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Heterogeneity-Projection Hard-Decision Color
Interpolation Using Spectral-Spatial Correlation
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Abstract—This paper presents a novel heterogeneity-projec-
tion hard-decision (HPHD) color interpolation procedure for
reproduction of Bayer mosaic images. The proposed algorithm
aims to estimate the optimal interpolation direction and perform
hard-decision interpolation, in which each pixel only needs to be
interpolated once. A new heterogeneity-projection scheme based
on a novel spectral-spatial correlation concept is proposed to
estimate the best interpolation direction directly from the orig-
inal mosaic image. Using the proposed heterogeneity-projection
scheme, a hard-decision rule can be decided before performing
the interpolation. The advantage of this scheme is that it provides
an efficient way for decision-based algorithms to generate im-
proved results using fewer computations. Compared with three
recently reported demosaicing techniques, Gunturk’s, Lu’s, and
Li’s methods, the proposed HPHD outperforms all of them in
both PSNR values and S-CIELAB� measures by utilizing 25
natural images from Kodak PhotoCD.

Index Terms—Adaptive filtering, color artifacts, color filter
array (CFA) demosaicing, color reproduction, digital cameras,
image representation.

I. INTRODUCTION

DIGITAL color images from single-chip digital still cam-
eras are obtained by interpolating the output from a color

filter array (CFA). The CFA consists of a set of spectrally se-
lective filters that are arranged in an interleaved pattern so that
each sensor pixel samples one of three primary color compo-
nents. These sparsely sampled color values are termed mosaic
images. To render a full-color image from a mosaic image, an
image reconstruction process, commonly known as CFA inter-
polation or CFA demosaicing, is required to estimate for each
pixel its two missing color values. The simplest demosaicing
methods apply well-known interpolation techniques, such as
nearest-neighbor replication, bilinear interpolation, and cubic
spline interpolation, to each color channel separately. However,
these single-channel algorithms usually introduce severe color
artifacts and blurs around sharp edges [1]. These drawbacks mo-
tivate the need of more advanced algorithms for improving de-
mosaicing performance. An excellent review on advanced de-
mosaicing algorithms can be found in [2].
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In recent years, there have been investigations on more
sophisticated demosaicing algorithms. In [3], Lu and Tan
presented an improved hybrid CFA demosaicing method that
consists of two successive steps: an interpolation step to render
full-color images and a postprocessing step to suppress visible
demosaicing artifacts. Muresan and Parks proposed an im-
proved edge-directed demosaicing algorithm based on optimal
recovery interpolation of grayscale images [4]. They first
utilized a grayscale image interpolation algorithm based on op-
timal recovery estimation theory to interpolate the green plane.
The red/blue channels were interpolated using interchannel
color difference adaptive filtering. These two demosaicing
algorithms in general produce high quality visual results,
especially in reconstructing sharp or well-defined edges of the
image. However, in fine details or textured regions, where edges
tend to be short and in different directions, these algorithms
introduce undesirable errors and give degraded performance.

Meanwhile, two iterative demosaicing techniques were pro-
posed by Gunturk et al. [5] and Li [6], respectively. In [5], a pro-
jection-onto-convex-set (POCS) technique was presented to es-
timate the missing color values in red and blue channels using
alternating projection scheme based on high interchannel corre-
lation. In [6], Li formulated the CFA demosaicing as a problem
of reconstructing correlated signals from decimated versions and
proposed a successive approximation strategy by adopting color
difference interpolation iteratively. Although these iterative de-
mosaicing algorithms perform well in textured regions and reveal
lowcomputationalcomplexity, theycannotproducesatisfactorily
high quality visual results in well-defined edges of the image.

Another recent demosaicing approach divides the demo-
saicing procedure into interpolation stage and decision stage
[7]–[10]. In the interpolation stage, horizontally and vertically
interpolated images are produced respectively. In the latter
decision stage, a soft-decision method, in which the interpo-
lation must be performed before the decision procedure, was
employed for choosing the pixels interpolated in the direction
with fewer artifacts. Because the decision stage is essential for
these demosaicing approaches, we refer them as decision-based
demosaicing algorithm. For the decision stage, Hirakawa et al.
proposed a homogeneity metric to measure the misguidance
level of color artifacts presented in interpolated images [7].
Based on this measurement, the interpolation decision is made
by choosing the region with larger homogeneity values. In [8],
Wu et al. adopted the Fisher’s linear discriminant technique to
determine the optimal interpolation direction in a local window.
In [9], Grossmann and Eldar utilized the YIQ color space as
a tool to select the reconstructed regions with a smoother
chrominance component. Recently, Omer and Werman pro-
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posed an enhanced decision-based demosaicing algorithm that
combines the decision process with the standard demosaicing
algorithm such as edge-directed scheme [17] to improve its
performance in places the standard algorithm tends to fail [10].
The decision-based demosaicing algorithm performs well not
only in textured regions, but also in well-defined edges of the
image. However, the main drawback of these demosaicing
algorithms is that they are not efficient in the interpolation stage
because each pixel needs to be interpolated at least twice, one
in horizontal direction and the other in vertical direction, for
the next soft-decision procedure. This drawback also greatly
increases the computing efforts in the latter decision stage.
Therefore, it is still a challenge in CFA demosaicing design
to develop an efficient color interpolation method with high
performance in both textured and edge regions.

