsl’zl) dSs};?ng) dS:“Lg(?’;G) a ']lx(N—S)
= RG1xnTxy(n—3) (10)

where Ty x_gy =[1 —1 =1 1]7 @eye(N —3), ® de-

notes the 2-D convolution operator and eye(M ) denotes a M x

M identity matrix. Second, because the higher-order derivative
of a discrete function is derived by the linear combination of
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Fig. 2. Concept of horizontal heterogeneity-projection froma 1 X 5 row data
of a Bayer mosaic image.

its first-order ones, the horizontal heterogeneity value Hj, the
(N — 3)th-order horizontal derivative of SSC, is obtained such
that [14]

_ JN—-3gh(1,N) _ jN—4 gh(1,N—1 N—4 gh(2,N
Hy, =dVN3GHLN) = gN=4gh(LN=1) _ gN=4gh(2.N)

_ JN—-5gh(1,N—2 N—5gh(2,N—1 N—5 qh(3,N
= NP GHLN=2) _ 9gN =5 gh(ZN=1) 4 gN=5gh(3.N)

= w dSMIY 4 wydSHED) +wyd SO 4 -

= dSyx(v-3)T{x-3)x1 (11)

where T<2N_3)><1 = H?:f [1 —1]" ®eye(N—-3—i)isa
(N —3) x 1 coefficient vector which transfers vector d.Sy , (v _3)
into the (N — 3)-order derivative value through Euclidean inner

product [15]. Next, substituting (10) into (11) yields
Hh = RGlxNle\rx(N_g)T(QN_g,)xl = RGlxNPle (12)

where Pyy1 = TJ{,X(1\,_:,))T(2]\,_:,))><1 isa NV x 1 vector and
referred as heterogeneity vector. Expression (12) shows that
the horizontal heterogeneity value Hj, is the projection of the
row data of Bayer mosaic image onto the heterogeneity vector
Pnx1. Thus, (12) is termed as horizontal heterogeneity-projec-
tion. Fig. 2 illustrates an example of horizontal heterogeneity-
projection froma 1 x 5 row data of Bayer mosaic image. Using
(12), the heterogeneity vector Py is obtained as
Psx1 =ThoTi =[1 -2 0 2 —1]".

The horizontal heterogeneity value Hj, of Rs33 is then given

by

Hy, =d*S}1P)
=RGix5P5x1
=Ri3 — 2G23 + 2G43 — Rss.
Similarly, the vertical heterogeneity value H, is the projec-

tion of Bayer mosaic image’s column data onto the hetero-
geneity vector Py 1 such that

H, = RG% Py (13)

where RGyx1 = [R1 G2 Rs -]k, is a column data
of Bayer mosaic image. Finally, based on (12) and (13), the hori-
zontal and vertical heterogeneity maps, Hy,_map and H,,_nap, are
obtained, respectively, by

Hh_map = |Bayer ® P£><1| and

Hu_map = |Bay€7'®PNx1| (14)
where Bayer denotes the original Bayer mosaic image. One can
see from (14) that the horizontal and vertical heterogeneity maps
are derived directly from the Bayer mosaic image via horizontal
and vertical heterogeneity-projection, respectively.

B. Directional Adaptive Filtering For Error Reduction

Assumption A4) states that the directional heterogeneity-pro-
jection along an edge direction leads to a small heterogeneity
value. However, a small heterogeneity measure does not imply
the directional heterogeneity-projection along a correct edge di-
rection. This problem will induce estimation error in the initial
estimated heterogeneity maps. In order to reduce the estima-
tion error, a directional adaptive filter, whose behavior changes
based on the statistical characteristics inside a local window, is
proposed to reduce the estimation error and estimate the op-
timal heterogeneity maps. Moreover, since each heterogeneity
measure in the initial heterogeneity maps is static, this esti-
mation problem is equivalent to a static estimation problem,
in which the estimation errors are modeled as the zero mean
Gaussian noises with nonzero variance. According to [16], the
minimum mean square-error (MMSE) solution of the static es-
timation problem can be obtained using a predictor-corrector
filter. Therefore, the design of the proposed directional adaptive
filter adopts the structure of predictor-corrector filter to obtain
the MMSE estimates. The interested reader is referred to [16]
for more technical details.

The proposed directional adaptive filter is divided into hor-
izontal and vertical adaptive filters. For the horizontal hetero-
geneity map, only the horizontal adaptive filter is applied to it.
Fig. 3(a) illustrates the concept of horizontal adaptive filter. In
Fig. 3(a), the center pixel Hy}, is to be adaptively filtered along
the horizontal direction based on statistical measures of sur-
rounding pixels H} and H}'. The simplest statistical measures
of H and H} are their mean and variance in a local window
[14]. For instance, if a 1 X 3 rectangular window defines the
window size, the local mean and variance of H ,If and H f are,
respectively, given by

(Hy + HE + HER)

—R
Hh = 3
—R 2 /_R 2 /_R 2
|:(Hh_Hh) +(H}L_H}?) +(H}L_HI?R):|
SHT = y
(15)
. _ (Ha+ Hi + Hi")
Hh = 3
Tk > (mT L\’ (7L A%
(Hh _Hh> + (Hh _Hh) + (Hh - H, )
SHE =

3
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Fig. 3. Concept of (a) horizontal and (b) vertical adaptive filtering using a rect-
angular window.

