

In conclusion we have demonstrated a relatively simple, room-temperature operating, resonant cascaded fibre Raman laser that provides a broad band CW output between 1.56 and 1.95 μm . We believe this is the first report of a CW fibre Raman laser operating in this spectral region. This laser was pumped by an integrated $\text{Yb}^{3+}/\text{Er}^{3+}$ fibre laser, which in turn can be pumped either by a compact mini all-solid-state Nd-based laser or laser diodes. Through optimising the fibre lengths employed and output coupling ratios, a considerable increase in the output power levels should be achieved.

Acknowledgments: We are grateful to the EPSRC for their overall financial support of this research programme.

© IEE 1996

Electronics Letters Online No: 19960956

P. Persephonis (Department of Physics, University of Patras, 26500 Patras, Greece)

S.V. Chernikov and J.R. Taylor (Femtosecond Optics Group, Physics Department, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom)

28 May 1996

References

- 1 MIZUNAMI, T., MIYAZAKI, T., and TAKAGI, K.: 'Short-pulse ultraviolet fiber Raman laser pumped by a XeCl excimer laser', *J. Opt. Soc. Am. B*, 1987, **4**, pp. 498-504
- 2 JAIN, R.K., LIN, C., STOLEN, R.H., PLEIBEL, W., and KAISER, P.: 'A high-efficiency tunable cw Raman oscillator', *Appl. Phys. Lett.*, 1977, **30**, pp. 162-164
- 3 LIN, C., STOLEN, R.H., FRENCH, W.G., and MALONE, T.G.: 'A CW tunable near-infrared (1.085-1.175 μm) Raman oscillator', *Opt. Lett.*, 1977, **1**, pp. 96-97
- 4 STOLEN, R.H., and JOHNSON, A.M.: 'The effect of pulse walkoff on stimulated Raman scattering in fibers', *IEEE J. Quantum Electron.*, 1986, **QE-22**, pp. 2154-2160
- 5 LIN, C., and FRENCH, W.G.: 'A near infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm ', *Appl. Phys. Lett.*, 1979, **34**, pp. 666-668
- 6 LIN, C.: 'Fiber Raman lasers' in MOLLENNAUER, L.F., and WHITE, J.C. (Eds.): 'Tunable lasers', Topics in applied physics, Vol. 59 (Springer-Verlag), pp. 279-301
- 7 GRUBB, S.G., ERDOGAN, T., MIZRAHI, V., STRASSER, T., CHEUNG, W.Y., REED, W.A., LEMAIRE, P.J., MILLER, A.E., KOSINSKI, S.G., NYKOLAK, G., BECKER, P.C., and PECKHAM, D.W.: '1.3 μm cascaded Raman amplifier in germanosilicate fibers'. Proc ECOC '94, 1994, Paper PD3
- 8 CHERNIKOV, S.V., ZHU, Y., TAYLOR, J.R., and KASHYAP, R.: 'High gain, monolithic, cascaded fibre Raman amplifier operating at 1.3 μm ', *Electron. Lett.*, 1995, **31**, pp. 472-473

Efficient fibre-coupled laser diode end-pumped NYAB laser

Y.F. Chen, S.C. Wang, C.F. Kao and T.M. Huang

Indexing terms: Fibre lasers, Solid lasers

Under optimum pump conditions, 60mW of green laser output corresponding to a conversion efficiency 6% was obtained from a self-frequency-doubling NYAB crystal when pumped by a 1W fibre-coupled laser diode. The prospect of higher conversion efficiency is also discussed.

Neodymium yttrium aluminum borate (NYAB) has a number of desirable features that make it an attractive material for a diode pumped compact green laser system. The self-frequency-doubling CW NYAB laser end-pumped by a diode laser has been realised in several laboratories [1 - 4]. However, the conversion efficiency never exceeded 3% in these investigations. In this Letter we demonstrate a highly efficient fibre-coupled diode end-pumped NYAB laser. Under optimum pump conditions, 60mW of green laser output corresponding to a conversion efficiency 6% was obtained from a self-frequency-doubling NYAB crystal when pumped by a 1W fibre-coupled laser diode.