In this paper, a novel heterogeneity-projection hard-deci-
sion (HPHD) color interpolation algorithm is proposed for
color reproduction from Bayer mosaic images. The proposed
algorithm aims to estimate the optimal interpolation direction
before performing color interpolation. Because the decision
stage is performed before the interpolation stage (termed
as hard-decision interpolation), each pixel only needs to be
interpolated once. To do so, a new heterogeneity-projection
scheme based on a novel spectral-spatial correlation concept is
proposed to estimate the best interpolation direction directly
from the original Bayer mosaic image. Using the proposed
heterogeneity-projection scheme, a hard-decision rule can be
decided before performing color interpolation. The advantage
of the proposed demosaicing algorithm is threefold. First,
the proposed heterogeneity-projection scheme can combine
with existent decision-based demosaicing algorithms. More
specifically, the proposed heterogeneity-projection scheme
can adopt into the decision step of existent decision-based
demosaicing algorithms. Second, each pixel only has to be
interpolated once. Therefore, the proposed algorithm is much
more efficient than other decision-based schemes. Finally, the
proposed demosaicing algorithm performs well not only in
textured regions, but also in well-defined edges of the image.

The rest of this paper is organized as follows. In Section II, the
spectral-spatial correlation concept will be described. Section III
presents the proposed heterogeneity-projection scheme based on
thespectral-spatialcorrelation.SectionIVdescribestheproposed
HPHD interpolation algorithm. In Section V, experimental re-
sults and computational complexity of the proposed method are
discussed. The demosaicing results of the proposed method are
compared with those from other existing methods. Section VI
summarizes the contributions of this work. In Appendix A, an
experiment of tweaking parameters is presented to find the local
optimal parameters for the proposed method.

II. SPECTRAL-SPATIAL CORRELATION

Fig. 1 shows the most used CFA pattern, the Bayer pattern
[11], where R, G, and B denote, respectively, the pixels having
only red, green and blue color values. We limit our discussion to
the Bayer pattern in this paper. In the following, image spectral
and spatial correlations are first introduced. A novel spectral-
spatial correlation is then derived based on these correlations.

Fig. 1. Bayer CFA pattern (Bayer pattern).

A. Spectral and Spatial Correlations

Many existing demosaicing methods are developed using
image spectral and/or spatial correlation. The concept of
spectral correlation is based on the assumption that the color
difference signals are locally constant in chrominance smooth
areas [12]. Let denote three color planes of a
nature color image, the concept of spectral correlation leads to
the following assumption.
A1) The color differences between green and red/blue chan-

nels satisfy the following conditions:

and

where and are piecewise constant
within the boundary of a given object.

The spatial correlation reflects the fact that within a homo-
geneous image region, neighboring pixels share similar color
values [13]. In other words, the difference between neighboring
pixel values along an edge direction in spatial domain is a
constant. Thus, we have the following assumption based on the
concept of spatial correlation [3].
A2) The rate of change of neighboring pixel values along an

edge direction is a constant.
To illustrate this, let us consider the interpolation of in

Fig. 1. Suppose that the pixel is located on a horizontal
edge. Based on A1), the neighboring pixels of along the hor-
izontal direction have the following relationship between green
and red/blue pixel values:

and

(1)

So, we have

and

(2)

The assumption A2) gives the following relationship on hori-
zontal edges

and

(3)
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where , , , , , and denote the missing
color values at the respective pixel locations. , , and

are constants.

B. Spectral-Spatial Correlation (SSC)

A significant characteristic of Bayer pattern is that for each
pixel, the surrounding pixels are one of the primary components
in different channels. It is then interesting to investigate the re-
lationship between neighboring pixels in different color chan-
nels. Consider the following situation: On a horizontal edge,
two green pixels surround a red pixel on horizontal direction.
Take the difference between the center red pixel and right green
pixel, we then have

(4)

where denotes the missing green value at center red
pixel location. Recall assumptions A1) and A2), expression (4)
becomes such that

(5)

Similarly, the difference between a blue pixel and its right green
pixel is given by

(6)

The same results also can be obtained along vertical direction
on a vertical edge such that

and

(7)

Expressions (5)–(7) show that the difference between sur-
rounding pixels in different color channels is equal to the
summation of spectral and spatial correlations. We refer these
relationships (5)–(7) as spectral-spatial correlation (SSC).
SSC has two important characteristics. First, SSC can be easily
and directly calculated from the original Bayer mosaic image.
Second, SSC inherits the characteristics of spectral and spatial
correlations. In other words, SSC is also piecewise constant
within the boundary of a given object or along an edge direc-
tion. Therefore, we have the following assumption based on
these observations:
A3) The SSC defined in (5)–(7) within the boundary of a given

object or along an edge direction is also piecewise con-
stant.