Using (15) and (16), the adaptively filtered pixel H} is obtained
as follows:

SHE

« _—L oy _—L
i =+ 5 s (Hh Hh). (17)

In (17), the local mean Fﬁ is the predictor term with an as-

sociated error variance §HE, and the local mean ) is the
corresponding corrector term with error variance 6 H ,‘?. There-
fore, (17) provides the MMSE estimate of the horizontal hetero-
geneity measure in a local window. Fig. 3(b) illustrates an ex-
ample of vertical adaptive filter for vertical heterogeneity map.
Using the same procedure discussed above, the adaptively fil-
tered pixel H; is obtained as follows:
_LT

H;=H H H

; ﬁ%(ﬁ?— D) as)

where (Fg L6HY ) and (Ff ,6HP ) are the local mean and

variance of HY and HP. Similarly, (18) also provides the
MMSE estimate of the vertical heterogeneity measure in a local
window. After adopting the horizontal and vertical adaptive fil-
ters presented above into horizontal and vertical heterogeneity
maps, respectively, the MMSE estimates of horizontal and

vertical heterogeneity maps Hy . and HY .. are obtained.
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IV. HARD-DECISION COLOR INTERPOLATION

With the horizontal and vertical heterogeneity maps, a hard-
decision rule is applied for color interpolation. First, we classify
three subsets in the image such that

Qh

{(=, |Hh map (T, Y) < ol 0 (z,9)}
{ v map( y) < O‘I-Ih map( y)}
{(=, )I(fv y) & Qs (2,y) ¢ Do}

(19)

where €, €,, and Qg denote the horizontal, vertical, and
smooth subsets, respectively. « is a positive constant satisfying
0 < a < 1. Second, based on (19), the concept of hard-decision
rule for interpolation is obtained in (20), shown at the bottom
of the page.

In the following discussion, a color interpolation method is
developed based on the hard-decision rule (20).

Remark 1: The parameter « in (19) determines the size of
smooth subset in the image. A small (large) « leads to a large
(small) smooth subset in the image. For example, if a« = 0,
the image only contains smooth subset without horizontal and
vertical subsets. Based on (20), the interpolation of image
only adopts the weight averaging of neighboring pixels on
each missing color channel [3], [13], [17]. On the contrary,
for « = 1, the image only contains horizontal and vertical
subsets but without smooth subset. The interpolation of image
only adopts horizontal and vertical interpolations on each
missing color channel [7], [8]. Therefore, for 0 < « < 1, the
hard-decision rule (20) is characterized by weight averaging
and directional interpolating.

A. Hard-Decision Adaptive Interpolation

We first interpolate green channel because the green plane
possesses most spatial information of the image. Each missing
green value G iss 1S to be estimated from its four surrounding
green pixels by (21), shown at the bottom of the page, where
é{llp,rig}lt ,down,left} denote the color-adjusted green values of
four surrounding green pixels, and e,y right,down,lett) denote
the corresponding edge indicators. In our method, the following

[’f (377'!/) € Qh

Perform horizontal interpolation on each missing color channel

elseif (z,y) € Q,

Perform vertical interpolation on each missing color channel

else

Perform weight averaging of neighboring pixels on each missing color channel

(20)

Gmiss =

equup + 6rightGright + edownGdown + Cleft Gleft

21

€up + €right + €down T Clett
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modification on edge indicators is adopted according to the
hard-decision rule (20), such that

if (z,y) €

(€ups €down) = (0,0)

else if (z,y) € Q,
= (0,0). (22)

(eright ; Cleft )

Therefore, the hard-decision adaptive interpolation for green
channel is summarized in (23), shown at the bottom of the page.

Remark 2: The color-adjusted green value is the green
value adjusted with the help of the surrounding red/blue pixels
along the respective interpolation directions. The derivation of
color-adjusted value is based on the assumptions of spectral
correlation Al) and spatial correlation A2) discussed in Sec-
tion II-A. Interested reader can refer [3] for detailed derivations
of color-adjusted values. In this paper, the formulation of
each surrounding color-adjusted green value in (23) adopts
the results in [3], while the corresponding edge indicator can
be referred in [3], [13], and [17]. In the remainder of this
paper, the color-adjusted value of each color pixel and the
corresponding edge-indicator are determined by adopting the
procedure presented in [3].