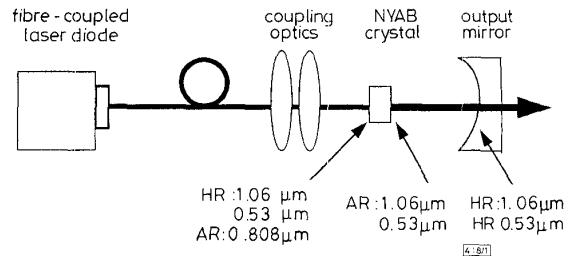


Fig. 1 Fibre-coupled diode pumping experimental setup

The NYAB crystal, dimensions $3\text{mm} \times 3\text{mm} \times 2\text{mm}$, was cut at the type I phase-matching angle for second harmonic generation at $1.063\mu\text{m}$ ($\theta_m = 32.9^\circ$). The experimental setup is shown in Fig. 1. The fibre-coupled laser diode used was an SDL-2372-P2 (Spectra Diode Laser Labs), which has a $200\mu\text{m}$ core fibre with a $\sim 36^\circ$ half width at $1/e^2$ of the peak intensity and a maximum CW output power of $\sim 1.2\text{W}$. The emission wavelength of the diode laser was tuned by controlling the operating temperature control system to match the laser wavelength to the absorption peak of NYAB. The planoconvex configuration of the resonator consisted of one planar crystal surface, high-reflection coated at $1.063\mu\text{m}$ and $0.532\mu\text{m}$ and high-transmission coated at $0.808\mu\text{m}$ for the pump light to enter the rod, and a spherical output mirror. The second surface of the crystal was antireflection coated at $1.063\mu\text{m}$ and $0.532\mu\text{m}$. An output mirror with a curvature of 10cm was used and the reflectivities of the mirror were 99.9% and $<10\%$ for $1.063\mu\text{m}$ and $0.532\mu\text{m}$, respectively. The mirror was mounted approximately 5cm from the planar reflecting facet. This design yields a 0.13mm TEM_{00} spot size.

The brightness of a single fibre-coupled laser diode (several tens of $\text{kW}/\text{cm}^2\cdot\text{sr}$) is two orders of magnitude less than that of the source diode (several $\text{MW}/\text{cm}^2\cdot\text{sr}$) [5]. Therefore, the characteristic of the pump-beam quality should be taken into account in determining the optimum pump condition of the fibre-coupled laser-diode pumped lasers. Including the effect of the pump-beam quality, the normalised spatial distribution of the pump energy can be described by [6, 7]

$$r_p(x, y, z) = \frac{2\alpha}{\pi\omega_p^2(z)[1-\exp(-\alpha L)]} \exp\left(-2\frac{x^2+y^2}{\omega_p^2(z)} - \alpha z\right) \quad (1)$$

On the basis of the paraxial approximation, $\omega_p(z) = \omega_{po} + \theta_p|z - z_0|$. Here ω_{po} is the radius at the waist, θ_p and z_0 are the far-field half-angle and focal plane of the pump beam in the active medium. The brightness theorem gives a relationship $n\theta_p\omega_{po} = C$, where C is a constant that is a characteristic of the beam quality and n is the refractive index for the pump beam. For a fibre-coupled diode, the