Assumption A3) is a significant clue for us to find the direc-
tional smooth regions in Bayer mosaic images directly before
performing the interpolation. In Section III, we will present the
method of heterogeneity-projection based on A3).

III. HETEROGENEITY-PROJECTION FOR

BAYER MOSAIC IMAGES

The proposed heterogeneity-projection scheme transfers
the original Bayer mosaic image directly into horizontal and

vertical heterogeneity maps, respectively. Using these two het-
erogeneity maps, the interpolation direction can be determined
easily by choosing the smallest heterogeneity values.

A. Heterogeneity-Projection

Assumption A3) implies that the th-order directional finite
derivative of SSC along an edge direction tends toward a small
value. For example, consider a red pixel locates on a
horizontal edge, the SSC values of and its neighboring
pixels along horizontal direction can be found such that

(8)

where . Based on
the basic definition of the first-order derivative of a 1-D discrete
function, the first-order horizontal derivative of SSC are given
by [14]

(9)

Recall A1) and A3), one can see that and
both will approach to zero along this hori-

zontal edge. Because the higher-order derivative of a discrete
function is a linear combination of the first-order ones, it
implies the higher-order horizontal derivative of SSC will also
approach to zero along the horizontal edge. Thus, we have the
following assumption.
A4) If pixels locate on a directional edge, then the corre-

sponding th-order directional finite derivative of SSC
along the edge direction approaches to zero.

Assumption A4) poses a question that how the th-order
directional derivative of SSC can be directly calculated from
Bayer mosaic image. To resolve this problem, a hetero-
geneity-projection scheme is developed to transfer the row
data of Bayer mosaic image directly into th-order directional
derivative of SSC. Note that the value of th-order directional
derivative of SSC is defined as heterogeneity measure, because
it leads to a small value within a directional smooth region.

Denote as a row data
of Bayer mosaic image, is the presetting window size, and

is the corresponding horizontal heterogeneity value. To cal-
culate the horizontal heterogeneity value from , we
propose the following steps. First, the row data is trans-
ferred into a vector of first-order horizontal finite
derivative of SSC using a linear transformation such that

(10)

where , de-
notes the 2-D convolution operator and denotes a

identity matrix. Second, because the higher-order derivative
of a discrete function is derived by the linear combination of
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Fig. 2. Concept of horizontal heterogeneity-projection from a 1 � 5 row data
of a Bayer mosaic image.

its first-order ones, the horizontal heterogeneity value , the
th-order horizontal derivative of SSC, is obtained such

that [14]

...

(11)

where is a
coefficient vector which transfers vector

into the -order derivative value through Euclidean inner
product [15]. Next, substituting (10) into (11) yields

(12)

where is a vector and
referred as heterogeneity vector. Expression (12) shows that
the horizontal heterogeneity value is the projection of the
row data of Bayer mosaic image onto the heterogeneity vector

. Thus, (12) is termed as horizontal heterogeneity-projec-
tion. Fig. 2 illustrates an example of horizontal heterogeneity-
projection from a 1 5 row data of Bayer mosaic image. Using
(12), the heterogeneity vector is obtained as

The horizontal heterogeneity value of is then given
by

Similarly, the vertical heterogeneity value is the projec-
tion of Bayer mosaic image’s column data onto the hetero-
geneity vector such that

(13)

where is a column data
of Bayer mosaic image. Finally, based on (12) and (13), the hori-
zontal and vertical heterogeneity maps, and are
obtained, respectively, by

and

(14)

where denotes the original Bayer mosaic image. One can
see from (14) that the horizontal and vertical heterogeneity maps
are derived directly from the Bayer mosaic image via horizontal
and vertical heterogeneity-projection, respectively.

B. Directional Adaptive Filtering For Error Reduction

Assumption A4) states that the directional heterogeneity-pro-
jection along an edge direction leads to a small heterogeneity
value. However, a small heterogeneity measure does not imply
the directional heterogeneity-projection along a correct edge di-
rection. This problem will induce estimation error in the initial
estimated heterogeneity maps. In order to reduce the estima-
tion error, a directional adaptive filter, whose behavior changes
based on the statistical characteristics inside a local window, is
proposed to reduce the estimation error and estimate the op-
timal heterogeneity maps. Moreover, since each heterogeneity
measure in the initial heterogeneity maps is static, this esti-
mation problem is equivalent to a static estimation problem,
in which the estimation errors are modeled as the zero mean
Gaussian noises with nonzero variance. According to [16], the
minimum mean square-error (MMSE) solution of the static es-
timation problem can be obtained using a predictor-corrector
filter. Therefore, the design of the proposed directional adaptive
filter adopts the structure of predictor-corrector filter to obtain
the MMSE estimates. The interested reader is referred to [16]
for more technical details.