When the green channel has been fully recovered, it can be
used in the interpolation of red and blue channels. The interpola-
tion procedure of red and blue channels consists of two substeps:
1) interpolating the missing red/blue values at blue/red pixels,
and 2) interpolating the rest of the missing red/blue values at
green pixels. In our method, we only apply the hard-decision
rule (20) to the substep 2) because there is not enough informa-
tion to perform horizontal and vertical interpolations in substep
1). Since the same procedure is applied to interpolate the red and

Let RY,. denote a missing red value at a blue
pixel. It is estimated from its four neighboring red
pixels by (24), shown at the bottom of the page, where
R{up—right,down—right,down—left,up—left} denote the color-ad-
justed red values of four neighboring red pixels, and
€{up—right,down—right,down—left,up—left} denote the corre-
sponding edge indicators. For example, in Fig. 1, the missing

red value R, at blue pixel By is estimated by

e31 31 + es3R33 + e33Rz + e Ry

Rb _
22 =
es1 +e33+e13+ e

(25)

Subsequently, the rest of the missing red values at green
pixels are estimated using the same procedure performed for
the green channel. Each missing red value at a green pixel
RY .. can be estimated from its four surrounding red pixels
by the hard-decision adaptive interpolation in (26), shown at
the bottom of the page, where R{upﬁghmdown?lo&} denote
the color-adjusted red values of four surrounding red pixels,
and €{yp right,down,left} are the corresponding edge indicators.
Finally, a full-color image can be obtained by applying the
same interpolation steps described above on each missing blue
value.

Remark 3: Although adaptive interpolation can provide more
pleasing results, it also increases the computational load and the
amount of memory transactions compared with linear interpola-
tion [12]. In order to reduce the computational cost in the color
interpolation step, we can still use linear interpolation instead of
the adaptive interpolation. More specifically, for linear interpo-
lation, the edge indicators e{yp, right,down,left} i (13) and (26)
are simplified such that

if (z,y) € O

0,0,1,1),
(eup7edown7eright7eleft) = (1717070)7 if (1:7:‘/) € Qu -
1,1,1,1), if (z,y) € Q4

blue channels, only the red channel interpolation is presented. 27
Eright Gright teters Grere .
Eright T€left ’ if (z,y) € Qp
R eupGup+edownGdown .
Gmlss - - eup+e(lowx: 5 A A if (177 y) € Q'u (23)
eupGup teright Gright +€down Gdown teleft Gleft .
€up+eright Fedown +eleft ,if (‘T’ ’lj) € Q,
Rb _ eup—rightRup—right + edown—righthown—right + edown—lefthown—left + eup—leftRup—left (24)
miss
€up—right + €down—right + edown—left + €up—left
€right Rright +elofs Riert .
€right F€left ’ if (1177y> € Qh
g _ eup Rup +edown Rdown :
Rmiss - = Sip-l-edown ) if (.Z',’y) € Qv (26)
up Rup+eright Rright +edown Rdown teier Rie ;
€up Rup +eright Rright +€d down T eleft Rleft 1f(:1:7y) GQS

€upteright T€down t€left ’
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Fig. 4. Flowchart of the proposed HPHD color interpolation algorithm.

And the edge indicators e{up—right,down—right,down—lcft,
up—left } i (24) are fixed such that

(eup—right; €down—rights €down—left eup—left) = (1 1,1, 1)
(28)
The advantage of linear interpolation is that it not only can skip
the calculation of edge indicators, but also use bit-shift instead
of division to reduce the computation time. Therefore, compared
with adaptive interpolation, the computational cost of linear in-
terpolation will be greatly reduced.

B. Complete HPHD Color Interpolation Algorithm

We summarize the proposed HPHD color interpolation algo-
rithm as follows.

1) Initialization: Set window size NN to calculate the hetero-
geneity vector Py 1 by TJ{,X (N—3) and T(2N_ 3)x1 defined
in (10) and (11), respectively; set parameter « for spatial
classification.

2) Decision Stage.

a) Heterogeneity-projection: Calculate the horizontal
and vertical heterogeneity maps, Hj_ma, and
Hy_map, from original Bayer mosaic image by
(14).

Directional adaptive filtering: Filter the horizontal and
vertical heterogeneity maps by directional adaptive
filters (17) and (18), respectively.
Spatial classification: Use parameter « and the two
filtered heterogeneity maps to classify the image into
three subsets 2, €2, and Q5 by (19).
3) Interpolation Stage.

a) Interpolate G channel at R and B pixels by interpola-
tion rule (23).
Interpolate R channel at B pixels by interpolation rule
(24) and the B channel similarly.
Interpolate R channel at G pixels by interpolation rule
(26) and the B channel similarly.

Fig. 4 illustrates the flowchart of the proposed HPHD color
interpolation algorithm. The main difference between the
proposed algorithm and the existent decision-based schemes
is that the decision stage is performed before the interpolation
stage in this design, thanks to the heterogeneity-projection.
This advantage contributes not only to improving the quality
of demosaicing result, but also to reducing the computational

b)

¢)

b)

)

complexity of the decision stage. In Section V, a comparative
study of experimental results and analysis of computational
complexity will be discussed to demonstrate the performance
of the proposed method.