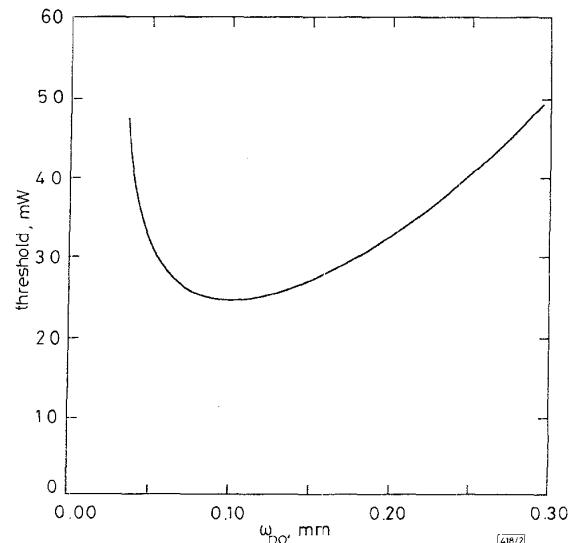


Fig. 2 Calculated threshold pump power against pump beam waists

value of C can be easily calculated from its core radius and divergence angle. It can be seen that for small pump beam waists the propagation angles of the beams relative to the optic axis may be too large for good overlap with the resonator mode. Conversely, for small divergence angles the large pump spot sizes may cause a reduction in mode overlap. Optimum pump spot size for the minimum threshold and maximum slope efficiency is expected when these two effects are balanced.

By using the above parameters, an upper-state lifetime of $60\mu\text{s}$, a cross-section of $10 \times 10^{-19}\text{cm}^2$, an absorption coefficient of 9.2cm^{-1} at the pump wavelength, an absorption coefficient of 1.4cm^{-1} at the second harmonic beam wavelength, a nonlinear optical coefficient of 6.82×10^{-9} e.s.u, and an internal loss of $2.8\%\text{cm}^{-1}$, we have calculated the threshold pump power as a function of pump beam waists. As shown in Fig. 2, the threshold has a minimum of $\sim 25\text{mW}$ of pump power with the pump beam waist around 0.12mm . To match this optimum pumping condition, the fibre output was focused into the NYAB crystal by using $f = 6.5\text{mm}$ focal length collecting lens ($NA = 0.615$), and $f = 8.0\text{mm}$ focal length focusing lens ($NA = 0.5$).

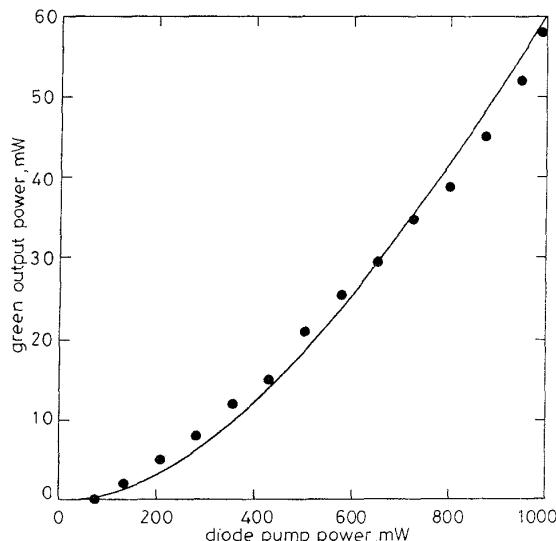


Fig. 3 Experimental and theoretical results for output power against optical pump power

— theory, ● experimental result

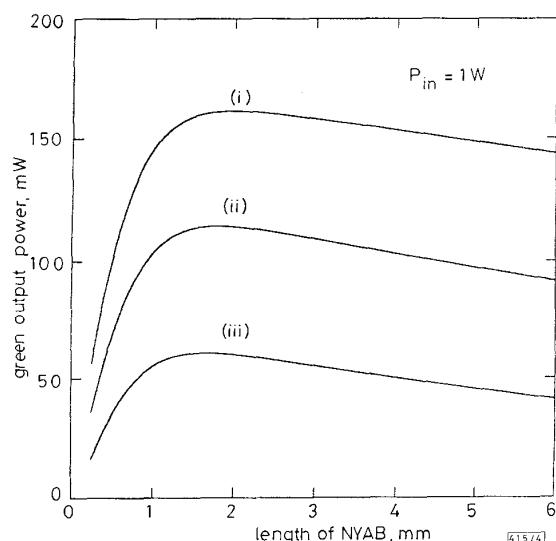


Fig. 4 Dependence of green output power on internal losses and length of NYAB crystal

- (i) $\alpha_i = 0.7\%\text{cm}^{-1}$
- (ii) $\alpha_i = 1.4\%\text{cm}^{-1}$
- (iii) $\alpha_i = 2.8\%\text{cm}^{-1}$

The fibre-coupled diode end-pumped NYAB laser was operated using the pumping configuration discussed above. Experimental and theoretical results for output power against optical pump power are shown in Fig. 3. A CW green output power of $\sim 60\text{mW}$ was obtained at a pumping power 1W corresponding to a conversion efficiency of $\sim 6\%$. To our knowledge, the present conversion efficiency is the highest reported so far for a self-frequency-doubling CW NYAB laser. Also, it can be seen that the predictions of the analysis agree very well with experimental data.