The proposed directional adaptive filter is divided into hor-
izontal and vertical adaptive filters. For the horizontal hetero-
geneity map, only the horizontal adaptive filter is applied to it.
Fig. 3(a) illustrates the concept of horizontal adaptive filter. In
Fig. 3(a), the center pixel is to be adaptively filtered along
the horizontal direction based on statistical measures of sur-
rounding pixels and . The simplest statistical measures
of and are their mean and variance in a local window
[14]. For instance, if a 1 3 rectangular window defines the
window size, the local mean and variance of and are,
respectively, given by

(15)

(16)



82 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2007

Fig. 3. Concept of (a) horizontal and (b) vertical adaptive filtering using a rect-
angular window.

Using (15) and (16), the adaptively filtered pixel is obtained
as follows:

(17)

In (17), the local mean is the predictor term with an as-
sociated error variance , and the local mean is the
corresponding corrector term with error variance . There-
fore, (17) provides the MMSE estimate of the horizontal hetero-
geneity measure in a local window. Fig. 3(b) illustrates an ex-
ample of vertical adaptive filter for vertical heterogeneity map.
Using the same procedure discussed above, the adaptively fil-
tered pixel is obtained as follows:

(18)

where and are the local mean and

variance of and . Similarly, (18) also provides the
MMSE estimate of the vertical heterogeneity measure in a local
window. After adopting the horizontal and vertical adaptive fil-
ters presented above into horizontal and vertical heterogeneity
maps, respectively, the MMSE estimates of horizontal and
vertical heterogeneity maps and are obtained.

IV. HARD-DECISION COLOR INTERPOLATION

With the horizontal and vertical heterogeneity maps, a hard-
decision rule is applied for color interpolation. First, we classify
three subsets in the image such that

(19)

where , , and denote the horizontal, vertical, and
smooth subsets, respectively. is a positive constant satisfying

. Second, based on (19), the concept of hard-decision
rule for interpolation is obtained in (20), shown at the bottom
of the page.

In the following discussion, a color interpolation method is
developed based on the hard-decision rule (20).

Remark 1: The parameter in (19) determines the size of
smooth subset in the image. A small (large) leads to a large
(small) smooth subset in the image. For example, if ,
the image only contains smooth subset without horizontal and
vertical subsets. Based on (20), the interpolation of image
only adopts the weight averaging of neighboring pixels on
each missing color channel [3], [13], [17]. On the contrary,
for , the image only contains horizontal and vertical
subsets but without smooth subset. The interpolation of image
only adopts horizontal and vertical interpolations on each
missing color channel [7], [8]. Therefore, for , the
hard-decision rule (20) is characterized by weight averaging
and directional interpolating.

A. Hard-Decision Adaptive Interpolation

We first interpolate green channel because the green plane
possesses most spatial information of the image. Each missing
green value is to be estimated from its four surrounding
green pixels by (21), shown at the bottom of the page, where

denote the color-adjusted green values of
four surrounding green pixels, and denote
the corresponding edge indicators. In our method, the following

(20)

(21)
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modification on edge indicators is adopted according to the
hard-decision rule (20), such that

if

else if

(22)

Therefore, the hard-decision adaptive interpolation for green
channel is summarized in (23), shown at the bottom of the page.

Remark 2: The color-adjusted green value is the green
value adjusted with the help of the surrounding red/blue pixels
along the respective interpolation directions. The derivation of
color-adjusted value is based on the assumptions of spectral
correlation A1) and spatial correlation A2) discussed in Sec-
tion II-A. Interested reader can refer [3] for detailed derivations
of color-adjusted values. In this paper, the formulation of
each surrounding color-adjusted green value in (23) adopts
the results in [3], while the corresponding edge indicator can
be referred in [3], [13], and [17]. In the remainder of this
paper, the color-adjusted value of each color pixel and the
corresponding edge-indicator are determined by adopting the
procedure presented in [3].

When the green channel has been fully recovered, it can be
used in the interpolation of red and blue channels. The interpola-
tion procedure of red and blue channels consists of two substeps:
1) interpolating the missing red/blue values at blue/red pixels,
and 2) interpolating the rest of the missing red/blue values at
green pixels. In our method, we only apply the hard-decision
rule (20) to the substep 2) because there is not enough informa-
tion to perform horizontal and vertical interpolations in substep
1). Since the same procedure is applied to interpolate the red and
blue channels, only the red channel interpolation is presented.