C. Example Study

Fig. 5 illustrates the execution steps of the proposed al-
gorithm by using an example. The Kodak small Lighthouse
image (384 x 256) is downsampled into a Bayer mosaiced
image as shown in Fig. 5(a). In this picture, the fence regions
usually challenge the performance of a demosaicing procedure.
Fig. 5(b) and (c), respectively, are the horizontal heterogeneity
map H}_map and vertical heterogeneity map H,, ,,;, obtained
from (14) discussed in Section III-A (/N = 24 in this example).
Through the directional adaptive filtering discussed in Sec-
tion II-B, the filtered horizontal heterogeneity map Hj ...
and filtered vertical heterogeneity map H, ., are obtained
in Fig. 5(d)—(e), respectively. Comparing Fig. 5(d)—(e) with
Fig. 5(b)—(c), one can see that the unwanted noises in both
original heterogeneity maps have been removed effectively by
using the directional adaptive filters. Employing two filtered
heterogeneity maps, the horizontal, vertical, and smooth sub-
sets of the image are obtained directly by (19) with « = 0.8.
Fig. 5(f) shows three decided subsets of the image, where the
gray region is the horizontal subset €2, the white region is the
vertical subset €2, and the black region is the smooth subset
;. Note that Fig. 5(f) shows that the decisions in fence regions
are almost all vertical. The interpolations are, thus, along the
correct directions. Finally, the proposed hard-decision interpo-
lation discussed in Section IV was applied to reconstruct the
color image based on these three decided subsets. Fig. 5(g)
illustrates the interpolation results. In Fig. 5(g), one can see
that the fine details of interpolation such as the fence and house
regions are reconstructed successfully.

To further illustrate the performance, we tweak parameter «
and compare the demosaicing results with original image (N =
24 is fixed). Fig. 6(a) is the zoom-in of the original fence re-
gions. Fig. 6(b) is the zoom-in of demosaicing result with pa-
rameter o = 0. One can see that the demosaiced image contains
many color artifacts due to the inaccurate smooth interpolation.
Fig. 6(c) and (d) show the demosaicing results with parameter
a = 0.5 and a = 0.8, respectively. It is clear that the proposed
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Fig. 5. Tllustration of execution steps of the proposed HPHD color interpolation algorithm. (a) Original Bayer mosaic image of small Lighthouse image (384
X 256). (b) Horizontal heterogeneity map H/,_map (N = 24). (c) Vertical heterogeneity map H, _.p. (d) Filtered horizontal heterogeneity map H hmap- (e)

*
v_map*

Filtered vertical heterogeneity map H

(f) Three decided subsets in the image (ov = 0.8). The gray region is the horizontal subset €2, the white region is

the vertical subset €2,, and the black region is the smooth subset £2;. (g) Interpolation result using the proposed hard-decision adaptive interpolation presented in

Section IV-A.
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Fig. 6. (a) Zoom-in of the original Lighthouse image in the fence region. Zoom-in of the demosaicing results with parameters N = 24; (b) o = 0;(c) a = 0.5;

(d) a = 0.8.

hard-decision interpolation method reduces the color artifacts
efficiently. Visually compare Fig. 6(d) with Fig. 6(a), one can
see that most detail features have been reconstructed correctly.

V. EXPERIMENTAL RESULTS

In the experiments, 25 Kodak photographic images as shown
in Fig. 7 were employed for demonstrating the demosaicing
performance. According to [18], the CFA operations in a
digital-camera pipeline usually include a demosaiced image
postprocessing framework to provide more visually pleasing
color output. Therefore, we introduce the post processing
framework in the experiments to complete the comparisons.
Fig. 8 illustrates the flowchart of the experiment, which contains
interpolation and postprocessing steps. In the interpolation step,
the demosaiced results of the proposed method, HPHD linear
interpolation (HPHD-LI) and HPHD adaptive interpolation
(HPHD-AI) methods, are compared with those using bilinear
interpolation and three recently published methods: Lu’s [3],
Gunturk’s [5], and Li’s [6] methods. The above schemes are

chosen due to their high citation rate in peer-reviewed liter-
ature [2]-[8], [13] and represent the state of the technology
of CFA demosaicing. For Gunturk’s method, we make use of
one-level (1-L) decomposition with eight projection iterations
in the experiments. For Li’s method, the universal threshold
value 6, = 9§, = 4 and maximum iteration number iter = 20
are chosen in the experiments. For the proposed method, an
experiment of tweaking parameters (N, «) presented in Ap-
pendix A was set to find the local optimal parameters for these
25 test images. The local optimal parameters were given by
(N,a) = (11,0.6), which were chosen in the experiments.
Subsequently, Lu’s postprocessing method was adopted as the
postprocessing procedure for each demosaicing method. The
demosaiced results in each step were compared accordingly. As
shown in Fig. 1, all test images were down-sampled to obtain
the Bayer pattern and then reconstructed using the demosaicing
methods under comparison in RGB color space.

Two performance measures were adopted in the experiments:
PSNR and S-CIELAB AE?, metric [3], [6], [19] to evaluate
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Fig. 8. Flowchart of the experiment. In the interpolation step, we compare the performance of bilinear, Lu’s, Gunturk’s, Li’s, and the proposed HPHD-AI methods.
In the postprocessing step, Lu’s postprocessing method is adopted into each demosaicing method.

the quality of the demosaiced images. The PSNR (in decibels)
metric in this paper is defined as

1
PSNR(O, D) = 101 2552 | ——
( ) ) Oglo{ <UV

x> ||0<x,y>—D<w,y>||2) } (29)

1<y<V 1<a<U

where U, V are the total column and row number of the image,
O(z,y) is the color vector at the (x, y) th position of the original
color image, and D(z,y) is the corresponding color vector in
the demosaiced color image. Note that, for a demosaiced image,
high fidelity implies large PSNR and small S-CIELAB AEY,
measures.

