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Very High Density „44 fF/�m2
… SrTiO3 MIM Capacitors for
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We demonstrate a high-performance TaN/SrTiO3/TaN metal-insulator-metal �MIM� radio-frequency �rf� capacitor with good
device integrity of very high capacitance density of 44 fF/�m2, small voltage linearity � of 54 ppm/V2 at 2 GHz, and a small
capacitance reduction 3.5% from 100 KHz to 10 GHz. Such large capacitance density can largely reduce the device size used in
rf integrated circuits.
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Based on the International Technology Roadmap for Semicon-
ductors (ITRS), continuous down-scaling of the device size of radio-
frequency �rf� capacitors is needed to reduce the die size and lower
the costs. To meet this requirement, higher capacitance density
��0�/td� is required and using higher dielectric constant ��� material
is the only choice.1-16 This is because the decreasing dielectric thick-
ness �td� results in the degraded device performance of higher leak-
age current and poorer voltage-dependence of capacitance ��C/C�.
Because the high � strontium titanate �SrTiO3�17-19 dielectric has a
very high � value �reachable to 300� beyond HfO2 �� � 22 − 24�,
Nb2O5 �� � 40�,11 TaTiO �� � 45�,15,16 or HfTiO, it is important
to study the possibility for rf applications. In addition, the SrTiO3
�STO� is also listed in the DRAM manufacture roadmap,20 and
therefore the STO capacitor may be used for analog, rf, and dynamic
random access memory �DRAM� simultaneously to realize low pro-
cess costs and multifunctional system-on-chip �SoC�. In this paper,
we have studied STO metal-insulator-metal �MIM� capacitor for rf
applications. Very high capacitance density of 44 fF/�m2, high �
value of 147, and small �C/C of 752 ppm at 2 GHz were obtained
at the same time, demonstrating the excellent device performance
for rf applications.

Experimental

After depositing 2 �m of SiO2 on Si wafer, the lower capacitor
electrode was formed using plasma vapor deposited �PVD� TaN/Ta
bi-layers. After patterning the bottom electrode, the TaN was treated
by NH3 plasma nitridation. Largely improved interfacial TaON for-
mation, oxygen deficiency, and capacitance density degradation
were achieved after post-deposition anneal �PDA�.21 Then, the 26
and 30 nm thick STO layers were deposited on the TaN/Ta elec-
trode by PVD, followed by 450°C PDA for 1 h under oxygen envi-
ronment. Finally, the TaN/Al was deposited and patterned to form
the top capacitor electrode. The fabricated rf MIM capacitors were
characterized using an HP4284A precision LCR meter to 1 MHz,
and an HP8510C network analyzer for the S-parameter measure-
ments to 10 GHz.8,9 The series parasitic impedance and parallel rf
pads were de-embedded from ‘through’ and ‘open’ transmission
lines,15,22 respectively. The capacitance at rf frequency was ex-
tracted from the measured S-parameters using an equivalent circuit
model.8,9,15,16
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Results and Discussion

Figures 1a and b show the capacitance-voltage �C-V� and
current-voltage �J-V� characteristics of STO MIM capacitors, re-

Figure 1. �a� C-V and �b� J-V characteristics of STO MIM capacitors. The
C-V results from 100 kHz to 1 MHz are measured from LCR meter and the
data from 0.2 GHz to 10 GHz was obtained from the S-parameters. High
capacitance density of 44 and 49 fF/�m2 were measured with low leakage
density of 5 � 10−7 and 6 � 10−6 A/cm2.
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spectively. Very high capacitance density of 44 and 49 fF/�m2 or
capacitance-equivalent thickness �CET� of 0.78 and 0.70 nm were
measured with low leakage of 5 � 10−7 and 6 � 10−6 A/cm2, re-
spectively. Such small CET is useful for ITRS 45 nm node DRAM
at year 2010. The leakage current under positive bias �electron in-
jected from bottom TaN� is slightly lower than that under reverse
bias �electron injected from top TaN�. This may be due to the rough
top STO surface from STO crystallization, which creates localized
higher electric field in top TaN/STO. The surface roughness be-
tween dielectric and electrode is usually responsible for asymmetric
performance of MIM capacitors.23 In addition, note that the leakage
current of 5 � 10−7 A/cm2 is low enough for rf integrated circuit
�IC� applications due to the very high capacitance density of
44 fF/�m2: for a typically large 1 pF capacitor used in rf IC, the
leakage current is as low as 0.1 pA at 1 V and significantly lower
than the leakage current of sub-100 nm transistors.22 Furthermore, a
near constant capacitance value with little voltage and frequency
dependence is obtained for the STO MIM capacitor, which is im-
portant for rf IC under large voltage swing condition.

