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In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior fre-
quency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming
data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design
transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank
transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR) can be incorporated
in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational
sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR
can be obtained by the proposed design method.
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1. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM)
system has enjoyed great success in many wideband com-
munication systems due to its ability to combat intersym-
bol interference (ISI) [1]. It is known that the transmitting
and receiving filters of the OFDM transceiver have poor fre-
quency responses. As a result, many subchannels will be af-
fected when there is narrowband interference, and the per-
formance degrades significantly [2]. Many techniques have
been proposed to solve this problem.

One of the solutions is the filter bank technique. In recent
years, there has been considerable interest in the application
of filter banks to the design of transceivers with good fre-
quency characteristics [2–10]. Many of these previous studies
[3–6] have focused on the design of filter bank transceivers
(or transmultiplexers) under the assumption that the trans-
mission channel is an ideal channel that does not create ISI.
When the channel is a frequency selective channel, these fil-
ter bank transceivers suffer from severe ISI effect [7, 8], and
post processing technique is needed at the receiver for chan-
nel equalization [4]. Recently the authors in [10] studied
the filter bank transceiver for frequency selective channels.
The transmitting and receiving filters are optimized for SIR

(signal-to-interference ratio) maximization. Like OFDM sys-
tems, simple one-tap equalizers can be employed at the re-
ceiver for channel equalization. It has been demonstrated
that filter bank transceivers with high SIR and good fre-
quency responses can be obtained [10].

In many applications, it is desired to have transceivers
that can support multiple services [11, 12]. Different ser-
vices might have different incoming data rates and different
quality-of-service requirements. One solution to this prob-
lem is to judiciously allocating the resources to meet the re-
quirements, see, for example, [11]. Another solution is to
use a nonuniform filter bank transceiver. The theory and de-
sign of nonuniform filter banks have been studied by a num-
ber of researchers [13–18]. These results are extended to the
design of transceivers and transmultiplexers with nonuni-
form band separation in [12, 19]. In [12], the authors pro-
posed a general building block for the design of nonuniform
filter bank transmultiplexers. Near perfect reconstruction
transmultiplexers with good frequency property can be ob-
tained by the proposed method therein. In [19], a design of
nonuniform transmultiplexers using semi-infinite program-
ming was proposed. The proposed algorithm was efficient
and good results were achieved. However these nonuniform
transceiver designs do not consider the channel effect. When
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Figure 1: A nonuniform filter bank transceiver with integer sampling factors.

the transmission channel is frequency selective, an additional
equalizer is needed at the receiver.

In this paper, we consider the design of nonuniform
transceiver for frequency selective channels. Both the cases
of integer and rational sampling factors are considered. As
the effect of channel is taken into consideration at the time
the filter bank is optimized, simple one-tap equalizers can be
used at the receiver for channel equalization. Unlike the uni-
form case, the equivalent system from the transmitter input
to the receiver output is no longer LTI and ISI-free condition
needs to be derived. Furthermore we will show that like the
uniform case [10], SIR can be formulated as a Rayleigh-Ritz
ratio of filter coefficients. The optimal filters that maximize
the SIR can be obtained from an eigenvector of a positive def-
inite matrix. Moreover, an iterative algorithm that can incor-
porate the frequency response is proposed for SIR maximiza-
tion. Simulation results show that we can obtain nonuniform
transceivers with very high SIR (around 50 dB) and good fre-
quency response (stopband attenuation around 40 dB).

This paper is organized as follows. In Section 2, we study
nonuniform filter bank transceivers with integer sampling
factors. The ISI-free condition is derived and the SIR is for-
mulated as a Rayleigh-Ritz ratio of transmitting and receiv-
ing filters. Then SIR-optimized transmitting and receiving
filters are given. Moreover, the design method can be ex-
tended to the case of unknown frequency selective chan-
nels. In Section 3, an iterative algorithm is proposed to al-
ternatingly optimize the transmitting and receiving filters for
SIR maximization. We will show how to incorporate the fre-
quency response into the objective function. The results are
extended to the case of rational sampling factor in Section 4.
In Section 5, simulation examples are given to demonstrate
the usefulness of the proposed method. A conclusion is given
in Section 6.

Notation

The N-fold downsampled and upsampled versions of x(n)
are respectively denoted by [x(n)]↓N and [x(n)]↑N in the time
domain, and by [X(z)]↓N and [X(z)]↑N in the z domain. The
convolution of two sequences x(n) and y(n) is represented
by x(n)∗ y(n).