A. Quantitative Comparison

Table I records the PSNR values and S-CIELAB A E?, mea-
sures of the demosaiced results obtained by the proposed in-
terpolation method together with those from other methods for
comparison. In each step, the bold font denotes the largest PSNR
and smallest AEY, values across each row. Moreover, since
Gunturk’s and Li’s methods are iterative and others are non-
iterative, we categorized these methods into iterative and non-
iterative groups for more detailed comparisons. From Table I,

one can see that Li’s and HPHD-AI methods provide improved
demosaiced fidelity in most of the test images in the interpola-
tion step. However, when one compares the average PSNR and
AFE?, measures in the interpolation step, HPHD-AI generates
the highest fidelity demosaiced images, followed by the Gun-
turk’s or other methods.

In the postprocessing step, Table I indicates an interesting
phenomenon that all noniterative methods have significant
improvement compared with iterative ones, especially the
bilinear interpolation (BI). On average, the improvement of BI
can add-up the PSNR and reduce AE?, of the interpolation
results by 5.8031 dB and 1.4345 units, respectively. The other
noniterative methods also have noticeable improvement on
average. In contrast, the iterative methods, e.g., Gunturk’s
and Li’s methods, only have modest improvement through the
postprocessing step on average. These observations also can be
seen in [18], where the postprocessing step provides the most
significant improvement with BI and the smallest improvement
with Gunturk’s method. Therefore, the experimental results
presented in Table I as well as [18] pose a question why post-
processing is more beneficial to the interpolation results of
noniterative approaches compared to that of iterative ones. The
main reasons are as follows.

Many color interpolation schemes, especially the simple ones
such as BI or HPHD-LI, usually induce visible artifacts due
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TABLE 1
PSNR (DECIBELS) AND A K, MEASURES OF DEMOSAICED IMAGES IN THE INTERPOLATION AND POSTPROCESSING STEPS