Let denote a missing red value at a blue
pixel. It is estimated from its four neighboring red
pixels by (24), shown at the bottom of the page, where

denote the color-ad-
justed red values of four neighboring red pixels, and

denote the corre-
sponding edge indicators. For example, in Fig. 1, the missing
red value at blue pixel is estimated by

(25)

Subsequently, the rest of the missing red values at green
pixels are estimated using the same procedure performed for
the green channel. Each missing red value at a green pixel

can be estimated from its four surrounding red pixels
by the hard-decision adaptive interpolation in (26), shown at
the bottom of the page, where denote
the color-adjusted red values of four surrounding red pixels,
and are the corresponding edge indicators.
Finally, a full-color image can be obtained by applying the
same interpolation steps described above on each missing blue
value.

Remark 3: Although adaptive interpolation can provide more
pleasing results, it also increases the computational load and the
amount of memory transactions compared with linear interpola-
tion [12]. In order to reduce the computational cost in the color
interpolation step, we can still use linear interpolation instead of
the adaptive interpolation. More specifically, for linear interpo-
lation, the edge indicators in (13) and (26)
are simplified such that

if
if
if

(27)

if

if

if

(23)

(24)

if

if

if

(26)
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Fig. 4. Flowchart of the proposed HPHD color interpolation algorithm.

And the edge indicators
in (24) are fixed such that

(28)
The advantage of linear interpolation is that it not only can skip
the calculation of edge indicators, but also use bit-shift instead
of division to reduce the computation time. Therefore, compared
with adaptive interpolation, the computational cost of linear in-
terpolation will be greatly reduced.

B. Complete HPHD Color Interpolation Algorithm

We summarize the proposed HPHD color interpolation algo-
rithm as follows.

1) Initialization: Set window size to calculate the hetero-
geneity vector by and defined
in (10) and (11), respectively; set parameter for spatial
classification.

2) Decision Stage.
a) Heterogeneity-projection: Calculate the horizontal

and vertical heterogeneity maps, and
, from original Bayer mosaic image by

(14).
b) Directional adaptive filtering: Filter the horizontal and

vertical heterogeneity maps by directional adaptive
filters (17) and (18), respectively.

c) Spatial classification: Use parameter and the two
filtered heterogeneity maps to classify the image into
three subsets , , and by (19).

3) Interpolation Stage.
a) Interpolate G channel at R and B pixels by interpola-

tion rule (23).
b) Interpolate R channel at B pixels by interpolation rule

(24) and the B channel similarly.
c) Interpolate R channel at G pixels by interpolation rule

(26) and the B channel similarly.
Fig. 4 illustrates the flowchart of the proposed HPHD color

interpolation algorithm. The main difference between the
proposed algorithm and the existent decision-based schemes
is that the decision stage is performed before the interpolation
stage in this design, thanks to the heterogeneity-projection.
This advantage contributes not only to improving the quality
of demosaicing result, but also to reducing the computational

complexity of the decision stage. In Section V, a comparative
study of experimental results and analysis of computational
complexity will be discussed to demonstrate the performance
of the proposed method.

C. Example Study

Fig. 5 illustrates the execution steps of the proposed al-
gorithm by using an example. The Kodak small Lighthouse
image (384 256) is downsampled into a Bayer mosaiced
image as shown in Fig. 5(a). In this picture, the fence regions
usually challenge the performance of a demosaicing procedure.
Fig. 5(b) and (c), respectively, are the horizontal heterogeneity
map and vertical heterogeneity map obtained
from (14) discussed in Section III-A ( in this example).
Through the directional adaptive filtering discussed in Sec-
tion III-B, the filtered horizontal heterogeneity map
and filtered vertical heterogeneity map are obtained
in Fig. 5(d)–(e), respectively. Comparing Fig. 5(d)–(e) with
Fig. 5(b)–(c), one can see that the unwanted noises in both
original heterogeneity maps have been removed effectively by
using the directional adaptive filters. Employing two filtered
heterogeneity maps, the horizontal, vertical, and smooth sub-
sets of the image are obtained directly by (19) with .
Fig. 5(f) shows three decided subsets of the image, where the
gray region is the horizontal subset , the white region is the
vertical subset , and the black region is the smooth subset

. Note that Fig. 5(f) shows that the decisions in fence regions
are almost all vertical. The interpolations are, thus, along the
correct directions. Finally, the proposed hard-decision interpo-
lation discussed in Section IV was applied to reconstruct the
color image based on these three decided subsets. Fig. 5(g)
illustrates the interpolation results. In Fig. 5(g), one can see
that the fine details of interpolation such as the fence and house
regions are reconstructed successfully.