2. NONUNIFORM FILTER BANK TRANSCEIVERS
WITH INTEGER SAMPLING FACTORS

Figure 1 shows a nonuniform filter bank transceiver. The
downsampling and upsampling ratios Ni are integers and
they can be different for different i. A larger Ni indicates a
lower data rate and also implies that a smaller bandwidth is
allocated to the ith subband. For a filter bank transceiver, the
integers Ni satisfy

∑M−1
i=0 1/Ni ≤ 1, which is a necessary condi-

tion for recovering the input signals xi(n). When the equal-
ity
∑M−1

i=0 1/Ni = 1 holds, the transceiver is said to be crit-
ically sampled. The transmission channel is modeled as an
Lth-order LTI channel with transfer function

C(z) =
L∑
l=0

c(l)z−l . (1)

The additive noise is denoted by v(n). Because our formu-
lation is based on the signal-to-interference ratio, the chan-
nel noise does not affect the transceiver design. Therefore in
Sections 2, 3, and 4, we set v(n) = 0. For convenience, an
advance operator zl0 is added at the receiver to account for
the system delay caused by channel C(z). In practice, this ad-
vance element can be replaced by an appropriate delay. In
this paper, we consider only FIR filter banks. The transmit-
ting and receiving filters are, respectively,

Fi(z) =
Nfi∑
n=0

fi(n)z−n, Hi(z) =
Nhi∑
n=0

hi(n)zn. (2)

The orders of these filters Nfi and Nhi can be larger than Ni.
For notational simplicity, we use the noncausal expression
for the receiving filters. Causal filters can be obtained easily
by adding sufficient delays. In addition, we assume that the
input signals xi(n) are uncorrelated, zero mean, wide sense
stationary (WSS), and white random processes with the same
variance Ex. That is,

E
[
xi(n)

] = 0, E
[
xi(n)x∗j (m)

] = Exδ(i− j)δ(n−m).
(3)

This assumption is usually satisfied by properly interleaving
the input data.
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2.1. ISI-free condition

The filter bank transceiver shown in Figure 1 is said to be ISI-
free if in the absence of noise, for all possible input signals
xi(n), the outputs are

x̂i(n) = Gixi(n), (4)

for some constant Gi. In this case, a zero-forcing solution can
be obtained by cascading a simple one-tap equalizer. Express-
ing the output signal at the jth subband in the z domain, we
have

X̂ j(z) =
M−1∑
i=0

[
Xi
(
zNi
)
Fi(z)zl0C(z)Hj(z)

]
↓Nj

= Xj(z)
[
Fj(z)zl0C(z)Hj(z)

]
↓Nj

+
M−1∑
i=0
i �= j

[
Xi
(
zNi
)
Fi(z)zl0C(z)Hj(z)

]
↓Nj

.

(5)

From the above equation, we see that in general the system
from the input xi(n) to the output x̂ j(n) is not LTI unless
Nj is a factor of Ni. This is very different from the case of
uniform filter bank transceivers, in which all Ni = N . Let gi, j
be the greatest common divisor (gcd) of Ni and Nj . Define
two coprime integers pi, j = Ni/gi, j and pj,i = Nj/gi, j . Then
we can write

X̂ j(z) = Xj(z)
[
Fj(z)zl0C(z)Hj(z)

]
↓Nj

+
M−1∑
i=0
i �= j

[
Xi
(
zpi, j
)[
Fi(z)zl0C(z)Hj(z)

]
↓gi, j
]
↓pj,i

.
(6)

Define

Ti, j(z) = [Fi(z)zl0C(z)Hj(z)
]
↓gi, j

=
L∑
l=0

c(l)
[
Fi(z)Hj(z)zl0−l

]
↓gi, j

(7)

for 0 ≤ i, j ≤ M − 1. As the input signals xi(n) are arbitrary,
one can show (see the appendix for a proof) that the ISI-free
condition X̂i(z) = GiXi(z) is satisfied if and only if

Ti, j(z) =
⎧⎨⎩Gi, j = i,

0, otherwise.
(8)

For convenience of discussion, we express[Fi(z)Hj(z)zl0−l]↓gi, j
in terms of the two sequences αi,l(n) and βi, j,l(n) as

[
Fi(z)Hj(z)zl0−l

]
↓gi, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αi,l(0) +

∑
n

n�=0

αi,l(n)z−n, i = j,

∑
n

βi, j,l(n)z−n, i �= j,

(9)

for 0 ≤ i, j ≤ M − 1, and 0 ≤ l ≤ L. Note that since Fi(z)
and Hj(z) are of finite length, αi,l(n) and βi, j,l(n) have finite
nonzero terms only. Using the above definition, we can write
the jth output signal x̂ j(n) as

x̂ j(n) =
[ L∑

l=0

αj,l(0)c(l)

]
xj(n)

+
L∑
l=0

c(l)
[
αj,l(n)− αj,l(0)δ(n)

]∗ xj(n)

+
M−1∑
i=0
i �= j

[ L∑
l=0

c(l)βi, j,l(n)∗ [xi(n)
]
↑pi, j

]
↓pj,i

.