To study the current conduction mechanism of TaN/STO/TaN
MIM capacitors, we have plotted ln�J� vs E1/2 in Fig. 2. Here, both
Schottky emission �SE� and Frenkel-Poole �FP� conduction can give
a linear ln�J�-E1/2 relation with different slopes ���, as shown by

J � exp��E1/2 − Vb

kT
� �1�

� = � e3

	
�0K�
�1/2

�2�

where K� is the high-frequency dielectric constant �=n2; n is the
refractive index and equals to 2.4 for STO18,19�, and 	 is a constant
with value of 1 or 4 for FP or SE, respectively. From the good
matching between measured and Eq. 1 calculated data, the current
conduction mechanism changes from SE at low electric fields to FP
at higher fields.

To investigate the device rf characteristics of STO MIM capaci-
tors, the S-parameters were measured. Figure 3a shows the mea-
sured S-parameters for TaN/STO/TaN capacitors, and the capaci-
tance value is extracted by using the equivalent circuit model shown
in Fig. 3b. The MIM capacitor is modeled by Rp and C, where the
Rp originates from the high-� dielectric loss. In addition, the Rs, Ls1,
and Ls2 represent the parasitic impedances in the coplanar transmis-
sion line used for rf measurements. Good matching between mea-
sured and modeled S-parameters are shown in Fig. 3a, indicating the
good accuracy for capacitance extraction at rf regime beyond the
limited 1 MHz of LCR meter.

The obtained capacitance density is plotted in Fig. 4a. Small
capacitance reduction of only 3.5% to 10 GHz is indicative of the

Figure 2. Measured and simulated J-E1/2 of STO MIM capacitors.
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good device performance over the whole intermediate frequency
�IF� to rf range.6,7 However, such extracted capacitance density at
the rf regime is not sensitive enough to calculate the small �C/C
variation, important for precision capacitors operated under large
signal swing. We have used the previous circuit-theory-derived
equation8 to calculate the �C/C-V from measured S-parameters and
the results are shown in Fig. 4b. The measured �C/C-V can be fitted
with a second order polynomial equation, where linear ��� and qua-
dratic ��� voltage coefficients of �C/C were obtained. Because the
� effect can be canceled by circuit design using differential method,
� is the key parameter to cause the unwanted voltage-dependent
�C/C. The obtained �C/C and � are also plotted in Fig. 4a. Fortu-
nately, both � and �C/C decrease with increasing frequency into the
rf region, which is attributed to the trapped carriers being unable to
follow the high-frequency signal with typical carrier lifetimes in the
range ms to �s.8,9,15,16 Therefore, high capacitance density of
44 fF/�m2, small �C/C of 752 ppm, and low � of 54 ppm/V2 at
2 GHz are important for high-speed rf IC applications.

The device quality �Q� factor and corresponding capacitance ex-
tracted from the circuit model6 using the S-parameters at rf frequen-
cies is shown in Fig. 5a. Note that a good Q-factor 
50 is obtained
for rf application before resonant frequency � f r� of �13 GHz, where
the relative low f r is due to the large capacitance. Furthermore,
because the advanced ICs are usually operated at higher temperature
due to power dissipation, the temperature-coefficient on capacitance
�TCC� is another important factor. Figure 5b shows the TCC ob-
tained from normalized capacitance of STO capacitor as a function
of temperatures. Again, the TCC decreases with increasing fre-
quency with TCC values close to previous TiTaO devices.15

Figure 3. �a� Measured and simulated two-port S-parameters for STO MIM
capacitors, from 500 MHZ to 10 GHz and �b� equivalent circuit model for
capacitor simulation in rf regime.
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Conclusions

Very high 44 fF/�m2 capacitance density, small capacitance re-
duction of 3.5% to 10 GHz, and a small � of 54 ppm/V2 at 2 GHz
were simultaneously achieved in TaN/STO/TaN capacitors pro-
cessed at 450°C and important for rf application. This high-density
MIM capacitor is important for down-scaling the capacitance size
and integration with DRAM.
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Figure 5. �a� Q-factor of TaN/STO/TaN MIM capacitors biased at 1.5 V �b�
The temperature-dependent normalized capacitance �TCC� with different fre-
quency. The capacitor size is 20 � 20 �m.
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