To further illustrate the performance, we tweak parameter
and compare the demosaicing results with original image (

is fixed). Fig. 6(a) is the zoom-in of the original fence re-
gions. Fig. 6(b) is the zoom-in of demosaicing result with pa-
rameter . One can see that the demosaiced image contains
many color artifacts due to the inaccurate smooth interpolation.
Fig. 6(c) and (d) show the demosaicing results with parameter

and , respectively. It is clear that the proposed
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Fig. 5. Illustration of execution steps of the proposed HPHD color interpolation algorithm. (a) Original Bayer mosaic image of small Lighthouse image (384
� 256). (b) Horizontal heterogeneity map H (N = 24). (c) Vertical heterogeneity map H . (d) Filtered horizontal heterogeneity map H . (e)
Filtered vertical heterogeneity map H . (f) Three decided subsets in the image (� = 0:8). The gray region is the horizontal subset 
 , the white region is
the vertical subset 
 , and the black region is the smooth subset 
 . (g) Interpolation result using the proposed hard-decision adaptive interpolation presented in
Section IV-A.

Fig. 6. (a) Zoom-in of the original Lighthouse image in the fence region. Zoom-in of the demosaicing results with parameters N = 24; (b) � = 0; (c) � = 0:5;
(d) � = 0:8.

hard-decision interpolation method reduces the color artifacts
efficiently. Visually compare Fig. 6(d) with Fig. 6(a), one can
see that most detail features have been reconstructed correctly.

V. EXPERIMENTAL RESULTS

In the experiments, 25 Kodak photographic images as shown
in Fig. 7 were employed for demonstrating the demosaicing
performance. According to [18], the CFA operations in a
digital-camera pipeline usually include a demosaiced image
postprocessing framework to provide more visually pleasing
color output. Therefore, we introduce the post processing
framework in the experiments to complete the comparisons.
Fig. 8 illustrates the flowchart of the experiment, which contains
interpolation and postprocessing steps. In the interpolation step,
the demosaiced results of the proposed method, HPHD linear
interpolation (HPHD-LI) and HPHD adaptive interpolation
(HPHD-AI) methods, are compared with those using bilinear
interpolation and three recently published methods: Lu’s [3],
Gunturk’s [5], and Li’s [6] methods. The above schemes are

chosen due to their high citation rate in peer-reviewed liter-
ature [2]–[8], [13] and represent the state of the technology
of CFA demosaicing. For Gunturk’s method, we make use of
one-level (1-L) decomposition with eight projection iterations
in the experiments. For Li’s method, the universal threshold
value and maximum iteration number
are chosen in the experiments. For the proposed method, an
experiment of tweaking parameters presented in Ap-
pendix A was set to find the local optimal parameters for these
25 test images. The local optimal parameters were given by

, which were chosen in the experiments.
Subsequently, Lu’s postprocessing method was adopted as the
postprocessing procedure for each demosaicing method. The
demosaiced results in each step were compared accordingly. As
shown in Fig. 1, all test images were down-sampled to obtain
the Bayer pattern and then reconstructed using the demosaicing
methods under comparison in RGB color space.

Two performance measures were adopted in the experiments:
PSNR and S-CIELAB metric [3], [6], [19] to evaluate
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Fig. 7. Test images selected from Kodak PhotoCD used in the experiment.

Fig. 8. Flowchart of the experiment. In the interpolation step, we compare the performance of bilinear, Lu’s, Gunturk’s, Li’s, and the proposed HPHD-AI methods.
In the postprocessing step, Lu’s postprocessing method is adopted into each demosaicing method.

the quality of the demosaiced images. The PSNR (in decibels)
metric in this paper is defined as

(29)

where , are the total column and row number of the image,
is the color vector at the th position of the original

color image, and is the corresponding color vector in
the demosaiced color image. Note that, for a demosaiced image,
high fidelity implies large PSNR and small S-CIELAB
measures.

A. Quantitative Comparison

Table I records the PSNR values and S-CIELAB mea-
sures of the demosaiced results obtained by the proposed in-
terpolation method together with those from other methods for
comparison. In each step, the bold font denotes the largest PSNR
and smallest values across each row. Moreover, since
Gunturk’s and Li’s methods are iterative and others are non-
iterative, we categorized these methods into iterative and non-
iterative groups for more detailed comparisons. From Table I,

one can see that Li’s and HPHD-AI methods provide improved
demosaiced fidelity in most of the test images in the interpola-
tion step. However, when one compares the average PSNR and

measures in the interpolation step, HPHD-AI generates
the highest fidelity demosaiced images, followed by the Gun-
turk’s or other methods.

In the postprocessing step, Table I indicates an interesting
phenomenon that all noniterative methods have significant
improvement compared with iterative ones, especially the
bilinear interpolation (BI). On average, the improvement of BI
can add-up the PSNR and reduce of the interpolation
results by 5.8031 dB and 1.4345 units, respectively. The other
noniterative methods also have noticeable improvement on
average. In contrast, the iterative methods, e.g., Gunturk’s
and Li’s methods, only have modest improvement through the
postprocessing step on average. These observations also can be
seen in [18], where the postprocessing step provides the most
significant improvement with BI and the smallest improvement
with Gunturk’s method. Therefore, the experimental results
presented in Table I as well as [18] pose a question why post-
processing is more beneficial to the interpolation results of
noniterative approaches compared to that of iterative ones. The
main reasons are as follows.