(10)

The first, second, and third terms on the right-hand side of
the above expression are the desired signal, the intraband
ISI and the cross-band ISI, respectively. To get an ISI-free
transceiver, we need to find the transmitting filters Fk(z) and
receiving filters Hk(z) so that the second and third terms are
equal to zero. The general solution to this problem is still
unknown. In the following, we will show how to reduce the
effect of ISI by finding a solution that maximizes the signal-
to-interference ratio (SIR).

2.2. Matrix formulations of αi,l(n) and βi, j,l(n)

In this section, we will formulate the sequences αi,l(n) and
βi, j,l(n) in a matrix form. These expressions will be useful
for the optimization of the transceivers. Recall from (9) that
αi,l(n) and βi, j,l(n) are obtained from the convolution of fk(n)
and hk(n). Let us define the following vectors:

αi(n) =

⎡⎢⎢⎢⎢⎢⎢⎣

αi,0(n)

αi,1(n)

...

αi,L(n)

⎤⎥⎥⎥⎥⎥⎥⎦ , βi, j(n) =

⎡⎢⎢⎢⎢⎢⎢⎣

βi, j,0(n)

βi, j,1(n)

...

βi, j,L(n)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

hi =

⎡⎢⎢⎢⎢⎢⎢⎣

hi(0)

hi(1)

...

hi
(
Nhi

)

⎤⎥⎥⎥⎥⎥⎥⎦ , fi =

⎡⎢⎢⎢⎢⎢⎢⎣

fi(0)

fi(1)

...

fi
(
Nfi

)

⎤⎥⎥⎥⎥⎥⎥⎦ .

(11)

Then from (9), it is not difficult to verify that the vectors
αi(n) and βi, j(n) can respectively be expressed as

αi(n) = Ai(n)hi,

βi, j(n) = Bi, j(n)h j ,
(12)
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where the matrices Ai(n) and Bi, j(n) are respectively given by

Ai(n)

=

⎡⎢⎢⎢⎢⎢⎢⎣
fi
(
nNi+l0

)
fi
(
nNi+l0 +1

) · · · fi
(
nNi+l0 +Nhi

)
fi
(
nNi+l0−1

)
fi
(
nNi+l0−1+1

)· · · fi(nNi+l0−1+Nhi

)
...

...
. . .

...

fi
(
nNi+l0−L

)
fi
(
nNi+l0−L+1

) · · · fi(nNi+l0−L+Nhi

)

⎤⎥⎥⎥⎥⎥⎥⎦,

Bi, j(n)

=

⎡⎢⎢⎢⎢⎢⎢⎣
fi
(
ngi, j+l0

)
fi
(
ngi, j+l0 +1

) · · · fi
(
ngi, j+l0 +Nhj

)
fi
(
ngi, j+l0−1

)
fi
(
ngi, j+l0−1+1

) · · · fi
(
ngi, j+l0−1+Nhj

)
...

...
. . .

...

fi
(
ngi, j+l0−L

)
fi
(
ngi, j+l0−L+1

) · · · fi(ngi, j+l0−L+Nhj

)

⎤⎥⎥⎥⎥⎥⎥⎦.
(13)

The dimensions of the matrices Ai(z) and Bi, j(n) are, respec-
tively, (L + 1) × (Nhi + 1) and (L + 1) × (Nhj + 1). Notice
that gi, j = Ni when i = j. Similarly, we can also express the
vectors αi(n) and βi, j(n), respectively, in terms of the trans-
mitting filter fi as

αi(n) = Ãi(n)fi, βi, j(n) = B̃i, j(n)fi, (14)

for some matrices Ãi(n) and B̃i, j(n). The matrices Ãi(n) and

B̃i, j(n) consist of the transmitting filter coefficients hj(n) and
they are very similar to Ai(n) and Bi, j(n), respectively.