Step Interpolation Step Post-Processing Step
Group Iterative Non-Iterative Iterative Non-Iterative
Method Gun.[5] Li [6] Bilinear Lu [3] HPHD-LI HPHD-AI Gun.[5] Li[6] Bilinear Lu [3] HPHD-LI HPHD-AI
1 29.3765 28.4957 24.8843 31.0257 30.5902 31.3390 29.2676 28.3192 28.8878 30.7940 30.5619 31.1022
1.7666 1.8899 2.7289 1.5357 1.6579 1.5096 1.7845 1.9083 1.9067 1.5466 1.6239 1.5126
2 33.2296 33.6676 21.5611 31.6889 31.3683 31.8131 33.6595 33.9846 27.3176 33.8433 34.0348 34.3242
1.5972 1.5396 5.1618 1.7135 1.7700 1.6990 1.5445 1.4974 2.8440 1.4668 1.4397 1.4078
3 347577 35.2213 28.3682 35.7152 35.4998 36.0111 34.6331 35.0579 33.2804 35.7232 36.0086 36.2513
1.6598 1.5958 3.1280 1.4910 1.5541 1.4591 1.6721 1.6008 1.9659 1.4943 1.4923 1.4324
4 36.6168 36.3808 29.7242 37.3966 37.3608 37.9582 36.7206 36.3960 35.3870 38.0096 37.9466 38.4163
0.9774 0.9766 1.7728 0.9094 0.9143 0.8766 0.9635 0.9615 1.0873 0.8576 0.8596 0.8272
5 34,9839 34.8997 28.8694 35.4482 34.9540 35.5235 34.9657 34,7714 34.4611 36.1356 35.6365 36.2585
1.3508 1.3260 2.5128 1.3020 1.3565 1.3036 1.3075 1.3213 1.4752 1.1861 1.2306 1.1759
6 32.6411 31.8126 21.8873 32.7081 31.8449 32.7811 32.6069 31.6062 29.3927 33.7802 33.4118 33.9482
2.1864 2.3790 5.7055 2.0318 2.3001 2.0417 2.1709 2.3857 2.8618 1.8551 1.9444 1.8263
7 34.0239 33.8198 23.0206 32.4465 33.4723 33.9217 34.3593 34.5397 28.6949 34.0965 35.6736 35.8956
1.2157 1.2266 3.6536 1.2998 1.2130 1.1590 1.1896 1.1590 2.0249 1.1592 1.0243 0.9972
8 36.8763 36.7725 28.7405 37.9098 36.8668 37.9233 36.6670 36.4265 35.3671 38.1854 37.5005 38.3097
1.1338 1.1444 2.1614 0.9885 1.0789 0.9830 1.1576 1.1699 1.2509 0.9694 1.0442 0.9597
9 30.8332 31.2495 18.7578 29.7212 29.2916 30.4949 31.1581 31.4196 23.9221 31.3071 31.3034 32.2654
1.7679 1.7192 5.9022 1.8327 1.9456 1.7327 1.7214 1.6968 3.4143 1.6277 1.6376 1.5092
10 36.7662 37.2501 27.5750 36.8133 37.0465 37.1882 37.0662 37.2927 33.3472 37.8106 38.3269 38.2854
0.8925 0.8255 1.8783 0.8758 0.8258 0.8524 0.8491 0.8226 1.1263 0.7919 0.7465 0.7650
11 36.7975 37.0956 27.6351 36.8098 36.5621 36.9169 37.0497 37.0952 34.1833 37.5213 37.7538 37.7553
0.8954 0.8286 1.8566 0.8715 0.8716 0.8710 0.8536 0.8263 1.0627 0.7926 0.7828 0.7823
12 34.5407 34.4102 24.3568 33.8725 33.6367 34.2984 34.6820 34.7541 30.3304 35.2610 35.4407 35.8845
1.4748 1.4275 3.8112 1.4666 1.5243 1.4177 1.4288 1.3622 2.1498 1.3140 1.3067 1.2434
13 37.8205 37.7569 28.7032 37.3884 37.7280 38.1802 37.9377 37.8628 34.1471 38.3279 38.9659 39.2314
0.6731 0.6760 1.5011 0.6695 0.6527 0.6377 0.6665 0.6610 0.8955 0.6267 0.5971 0.5875
14 29.7386 30.4264 19.0903 27.8600 27.5973 28.0143 30.2466 30.8242 25.6167 30.2549 30.3762 30.6383
2.5595 2.4457 7.1986 2.4652 2.9558 2.8073 2.8077 2.3680 3.7864 2.3619 2.3839 2.3102
15 30.8370 29.6090 24.4266 32.4833 31.7108 32,6772 30.6644 29.3860 30.1370 32.6128 31.9835 32.9406
1.9406 2.1114 4.1290 1.7491 1.8908 1.7195 1.9284 2.1159 2.3280 1.6518 1.7319 1.5988
16 34.4301 34.3050 28.2748 34.4161 34.5631 34.6991 34.3523 34.2067 33.7516 34.9354 35.1211 35.1327
1.4764 1.4804 2.5666 1.3868 1.4168 1.3735 1.4682 1.4704 1.5735 1.3388 1.3436 1.3179
17 37.3602 37.0917 26.5250 35.6650 37.1741 37.6200 37.6885 37.8239 31.8934 37.2329 39.1877 39.4594
0.9964 1.0009 2.8594 1.0971 0.9836 0.9556 0.9740 0.9477 1.6581 0.9865 0.8509 0.8337
18 36.2947 36.4685 27.2295 35.7449 35.4640 35.8602 36.5932 36.6429 33.7658 36.8960 36.9038 37.0233
1.4628 1.3340 2.8610 1.4857 1.5146 1.4874 1.3572 1.3100 1.6517 1.3056 1.3098 1.2994
19 32.3393 32.3295 23.3178 31.6767 31.3516 31.6487 32.5119 32.2416 29.5746 32.9921 32.8655 33.0483
2.3592 2.3903 5.0440 2.2879 2.3566 2.3067 2.3137 2.4326 2.8095 2.0898 2.1323 2.0900
20 34.9738 35.2707 23.1302 34.5020 34.6201 35.1984 35.2671 35.5570 28.4598 35.7424 36.1790 36.6174
1.3061 1.2493 3.6480 1.3409 1.3254 1.3024 1.2452 1.2094 2.0810 1.1902 1.1547 1.1439
21 35.7991 35.7714 26.8448 35.8899 35.1749 35.8708 36.0108 35.9894 33.1566 36.8055 36.5337 36.9362
1.0396 1.0294 2.1996 1.0016 1.0650 1.0052 1.0077 0.9971 1.2790 0.9230 0.9458 0.9154
22 34.0980 33.8535 23.7154 33.0809 32.5035 33.1734 34.3656 34.4198 29.6633 34.6893 34.4820 34.9650
1.3142 1.3468 3.4864 1.3691 1.4679 1.3721 1.2900 1.2757 1.9425 1.2138 1.2435 1.1885
23 32.8830 32.9540 25.5756 33.5303 32.9888 33.5531 32.8127 32.8188 30.7133 33.7291 33.4516 33.8199
1.5024 1.5250 2.9269 1.3922 1.4540 1.3935 1.5307 1.5364 1.7699 1.3651 1.4050 1.3562
24 37.0203 37.0820 30.3178 38.0689 37.9213 38.2043 36.9022 36.9148 36.3310 38.1993 38.2472 38.4723
0.9664 0.9820 1.4579 0.8977 0.9063 0.8951 0.9867 0.9956 0.9942 0.8945 0.8976 0.8848
25 29.8870 30.0755 21.9902 29.4449 29.7334 29.8290 30.0602 30.0909 27.8193 30.0984 30.7241 30.4261
1.4933 1.5055 3.6050 1.4432 1.5206 1.4329 1.4858 1.5123 1.9570 1.3599 1.3714 1.3366
Avg. 34.1970 34.1628 25.3809 34.0523 33.8810 34.4279 34.3300 34.2577 31.1840 34.9994 35.1448 35.4963
1.4403 1.4382 3.3503 1.4099 1.4609 1.3838 1.4145 1.4217 1.9158 1.2948 1.3000 1.2521
. 0.1330 0.0949 5.8031 0.9471 1.2638 1.0684
Add-up in Average | _0psg | -0.0165 | -1.4345 | -0.1151 -0.1609 -0.1317

