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This work presents a robust speaker’s location detection algorithm using a single linear microphone array that is capable of detect-
ing multiple speech sources under the assumption that there exist nonoverlapped speech segments among sources. Namely, the
overlapped speech segments are treated as uncertainty and are not used for detection. The location detection algorithm is derived
from a previous work (2006), where Gaussian mixture models (GMMs) are used to model location-dependent and content and
speaker-independent phase difference distributions. The proposed algorithm is proven to be robust against the complex vehicular
acoustics including noise, reverberation, near-filed, far-field, line-of-sight, and non-line-of-sight conditions, and microphones’
mismatch. An adaptive system architecture is developed to adjust the Gaussian mixture (GM) location model to environmental
noises. To deal with unmodeled speech sources as well as overlapped speech signals, a threshold adaptation scheme is proposed in
this work. Experimental results demonstrate high detection accuracy in a noisy vehicular environment.
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1. INTRODUCTION

Electronic systems, such as mobile phones, global position-
ing systems (GPS), CD or VCD players, air conditioners, and
so forth, are becoming increasingly popular in vehicles. In-
telligent hands-free interfaces, including human-computer
interaction (HCI) interfaces [1–3] with speech recognition,
have recently been proposed due to concerns over driving
safety and convenience. Speech recognition suffers from en-
vironmental noises, explaining why speech enhancement ap-
proaches using multiple microphones [4–7] have been intro-
duced to purify speech signals in noisy environments. For
example, in vehicle applications, a driver may wish to exert
a particular authority in manipulating the in-car electronic
systems. Additionally, for speech signal purification, a better
receiving beam using a microphone array can be formed to
suppress the environmental noises if the speaker’s location is
known.

The concept of employing a microphone array to localize
sound source has been developed over 30 years [8–15]. How-
ever, most methods do not yield satisfactory results in highly
reverberating, scattering or noisy environments, such as the
phase correlation methods shown in [16]. Consequently,
Brandstein and Silverman proposed Tukey’s Biweight to the

weighting function to overcome the reflection effect [17].
Additionally, histogram-based time-delay of arrival (TDOA)
estimators [18–20] have been proposed for low-SNR con-
ditions. Ward and Williamson [21] developed a particle
filter beamformer to solve the reverberation problem and
Potamitis et al. [22] proposed a probabilistic data associa-
tion (PDA) technique to conquer these estimation errors.
On the other hand, Chen et al. [23] derived the paramet-
ric maximum likelihood (ML) solution to detect speaker’s
location under both near-filed and far-filed conditions. To
improve the computational efficiency of the ML, Chung et
al. [24] proposed two recursive expectation and maximiza-
tion (EM) algorithms to locate speaker. Moreover, micro-
phones’ mismatch problem is another issue for speaker’s lo-
cation detection [25, 26]. If the microphones are not mutu-
ally matched, then the phase difference information among
microphones may be distorted. However, prematched mi-
crophones are relatively expensive and mismatched micro-
phones are difficult to calibrate accurately since the charac-
teristics of microphones change with the sound directions.
Except for the issues mentioned above, a location detec-
tion method that can deal with the non-line-of-sight con-
dition, which is common in vehicular environments, is nec-
essary.
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Figure 1: Overall system architecture.

Our previous work [27] utilizes Gaussian mixture model
(GMM) [28] to model the phase difference distributions
of the desired locations as location-dependent features for
speaker’s location detection. The proposed method in [27]
is able to overcome the nonideal properties mentioned above
and the experimental results indicate that the GMM is very
suitable for modeling these distributions under both non-
line-of-sight and line-of-sight conditions. Additionally, the
proposed system architecture can adapt the Gaussian mix-
ture (GM) location models to the changes in online envi-
ronmental noises even under low-SNR conditions. Although
the work in [27] proved to be practical in vehicular environ-
ments, it still has several issues to be solved.

First, the work in [27] assumed that the speech signal is
emitted from one of the previously modeled locations. In
practice, we may not want to or could not model all posi-
tions. In this case, an unexpected speech signal which is not
emitted from one of the modeled locations, such as the radio
broadcasting from the in-car audio system and the speaker’s
voices from unmodeled locations, could trigger the voice ac-
tivity detector (VAD) in the system architecture, resulting
in an incorrect detection of the speaker location. Second, if
the speech signals from various modeled locations are mixed
together (i.e., the speech signals are overlapped speech seg-
ments), then the received phase difference distribution be-
comes an unmodeled distribution, leading to a detection er-
ror. Therefore, this work proposes a threshold-based location
detection approach that utilizes the training signals and the
trained GM location model parameters to determine a suit-
able length of testing sequence and then obtain a threshold
of the a posteriori probability for each location to resolve the
two issues. Experimental results show that the speaker’s loca-
tion can be accurately detected and demonstrate that sound
sources from unmodeled locations and multiple modeled
locations can be discovered, thus preventing the detection
error.