2.3. SIR-optimized receiving filters

In this section, we will design the receiving filters so that
the SIR is maximized for a fixed set of transmitting filters.
As the jth receiving filter affects only the jth output signal
x̂ j(n), the receiving filters can be designed separately; the jth
receiving filter Fj(z) is optimized so that the SIR of the jth
output signal x̂ j(n) is maximized. Recall from (10) that the
output of the jth subband x̂ j(n) consists of three compo-
nents, namely, the desired signal, the intraband interference,
and the cross-band interference. As the input signals xi(n)
satisfy the uncorrelated and white property in (3), the de-
sired signal power and intraband interference power at the
jth output are given by

Psig( j) = Ex

∣∣∣∣∣
L∑
l=0

αj,l(0)c(l)

∣∣∣∣∣
2

,

Pintra( j) = Ex

∑
n,n�=0

∣∣∣∣∣
L∑
l=0

αj,l(n)c(l)

∣∣∣∣∣
2

,

(15)

where Ex is the power of the input signal defined in (3). The
computation of the cross-band interference power is more
complicated because the sequence [xj(n)]↑pi, j is not a WSS
process. From multirate theory [20], we know that [xj(n)]↑pi, j

is cyclo wide sense stationary with period pi, j , or CWSS(pi, j).
Letting u(n) = [xj(n)]↑pi, j , then its autocorrelation coeffi-
cients satisfy E[u(n)u∗(n−k)] = E[u(n+pi, j)u∗(n+pi, j−k)].
Since pi, j and pj,i are coprime, the quantity

[ L∑
l=0

c(l)βi, j,l(n)∗ [xi(n)
]
↑pi, j

]
↓pj,i

(16)

is also CWSS(pi, j) [20]. From (10), we see that the cross-
band interference consists of (M − 1) CWSS sequences
with period pi, j for i = 0, . . . , j − 1, j + 1, . . . ,M − 1. Let
Pj be the least common multiple of the integers {p0, j , . . . ,
pj−1, j , pj+1, j , . . . , pM−1, j}. Then the cross-band interference is
a CWSS(Pj) random process. We can compute the average
cross-band interference power over one period Pj and it is
given by

Pcross( j) = Ex

∑
i,n
i �= j

1
pi, j

∣∣∣∣∣
L∑
l=0

βi, j,l(n)c(l)

∣∣∣∣∣
2

. (17)

Next we will express the three quantities Psig( j), Pintra( j), and
Pcross( j) in terms of the receiving filter coefficients hj(n). To
do this, let us define the (L + 1)× 1 vector

c =
[
c(0) c(1) · · · c(L)

]T
. (18)

Then from (12), we can write

Ex

∣∣∣∣∣
L∑
l=0

αj,l(0)c(l)

∣∣∣∣∣
2

= Ex

∥∥cTA j(0)h j

∥∥2

= Exh†j A†j (0)c∗cTA j(0)h j .

(19)

Similarly, using the expressions of αi(n) and βi, j(n) in (12),
we can also write the intraband and cross-band interference
powers in a quadratic form of h j . In summary, the three pow-
ers are given by

Psig( j) = h†j Qsig, jh j , Pintra( j) = h†j Qintra, jh j ,

Pcross( j) = h†j Qcross, jh j ,
(20)

where the matrices Qsig, j , Qintra, j , and Qcross, j are, respectively,
given by

Qsig, j = ExA†j (0)c∗cTA j(0),

Qintra, j = Ex

∑
n,n�=0

A†j (n)c∗cTA j(n),

Qcross, j = Ex

∑
i,n
i �= j

1
pi, j

B†i, j(n)c∗cTBi, j(n).

(21)

As xi(n) and xj(n) are uncorrelated for i �= j, the total ISI
power at the jth output is Pisi( j) = Pintra( j) + Pcross( j). Thus
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the SIR of the jth output is given by

γj =
Psig( j)

Pisi( j)
= h†j Qsig, jh j

h†j Qisi, jh j

, (22)

where Qisi, j = Qintra, j + Qcross, j . Notice that both Qsig, j and
Qisi, j are positive semidefinite matrices. Furthermore, except
for some very rare cases, the matrix Qisi, j is positive definite.
From the above expression, we see that the SIR is expressed as
a Rayleigh-Ritz ratio of h j . The optimal unit-norm vector h j

that maximizes γj is well known [21]. Let Q1/2
isi, j be the posi-

tive definite matrix such that Qisi, j = Q1/2
isi, jQ

1/2
isi, j . The optimal

h j is given by

h j,opt = Q−1/2
isi, j arg max

v �=0

v†Q−1/2
isi, j Qsig, jQ

−1/2
isi, j v

v†v
. (23)

The optimal vector v is the eigenvector corresponding
to the largest eigenvalue of the positive definite matrix
Q−1/2

isi, j Qsig, jQ
−1/2
isi, j .