to the nonsmooth local color ratios and color differences (red-
green and blue-green). The function of current postprocessing
schemes is to correct the interpolated color values by enforcing
the local color ratio rule [17], [18] and color difference rule [3]
of initial demosaiced image. Similarly, the principle of itera-
tive demosaicing approaches [5], [6] is to iteratively update the
initial interpolation result by fitting the local color difference
rule. For example, according to [8], the idea of Gunturk’s itera-
tive method is equivalent to the filtering of down sampled color
difference images of the initial interpolated image by a 5 x 5
2-D low-pass filter for reducing the high frequency energy of
reconstructed color difference images without changing orig-
inal mosaic samples. In [6], Li utilized the Hamilton-Adams’
method [20] and BI to get initial estimates of missing green and
red/blue samples, respectively. The following iterative proce-

dure is equivalent to linear low-pass filtering of the color differ-
ence image until the reconstructed results converge to a smooth
one. In other words, the iterative demosaicing approaches can
be regarded as an initial interpolation combined with a meta-al-
gorithm that performs iterative linear low-pass filtering of color
difference images to enforce the local color difference rule on
initial interpolated image, which is also the main purpose of the
latter postprocessing step. Therefore, postprocessing only pro-
vides modest improvement for iterative approaches.

Summarizing the above discussion on the experimental re-

sults, we have the following conclusions.

1) For iterative approaches, postprocessing only provides the
modest improvement due to both have the same purpose
of enforcing the local color difference rule on the initial
demosaiced image.
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Fig. 9. Zoom-in demosaicing results of test image No. 1. (a) Original picture; Demosaiced result in interpolation step. (b) Gunturk’s method. (c) Lu’s method.

(d) Li’s method. (¢) HPHD-LI method. (f) HPHD-AI method.

2) On the contrary, postprocessing for noniterative ap-
proaches, especially simple linear interpolation schemes
such as BI or HPHD-LI schemes, provides significant
improvement due to its enforcing on the smoothness of
local color ratios and color differences.

3) Because the proposed HPHD-AI scheme is noniterative
and provides the best interpolation results in interpolation
step, it also has great improvement and obtains the best re-
sults after the postprocessing step.

B. Visual Comparison

Figs. 9(a) and 10(a) show the zoom-in of test images No.
1 and 20, respectively. Both scenes contain many fine detail
features, such as fine fiber patterns (Fig. 9) and picket fences
(Fig. 10), and can effectively challenge the performance of
demosaicing methods. Figs. 9(b) and 10(b), 9(c) and 10(c),
9(d) and 10(d), 9(e) and 10(e), and 9(f) and 10(f) are, respec-
tively, the demosaiced results obtained from Gunturk’s, Lu’s,
Li’s, HPHD-LI, and HPHD-AI methods in the interpolation
step. From visual comparison, one can see that the Gunturk’s,
Lu’s, and Li’s methods induce more color artifacts in edge
and textured regions than HPHD-LI or HPHD-AI does. These
experimental results validate that the proposed HPHD inter-
polation method performs satisfactorily not only in textured
regions, but also in well-defined edges. Due to space limita-
tions, more discussions and visual comparisons are available
online [21].

Further, as can be seen in Figs. 9 and 10, HPHD-LI gives al-
most the same demosaiced results in edge and textured regions
as HPHD-AI does. Hence, HPHD-LI can be used instead of

HPHD-AI in practical applications for HPHD-LI not only saves
a great amount of computational cost, but also gives comparable
visual results as HPHD-AL

C. Computational Complexity

The calculation performed in reconstructing one color pixel
in each stage of the proposed algorithm is listed in Table II,
where N and a denote the parameter of window size and spatial
classification, respectively. For two directional heterogeneity-
projections (H.P.), (12) and (13) require a total of 2N — 2 ad-
ditions, 2NV multiplications and 2 absolute conversions for each
color pixel. In the directional adaptive filtering (D.A.F) stage, a
fixed 1 x 9 rectangular window was used to compute the local
mean and variance by (15) and (16). Thus, the total calculation
of (17) and (18) needs 106 additions and 48 multiplications. In
the hard-decision interpolation (H.D.I), the total calculation of
interpolation with &« = 0 and a = 1 requires the maximum and
minimum computation for each color pixel, respectively. There-
fore, if 0 < a < 1, the total computational load of interpolation
will be between that with « = 1 and o = 0.

Note that, for other existent decision-based demosaicing
methods, the latter decision stage usually requires much more
computation compared with the interpolation stage. Moreover,
if the interpolation stage includes a smooth interpolation step,
the calculation of decision stage will increase greatly, because
it will need to evaluate three interpolation results for each color
pixel. In contrast, the calculation of the proposed hard-decision
method depends only on the parameter N of window size. The
evaluation of horizontal, vertical and smooth interpolations
depends on the parameter « and only needs at most 3 compare



TSAI AND SONG: HETEROGENEITY-PROJECTION HARD-DECISION COLOR INTERPOLATION

89

Fig. 10. Zoom-in demosaicing results of test image No. 20. (a) Original picture; Demosaiced result in interpolation step. (b) Gunturk’s method. (c¢) Lu’s method.