With NYAB crystals of good optical quality the efficiency and output power can be improved considerably. The dependence of green output power on the length of the NYAB crystal is shown in Fig. 4. It can be seen that the conversion efficiency can be higher than 10% for an NYAB with internal loss less than $1.4\%\text{cm}^{-1}$. It can be seen that the optimum crystal length is $\sim 1.5\text{--}2.0\text{mm}$, with almost total insensitivity to internal losses.

© IEE 1996
Electronics Letters Online No: 19960977

22 May 1996

Y.F. Chen, C.F. Kao and T.M. Huang (Precision Instrument Development Center, National Science Council, Hsinchu, Taiwan, Republic of China)

S.C. Wang (Institute of Electro-optical Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China)

E-mail: yfchen@pidc.gov.tw

References

- 1 WANG, S.C., STONE, R.E., and LIN, J.T.: 'Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material', Advanced Solid State Laser Tech. Dig., Salt Lake City UT, 1990, Paper TuB4
- 2 STONE, R.E., SPITZER, R.C., and WANG, S.C.: 'A Q-switched diode-pumped neodymium yttrium aluminum borate laser', *IEEE Photonics Technol. Lett.*, 1990, **2**, (11), pp. 769-771
- 3 ZARRABI, J.H., GAVRILOVIC, P., and SINGH, S.: 'Monolithic, self-frequency doubled, neodymium-doped yttrium aluminum borate green laser with low intensity noise', *Electron. Lett.*, 1993, **29**, (20), pp. 1769-1770
- 4 HEMMATI, H.: 'Diode-pumped self-frequency-doubled neodymium yttrium aluminum borate (NYAB) laser', *IEEE J. Quantum Electron.*, 1992, **QE-28**, (4), pp. 1169-1171
- 5 CHEN, W., ROYCHOURDHURI, C.S., and BANAS, C.M.: 'Design approaches for laser-diode material-processing systems using fibres and micro-optics', *Opt. Eng.*, 1994, **33**, (11), pp. 3662-3669
- 6 LAPORTA, P., and BRUSSARD, M.: 'Design criteria for mode size optimization in diode-pumped solid-state lasers', *IEEE J. Quantum Electron.*, 1991, **QE-27**, (10), pp. 2319-2326
- 7 FAN, T.Y., and SANCHEZ, A.: 'Pump source requirements for end-pumped lasers', *IEEE J. Quantum Electron.*, 1990, **26**, (2), pp. 311-316

High performance 660nm InGaP/AlGaInP quantum well metal cladding ridge waveguide laser diode

D. Sun, D.W. Treat and D.P. Bour

Indexing terms: Semiconductor junction lasers, Waveguide lasers

A high performance 660nm metal cladding ridge waveguide laser diode was fabricated from a compressively strained $\text{In}_{0.4}\text{Ga}_{0.4}\text{P}/(\text{Al}_{0.3}\text{Ga}_{0.7}\text{Al}_{0.5}\text{In}_{0.5}\text{P})$ single quantum well laser structure. The $4\mu\text{m}$ wide ridge waveguide diode had a threshold current of 31mA with a differential quantum efficiency of $45\%/\text{facet}$ (slope efficiency of 0.85W/A) under CW operation. The characteristic temperature was 120K from 20 to 75°C . The diode operated in a single transverse mode up to 22mW/facet .

Red laser diodes are being widely used in applications such as printing, bar code scanning and optical data storage [1]. In applications which need stable single transverse mode beam at power level over tens of milliwatts, a buried ridge waveguide structure has been mostly used to in diode fabrication [2, 3]. Although high