2.4. SIR-optimized transmitting filters

In this section, we consider the SIR optimization of the trans-
mitting filters fi(n) given a fixed set of the receiving filters. As
the ith transmitting filter fi(n) affects only the ith input sig-
nal xi(n), we can consider the SIR due to the ith transmitted
signal xi(n). Consider the transmission scenario when only
the ith subband is transmitting, that is, xj(n) = 0 for j �= i.
Then from (10), the outputs of the receiver are given by

x̂i(n) =
[ L∑

l=0

αi,l(0)c(l)

]
xi(n)

+
L∑
l=0

c(l)
[
αi,l(n)− αi,l(0)δ(n)

]∗ xi(n),

x̂ j(n) =
[ L∑

l=0

c(l)βi, j,l(n)∗ [xi(n)
]
↑pi, j

]
↓pj,i

, for i �= j.

(24)

Note that the first and second terms on the right-hand side
of (24) are respectively the desired signal and the intraband
interference due to the ith transmitted signal xi(n). On the
other hand, x̂ j(n) represents the cross-band interferences due
to xi(n). By following a procedure similar to that in the pre-
vious section, we can compute the signal power and interfer-
ence powers and express the SIR as a Rayleigh-Ritz ratio as
follows:

γ̃i =
f†i Q̃sig,ifi

f†i Q̃isi,ifi
, (25)

where the matrices Q̃sig,i and Q̃isi,i are positive semidefinite
matrices that have a form very similar to Qsig,i and Qisi,i,
respectively. Hence the optimal unit-norm fi that maximizes
the SIR can be obtained by solving the above Rayleigh-Ritz
ratio.

2.5. SIR optimized for unknown channels

In many applications, the exact channel impulse response
may not be available, and we may have only the statistics
of the transmission channels. The above design method can
easily be modified to obtain transceivers that are optimized
for unknown channels. Assume that the vector containing
the channel impulse response, c, is zero-mean with autocor-
relation matrix

Rc = E
[

cc†
]
. (26)

In this case, the exact channel impulse response is not
known. From previous discussions, we know that the sig-
nal power and interference powers at the output of the jth
subband are respectively given by (20) and (21). When the
channel is not known, we can compute the average signal
power and interference powers by taking the expectation
with respect to the channel impulse response c(l). It is not
difficult to verify that the average SIR can also be expressed
as a Rayleigh-Ritz ratio of the filter coefficients hi.

Similarly, given the receiving filters, we can modify
the optimization of transmitting filters fi for the case of
unknown channels by using the average SIR. In many situ-
ations, we do not know the statistics of the channel. In this
case, it is often assumed that the channel impulse responses
are independent identical distribution, that is, i.i.d. channels.
The autocorrelation matrix of the channel impulse response
becomes Rc = σ2

c I.

3. AN ITERATIVE ALGORITHM FOR SIR OPTIMIZATION
WITH FREQUENCY CRITERIA

From the previous discussions, we know that when the trans-
mitting filters are given, we can obtain optimum receiving fil-
ters so that SIR is maximized. Conversely, given the receiving
filters we can design the transmitting filters that maximize
the SIR. One can therefore alternatingly optimize the receiv-
ing and transmitting filters so that SIR is maximized. Because
in each iteration, the solution obtained in the previous iter-
ation is also a candidate, the SIR cannot decrease1 when the
number of iterations increases. As we will see in the numeri-
cal examples, the increase in SIR is substantial as the number
of iterations increases. However because no constraint is ap-
plied on the filters, their frequency responses will often de-
grade significantly as the number of iterations increases. To
solve this problem, we can incorporate the filter stopband en-
ergy in the optimization. Let us consider the design of the
receiving filters h j . The stopband energy of the jth receiving
filter Hj(z) is given by

Pstop( j) = 1
2π

∫
�h, j

∣∣Hj
(
e jω
)∣∣2

dω, (27)

where �h, j is the stopband region of Hj(z). Define the vec-
tor eN (z) = [1 z · · · zN ]T . Then the weighted stopband

1 In general, it is not guaranteed that the SIR is monotonically increasing.
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Figure 2: Nonuniform filter bank transceiver with rational sampling factors.

energy can be expressed as

Pstop( j) = h†j Qstop, jh j , (28)

where the matrix Qstop, j is given by

Qstop, j = 1
2π

∫
�h, j

eNhj

(
e jω
)

e†Nhj

(
e jω
)
dω. (29)