(d) Li’s method. (¢) HPHD-LI method. (f) HPHD-AI method.

TABLE II
CALCULATIONS PERFORMED FOR RECONSTRUCTING ONE COLOR PIXEL
HPHD-AI HPHD-LI
Stage Addition Multiplication | Absolute | Bit-shift Addition Multiplication | Absolute | Bit-shift

H.P. 2N -2 2N 2 0 2N -2 2N 2 0
D.AF. 106 48 0 0 106 48 0 0
HDIL | a=1 50.5 11 18.5 11 10.5 0 0 35
a=0 81 16 29 18 17.5 0 0 6
Total | a=1 | 2N +154.5 2N +59 20.5 11 2N +114.5 2N +48 2 35
a=0 2N +185 2N +64 31 18 2N +121.5 2N +48 2 6

operations for each color pixel. Therefore, the proposed method
provides an efficient solution for decision-based demosacing.

Note that the software implementations (MATLAB source
codes) of the proposed HPHD-AI and HPHD-LI methods along
with the 25 test images are also available online [21].

VI. CONCLUSION

A novel hard-decision color interpolation procedure has
been developed based on the spectral-spatial correlation of a
mosaiced image. The proposed HPHD interpolation method
effectively reconstructs fine detail features in both edge and
texture regions of demosaiced images. One merit of the pro-
posed algorithm is that it can combine with many existing
image interpolation methods such as decision-based algorithm
(set @ = 1), edge-directed interpolation, adaptive interpolation,
linear interpolation, etc., to obtain improved performance.
Moreover, the proposed heterogeneity-projection scheme pro-
vides an efficient method for decision-based algorithms to make
accurate direction-selection before performing interpolation.
The performance of HPHD method has been compared with

three renowned demosaicing methods. Experimental results
show that HPHD method not only outperforms all of them in
PSNR (in decibels) and S-CIELAB AFE?, measures, but also
gives superior demosaiced fidelities in visual comparison.

APPENDIX

Parameter Tuning of N and o : Since the value of parame-
ters (IV, «) may drastically influence demosaicing performance,
and, hence, the comparison results, it is interesting to study how
they affect the demosaicing results of the proposed method. In
order to evaluate the demosaicing performance, we first define
the following criterion

25
1
PSNRvg(N, ) = o > PSNR(O;, Di(N,))  (30)
=1

where O; and D; indicate the ¢ th test image and its corre-
sponding demosaiced one by using the proposed HPHD-AI
method. PSNR (in decibels) denotes the metric of peak
signal-to-noise ratio defined in (29). Based on the criterion
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Fig. 11. Experimental results of tuning parameters in each step. (a) Evolution of PSNR o, as the parameter N increases. (b) Evolution of N as the parameter
« increases. (c) Influence of the parameters (IV, o) on the performance gap APSNR 4, between postprocessing and interpolation steps.

(30), the parameter N is tweaked from 5 to 25 with interval 1,
and « is tweaked from O to 1 with interval 0.1. Fig. 11 shows the
experimental results of tweaking parameters (N, «). Fig. 11(a)
and (b), respectively, represents the evolution of PSNR Ay, as
parameter N and « increase. In Fig. 11(a), one can see that
when o = 0 (only the smooth set under consideration), the
PSNR avg is independent from the parameter N. On the other
hand, when o = 1 (only the horizontal and vertical sets under
consideration), the impact of N on PSNR 4, increases. Thus,
the influence of N on PSNR A+, depends on the parameter o,
especially when @ = 1. Moreover, one can see in Fig. 11(a)
that the local optimal parameter N occurs at Nop¢ = 11 in the
experiment.

Fig. 11(b) shows that the parameter o has significant in-
fluence on the PSNR A yg. If parameter o increases from 0 to
0.6, the PSNRA, also increases. However, when parameter
« increases from 0.6 to 1, the criterion PSNR ., becomes
decreasing. This implies the local optimal parameter « should
occur in the range from 0.5 to 0.6, and the optimal interpolation
result will encompass horizontal, vertical and smooth interpola-
tions together. Since parameter « = 0.6 obtains the maximum
PSNR A+, in postprocessing step, we choose agp = 0.6 as the
local optimal parameter c.

Fig. 11(c) shows the influence of the parameters (N, «) on
the performance gap APSNR 4+, between postprocessing and
interpolation steps. It is clear that the performance gap mostly
depends on the parameter «. Moreover, the maximum perfor-
mance gap occurs when parameter o = 1. This implies that
the postprocessing provides significant improvement on the hor-
izontal and vertical interpolation results. Therefore, postpro-
cessing seems to be more beneficial to the existent soft-decision
demosaicing algorithms, which only considers the horizontal
and vertical interpolations.

Summarizing the tweaking parameter experiment, we have
the following findings.

1) For the proposed method, the parameter « has significant
influence on the demosaicing performance compared with
parameter V.

2) When the interpolation only considers horizontal and
vertical ones, the postprocessing provides significant
improvement on the interpolation result.

3) The optimal interpolation result requires encompassing
horizontal, vertical and smooth interpolations together.

4) Based on the criterion (30), the local optimal parameters
(Nopt, topt ) of proposed HPHD-AI method can be found
at (11,0.6).
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