Many color interpolation schemes, especially the simple ones
such as BI or HPHD-LI, usually induce visible artifacts due
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TABLE I
PSNR (DECIBELS) AND �E MEASURES OF DEMOSAICED IMAGES IN THE INTERPOLATION AND POSTPROCESSING STEPS

to the nonsmooth local color ratios and color differences (red-
green and blue-green). The function of current postprocessing
schemes is to correct the interpolated color values by enforcing
the local color ratio rule [17], [18] and color difference rule [3]
of initial demosaiced image. Similarly, the principle of itera-
tive demosaicing approaches [5], [6] is to iteratively update the
initial interpolation result by fitting the local color difference
rule. For example, according to [8], the idea of Gunturk’s itera-
tive method is equivalent to the filtering of down sampled color
difference images of the initial interpolated image by a 5 5
2-D low-pass filter for reducing the high frequency energy of
reconstructed color difference images without changing orig-
inal mosaic samples. In [6], Li utilized the Hamilton-Adams’
method [20] and BI to get initial estimates of missing green and
red/blue samples, respectively. The following iterative proce-

dure is equivalent to linear low-pass filtering of the color differ-
ence image until the reconstructed results converge to a smooth
one. In other words, the iterative demosaicing approaches can
be regarded as an initial interpolation combined with a meta-al-
gorithm that performs iterative linear low-pass filtering of color
difference images to enforce the local color difference rule on
initial interpolated image, which is also the main purpose of the
latter postprocessing step. Therefore, postprocessing only pro-
vides modest improvement for iterative approaches.

Summarizing the above discussion on the experimental re-
sults, we have the following conclusions.

1) For iterative approaches, postprocessing only provides the
modest improvement due to both have the same purpose
of enforcing the local color difference rule on the initial
demosaiced image.
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Fig. 9. Zoom-in demosaicing results of test image No. 1. (a) Original picture; Demosaiced result in interpolation step. (b) Gunturk’s method. (c) Lu’s method.
(d) Li’s method. (e) HPHD-LI method. (f) HPHD-AI method.

2) On the contrary, postprocessing for noniterative ap-
proaches, especially simple linear interpolation schemes
such as BI or HPHD-LI schemes, provides significant
improvement due to its enforcing on the smoothness of
local color ratios and color differences.

3) Because the proposed HPHD-AI scheme is noniterative
and provides the best interpolation results in interpolation
step, it also has great improvement and obtains the best re-
sults after the postprocessing step.

B. Visual Comparison

Figs. 9(a) and 10(a) show the zoom-in of test images No.
1 and 20, respectively. Both scenes contain many fine detail
features, such as fine fiber patterns (Fig. 9) and picket fences
(Fig. 10), and can effectively challenge the performance of
demosaicing methods. Figs. 9(b) and 10(b), 9(c) and 10(c),
9(d) and 10(d), 9(e) and 10(e), and 9(f) and 10(f) are, respec-
tively, the demosaiced results obtained from Gunturk’s, Lu’s,
Li’s, HPHD-LI, and HPHD-AI methods in the interpolation
step. From visual comparison, one can see that the Gunturk’s,
Lu’s, and Li’s methods induce more color artifacts in edge
and textured regions than HPHD-LI or HPHD-AI does. These
experimental results validate that the proposed HPHD inter-
polation method performs satisfactorily not only in textured
regions, but also in well-defined edges. Due to space limita-
tions, more discussions and visual comparisons are available
online [21].

Further, as can be seen in Figs. 9 and 10, HPHD-LI gives al-
most the same demosaiced results in edge and textured regions
as HPHD-AI does. Hence, HPHD-LI can be used instead of

HPHD-AI in practical applications for HPHD-LI not only saves
a great amount of computational cost, but also gives comparable
visual results as HPHD-AI.

C. Computational Complexity

The calculation performed in reconstructing one color pixel
in each stage of the proposed algorithm is listed in Table II,
where and denote the parameter of window size and spatial
classification, respectively. For two directional heterogeneity-
projections (H.P.), (12) and (13) require a total of ad-
ditions, multiplications and 2 absolute conversions for each
color pixel. In the directional adaptive filtering (D.A.F) stage, a
fixed 1 9 rectangular window was used to compute the local
mean and variance by (15) and (16). Thus, the total calculation
of (17) and (18) needs 106 additions and 48 multiplications. In
the hard-decision interpolation (H.D.I), the total calculation of
interpolation with and requires the maximum and
minimum computation for each color pixel, respectively. There-
fore, if , the total computational load of interpolation
will be between that with and .