The new objective function that incorporates the frequency
response is

ηj =
h†j Qsig, jh j

h†j
[

Qisi, j + ch, jQstop, j
]

h j

, (30)

where ch, j ≥ 0 is a weight that adjusts the relative importance
of the frequency responses. When ch, j = 0, the new objective
function ηj reduces to the SIR expression γj in (22) and no
frequency criteria are applied. One can see that ηj is also a
Rayleigh-Ritz ratio of h j . We can choose h j to be the unit-
norm vector that maximizes this ratio. Similarly, one can in-
corporate the stopband energy into the optimization of the
transmitting filters fi(n). One will get a new objective func-
tion

η̃i =
f†i Q̃sig,ifi

f†i
[

Q̃isi,i + c f ,iQ̃stop,i]fi
, (31)

where f†i Q̃stop,ifi is the term corresponding to the stopband
energy of the filter fi(n). The optimal fi is the unit-norm vec-
tor that maximizes η̃i.

Note that in the new objective function, the passband re-
sponses of the filters are not included. For unit-norm filters,
when the stopband energy is small, the passband energy will
be close to one. In transceiver designs, nearly zero ISI prop-
erty can be guaranteed by a high SIR and the flatness of pass-
band response is not needed.

The iterative algorithm for transceiver optimization is
summarized as follows.

(1) Select a set of the receiving filters H (0)

i (z) with good
frequency responses.

For k ≥ 1, repeat the following steps.

(2) Given the receiving filters H (k−1)

i (z), optimize F (k)

j (z) so
that η̃ j is maximized for 0 ≤ j ≤M − 1.

(3) Given the transmitting filter F (k)

j (z), optimize H (k)

i (z)
so that ηi is maximized for 0 ≤ i ≤M − 1.

(4) Stop if the SIR is higher than the desired value or if it
reaches the maximum number of iterations; otherwise,
k = k + 1 and return to step (2).

4. NONUNIFORM FILTER BANK TRANSCEIVERS
WITH RATIONAL SAMPLING FACTORS

In this section, we generalize the design method to the case of
rational sampling factors. We will first employ the technique
in [15] to convert the transceiver with rational sampling fac-
tors into an equivalent transceiver with integer sampling fac-
tor. Then the optimization method developed in the previ-
ous sections can be adopted. The block diagram of a nonuni-
form filter bank transceiver with rational sampling factors is
shown in Figure 2. At the transmitter, the input signal xi(n)
goes through an Ni-fold expander and an Mi-fold decima-
tor. The bandwidth of the ith subband is proportional to the
ratio Mi/Ni. Without loss of generality, we assume that the
integers Mi and Ni are coprime. If they are not coprime, then
it is known [20] that the ith subband can be replaced with
an equivalent system with coprime M′

i and N ′
i , and such an

equivalent system will have a lower complexity. Furthermore,
to ensure symbol recovery, we assume

M−1∑
i=0

Mi

Ni
≤ 1. (32)

Let us decompose the kth transmitting and receiving fil-
ters using the polyphase representation as

Hk(z) =
Mk−1∑

=0

z
Ek,

(
zMk
)
,

Fk(z) =
Mk−1∑

=0

z−
Rk,

(
zMk
)
.

(33)

Note that no coefficient of Hk(z) or Fk(z) appears in more
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xk(n) � Nk Fk(z) � Mk

xk(n) � Mk

xk,0(n)
� Nk Rk,0(z)

zbk,1 � Mk

...

xk,1(n)
� Nk z�ak,1Rk,1(z)

...
...

...

zbk,Mk�1 � Mk

xk,Mk�1(n)
� Nk z�ak,Mk�1Rk,Mk�1(z)

(a)

� Mk Hk(z) � Nk x̂k(n)

Ek,0(z) � Nk

x̂k,0(n)
� Mk x̂k(n)

zak,1Ek,1(z) � Nk

x̂k,1(n)
� Mk z�bk,1

...
...

...
...

zak,Mk�1Ek,Mk�1(z) � Nk

x̂k,Mk�1(n)
� Mk z�bk,Mk�1

(b)

Figure 3: (a) Equivalent circuit of the kth subband in the transmitting bank, (b) equivalent circuit of the kth subband in the receiving bank.

than one Ek,
(z) or Rk,
(z). As Mk and Nk are coprime, we can
always find positive integers a and b such that aMk − bNk =
1. Let ak,1 and bk,1 be the smallest integers that satisfy this
condition. Define

ak,l = lak,1, bk,l = lbk,1. (34)

Using the polyphase representation and the noble identities
[20], we can redraw the kth subbands of the transmitter and
receiver, respectively, as those shown in Figures 3(a) and 3(b).
Moreover, since Mk and bk,1 are coprime, we have2

{[
bk,1
]
Mk

,
[
bk,2
]
Mk

, . . . ,
[
bk,Mk−1

]
Mk

}
= {1, 2, . . . ,Mk − 1

}
,

(35)

where [p]q represents p modulo q, which is a number be-
tween 0 and q − 1. Thus, in Figure 3(a), the signal xk(n)
is split into its polyphase components {xk,0(n), xk,1(n), . . . ,
xk,Mk−1(n)}. Similarly, {x̂k,0(n), x̂k,1(n), . . . , x̂k,Mk−1(n)} in
Figure 3(b) are the polyphase components of the signal

2 See homework [20, Problem 4.9].

x̂k(n). Using these results, we can redraw Figure 2 as Figure 4.
The transceiver in Figure 4 has the same structure as that in
Figure 1. Since input signals xi, j(n) are also uncorrelated, we
can apply the design method developed in previous sections
to obtain the optimal Rk,
(z) and Ek,
(z). The filters Fk(z) and
Hk(z) can be obtained from (33).

5. SIMULATIONS

In this section, we provide two examples to show the perfor-
mance of nonuniform filter bank transceivers designed by us-
ing the proposed method. It is emphasized that in transceiver
designs, the nearly zero ISI property is guaranteed by a high
SIR value and passband flatness is not needed. We assume
that the channel noise v(n) is AWGN in the following exam-
ples.

Example 1. In this example, we design nonuniform filter
bank transceivers with integer sampling factors. The num-
ber of subbands is M = 4 and the sampling factors are {N0,
N1,N2,N3} = {2, 4, 8, 8}. Four-tap channels are used here. A
total of 100 randomly generated iid channels are employed in
the simulation. We assume that channel impulse responses
are known. All the transmitting and receiving filters are of
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x0,0(n) � N0 R0,0(z) C(z)

v(n)

zl0 E0,0(z) � N0 x̂0,0(n)

x0,1(n) � N0 z�a0,1R0,1(z) za0,1E0,1(z) � N0 x̂0,1(n)

x0,M0�1(n) � N0 z�a0,M0�1R0,M0�1(z) za0,M0�1E0,M0�1(z) � N0 x̂0,M0�1(n)

x1,0(n) � N1 R1,0(z) E1,0(z) � N1 x̂1,0(n)

x1,1(n) � N1 z�a1,1R1,1(z) za1,1E1,1(z) � N1 x̂1,1(n)

x1,M1�1(n) � N1 z�a1,M1�1R1,M1�1(z) za1,M1�1E1,M1�1(z) � N1 x̂1,M1�1(n)

xM�1,0(n) � NM�1 RM�1,0(z) EM�1,0(z) � NM�1 x̂M�1,0(n)

xM�1,1(n) � NM�1 z�aM�1,1RM�1,1(z) zaM�1,1EM�1,1(z) � NM�1 x̂M�1,1(n)

xM�1,MM�1�1(n) � NM�1 z�aM�1,MM�1�1RM�1,MM�1�1(z) zaM�1,MM�1�1EM�1,MM�1�1(z) � NM�1 x̂M�1,MM�1�1(n)

...
...

...
...

...
...

...
...

...

...

... ...

... ...

...
...

Figure 4: Equivalent circuit of the nonuniform filter bank transceiver with rational sampling factors in Figure 2.

order 56. We consider the iterative algorithm for both cases
of with and without frequency criteria. For the case with fre-
quency criteria (indicated as fc), the weights for the stopband
energy are chosen as c f ,0 = c f ,1 = ch,0 = ch,1 = 0.05, and
c f ,2 = c f ,3 = ch,2 = ch,3 = 0.4. We plot the SIR averaged
over the 100 random channels versus the number of itera-
tions and the results are shown in Figure 5. From the figure,
we see that the average SIR increases with the number of it-
erations. When no frequency criteria are applied, the average
SIR increases by about 15 dB and it can be as high as 56 dB
after 400 iterations. Even when the frequency criteria are ap-
plied, the average SIR increases by more than 8 dB. Thus the
incorporation of frequency criteria results in a loss of SIR
by 7 dB. To show the improvement in frequency response
when the frequency criteria are applied, we plot the magni-
tude responses of the transceiver optimized for one partic-
ular channel—Channel A after the 200th iteration. The im-
pulse response of Channel A is given by

Channel A =
[

0.2218 −0.475 0.3906 0.2845
]
. (36)

400350300250200150100500
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Figure 5: SIR versus the number of iterations.
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Figure 6: Magnitude responses of the transmitting filters (no fre-
quency criteria).
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Figure 7: Magnitude responses of the receiving filters (no frequency
criteria).