Note that, for other existent decision-based demosaicing
methods, the latter decision stage usually requires much more
computation compared with the interpolation stage. Moreover,
if the interpolation stage includes a smooth interpolation step,
the calculation of decision stage will increase greatly, because
it will need to evaluate three interpolation results for each color
pixel. In contrast, the calculation of the proposed hard-decision
method depends only on the parameter of window size. The
evaluation of horizontal, vertical and smooth interpolations
depends on the parameter and only needs at most 3 compare
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Fig. 10. Zoom-in demosaicing results of test image No. 20. (a) Original picture; Demosaiced result in interpolation step. (b) Gunturk’s method. (c) Lu’s method.
(d) Li’s method. (e) HPHD-LI method. (f) HPHD-AI method.

TABLE II
CALCULATIONS PERFORMED FOR RECONSTRUCTING ONE COLOR PIXEL

operations for each color pixel. Therefore, the proposed method
provides an efficient solution for decision-based demosacing.

Note that the software implementations (MATLAB source
codes) of the proposed HPHD-AI and HPHD-LI methods along
with the 25 test images are also available online [21].

VI. CONCLUSION

A novel hard-decision color interpolation procedure has
been developed based on the spectral-spatial correlation of a
mosaiced image. The proposed HPHD interpolation method
effectively reconstructs fine detail features in both edge and
texture regions of demosaiced images. One merit of the pro-
posed algorithm is that it can combine with many existing
image interpolation methods such as decision-based algorithm
(set ), edge-directed interpolation, adaptive interpolation,
linear interpolation, etc., to obtain improved performance.
Moreover, the proposed heterogeneity-projection scheme pro-
vides an efficient method for decision-based algorithms to make
accurate direction-selection before performing interpolation.
The performance of HPHD method has been compared with

three renowned demosaicing methods. Experimental results
show that HPHD method not only outperforms all of them in
PSNR (in decibels) and S-CIELAB measures, but also
gives superior demosaiced fidelities in visual comparison.

APPENDIX

Parameter Tuning of and : Since the value of parame-
ters may drastically influence demosaicing performance,
and, hence, the comparison results, it is interesting to study how
they affect the demosaicing results of the proposed method. In
order to evaluate the demosaicing performance, we first define
the following criterion

(30)

where and indicate the th test image and its corre-
sponding demosaiced one by using the proposed HPHD-AI
method. PSNR (in decibels) denotes the metric of peak
signal-to-noise ratio defined in (29). Based on the criterion
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Fig. 11. Experimental results of tuning parameters in each step. (a) Evolution of PSNR as the parameter N increases. (b) Evolution of N as the parameter
� increases. (c) Influence of the parameters (N;�) on the performance gap �PSNR between postprocessing and interpolation steps.

(30), the parameter is tweaked from 5 to 25 with interval 1,
and is tweaked from 0 to 1 with interval 0.1. Fig. 11 shows the
experimental results of tweaking parameters . Fig. 11(a)
and (b), respectively, represents the evolution of as
parameter and increase. In Fig. 11(a), one can see that
when (only the smooth set under consideration), the

is independent from the parameter . On the other
hand, when (only the horizontal and vertical sets under
consideration), the impact of on increases. Thus,
the influence of on depends on the parameter ,
especially when . Moreover, one can see in Fig. 11(a)
that the local optimal parameter occurs at in the
experiment.

Fig. 11(b) shows that the parameter has significant in-
fluence on the . If parameter increases from 0 to
0.6, the also increases. However, when parameter

increases from 0.6 to 1, the criterion becomes
decreasing. This implies the local optimal parameter should
occur in the range from 0.5 to 0.6, and the optimal interpolation
result will encompass horizontal, vertical and smooth interpola-
tions together. Since parameter obtains the maximum

in postprocessing step, we choose as the
local optimal parameter .

Fig. 11(c) shows the influence of the parameters on
the performance gap between postprocessing and
interpolation steps. It is clear that the performance gap mostly
depends on the parameter . Moreover, the maximum perfor-
mance gap occurs when parameter . This implies that
the postprocessing provides significant improvement on the hor-
izontal and vertical interpolation results. Therefore, postpro-
cessing seems to be more beneficial to the existent soft-decision
demosaicing algorithms, which only considers the horizontal
and vertical interpolations.

Summarizing the tweaking parameter experiment, we have
the following findings.

1) For the proposed method, the parameter has significant
influence on the demosaicing performance compared with
parameter .

2) When the interpolation only considers horizontal and
vertical ones, the postprocessing provides significant
improvement on the interpolation result.

3) The optimal interpolation result requires encompassing
horizontal, vertical and smooth interpolations together.

4) Based on the criterion (30), the local optimal parameters
of proposed HPHD-AI method can be found

at (11,0.6).
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