The results are shown in Figures 6, 7, 8, and 9. Comparing the
results in Figures 6 and 7 with those in Figures 8 and 9, we can
see that the incorporation of the frequency criteria improves
the frequency characteristics of the transceiver significantly.
The tradeoff is a loss in SIR of around 7 dB.

Example 2. In this example, we design two-band nonuni-
form filter bank transceivers with rational sampling factors,
where N0 = N1 = 5, M0 = 2, and M1 = 3. A total of 100 iid
channels with 4 taps are randomly generated. The filter or-
ders are Nf0 = Nh0 = 58 and Nf1 = Nh1 = 87. The trans-
mitting filters F0(z) and F1(z) are, respectively, initialized as
good lowpass and highpass filters with a passband bandwidth
of 2π/5. We consider 3 cases: (i) optimization without fre-
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Figure 8: Magnitude responses of the transmitting filters (with fre-
quency criteria).
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Figure 9: Magnitude responses of the transmitting filters (with fre-
quency criteria).

quency criteria (indicated by c = 0); (ii) optimization with
frequency criteria and the weights on the stopband energy
are c f ,0 = c f ,1 = ch,0 = ch,1 = c = 0.1 (indicated by c = 0.1);
(iii) optimization with frequency criteria and the weights on
the stopband energy are c f ,0 = c f ,1 = ch,0 = ch,1 = c = 10 (in-
dicated by c = 10). The SIR averaged over 100 random chan-
nels versus the number of iterations are given in Figure 10 for
the three different values of c. From the figure, we see that the
SIR is smaller when we impose frequency criteria. The heav-
ier the frequency criteria, the lower the SIR. Comparing the
cases of c = 10 and c = 0, the loss of SIR (after 200 iterations)
is around 6 dB. Even with the frequency weighting of c = 10,
the SIR can be as high as 47 dB, a value that is good enough
for many applications. To demonstrate the effect of adding
frequency criteria, we plot the filter magnitude responses for



10 EURASIP Journal on Advances in Signal Processing

200150100500

The number of iterations

42

44

46

48

50

52

54

SI
R

(d
B

)

c = 0
c = 0.1
c = 10

Figure 10: SIR versus the number of iterations.
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Figure 11: Magnitude response of F0(z).

one particular channel—Channel B after 200 iterations. The
impulse response of Channel B is

Channel B =
[
−0.44270 −0.42492 0.39377 0.34971

]
.

(37)

The magnitude responses of the initial filters are given in
Figures 11 and 12. The results are shown in Figures 11, 12,
13, and 14 (for the purpose of comparison, we also plot the
initial |Fi(e jω)| in the same figure). From the figure, it is
clear that without any frequency weighting, the magnitude
responses degrade significantly after 200 iterations and the
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Figure 12: Magnitude response of F1(z).
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Figure 13: Magnitude response of H0(z).

frequency weighting can greatly enhance the selectivity of fil-
ters.

6. CONCLUSION

In this paper, we propose a method for designing nonuni-
form filter bank transceivers for frequency selective channels.
By expressing the SIR as Rayleigh-Ritz ratios of transmitting
and receiving filters respectively, we can iteratively optimize
the filters so that SIR is maximized. Moreover, a new cost
function that incorporates the filter frequency response is in-
troduced. Iterative optimization algorithm based on the new
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Figure 14: Magnitude response of H1(z).

cost function yields transceivers with high SIR as well as good
frequency responses.

APPENDIX

In the following, we will prove that the transceiver in Figure 1
is ISI-free if and only if the transfer function Ti, j(z) in (7)
satisfies (8). Suppose that Ti, j(z) �= 0 for some i �= j. Let
ti, j(k) be one of the nonzero coefficients. So Ti, j(z) con-
tains the term ti, j(k)z−k. Note that the integers pi, j and pj,i

are coprime. Thus there exist integers a and b such that
api, j + bpj,i = k. As the inputs Xi(z) are arbitrary, let us take
Xi(z) = za and Xl(z) = 0 for all l �= i. From (6), one can
find that X̂ j(z) will contain the term ti, j(k)z−b. That means,
the ith transmitted signal is causing interference to the jth
output of the receiver. Therefore we should have Ti, j(z) = 0
for all i �= j. For the case of i = j, it is clear from (6) that
the transceiver is ISI-free if and only if Tj, j(z) = Gj for some
constant Gj .
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