The remainder of this work is organized as follows.
Section 2 discusses the system architecture and the relation-
ship between the selected frequency and microphone pairs.
Section 3 presents the training procedure of the proposed
GM location model and the location detection method.
Section 4 shows the detection performance in single and
multiple speakers’ cases, and the cases of radio broadcast-
ing and speech from unmodeled locations. Conclusions are
made in Section 5.

2. SYSTEM ARCHITECTURE AND MICROPHONE
PAIRS SELECTION

2.1. Overall system architecture

Figure 1 illustrates the overall system architecture, which
is separated into two stages, namely, the silent and speech
stages, by a VAD [29, 30] that identifies speech from the re-
ceived signals. Before the proposed system is processed on-
line, a set of prerecorded speech signals are required to obtain
a priori information between speakers and the microphone
array. The prerecorded speech signals in the silent stage in
Figure 1 are collected when the environment is quiet and the
speakers are at the desired locations. In practice, the speak-
ers voice several sentences and move around the desired lo-
cations slightly to simulate the practical condition and ob-
tain an effective recording. Consequently, the pre-recorded
speech signals contain both the characteristics of the micro-
phones and the acoustical characteristics of the desired lo-
cations. After collecting the pre-recorded speech signals, the
system switches automatically between the silent and speech
stages according to the VAD result. If the VAD result equals
to zero, indicating that speakers are silent, then the system
switches to the silent stage. On the other hand, the system
switches to the speech stage when the VAD result equals to
one.
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Figure 2: Uniform linear microphone array geometry.

Environmental noises without speech are recorded on-
line in the silent stage. Given that the environmental noises
are assumed to be additive, the signals received when a
speaker is talking in a noisy vehicular environment can
be expressed as a linear combination of the speech sig-
nal and the environmental noises. Therefore, in this stage,
the system combines the online recorded environmental
noise, N1(ω), . . . ,NM(ω), and the pre-recorded speech sig-
nals, S1(ω), . . . , SM(ω), to construct the training signals,
X1(ω), . . . ,XM(ω), where M denotes the number of micro-
phones. The training signal is transmitted to the location
model training procedure described in Section 3 to extract
the corresponding phase differences and then derive the GM
location models. Since the acoustical characteristics of the
environmental noises may change, the GM location model
parameters are updated in this stage to ensure the detection
accuracy and robustness. In the speech stage, the GM loca-
tion model parameters derived from the silent stage are du-
plicated into the location detector to detect the speaker’s lo-
cation.

2.2. Frequency band divisions based on a uniform
linear microphone array

With the increase of the distances between microphones, the
phase differences of the received signals become more sig-
nificant. However, the aliasing problem occurs when this
distance exceeds half of the minimum wavelength of the
received signal [31]. Therefore, the distance between pairs
of microphones is chosen according to the selected fre-
quency band to obtain representative phase differences to en-
hance the accuracy of location detection and prevent alias-
ing.

Figure 2 illustrates a uniform linear microphone array
with M microphones and distance d. According to the geom-
etry, the processed frequency range is divided into (M − 1)
bands listed in Table 1, where m denotes the mth micro-
phone; b represents the band number, ν denotes the sound
velocity, and Jb is the number of microphone pairs in the
band of b. The phase differences measured by the micro-
phone pairs at each frequency component, ω (belonging to a
specific band, b) are utilized to generate a GM location model
with the dimension of Jb. An example of the frequency band
selection can be found in Section 4.

3. GAUSSIAN MIXTURE LOCATION MODEL TRAINING
PROCEDURE AND LOCATION DETECTION METHOD

3.1. GM location model description

If the GM location model at location l is represented by
the parameter λλλ(l) = {λλλ(ω, b, l)}|M−1

b=1 , then a group of L
GM location models can be represented by the parameters,
{λλλ(1), . . . , λλλ(L)}. A Gaussian mixture density in the band b
at location l can be denoted as a weighted sum of N Gaussian
component densities:

Gb
(
θX(ω, b, l) | λλλ(ω, b, l)

) =
N∑

i=1

ρi(ω, b, l)gi
(
θX(ω, b, l)

)
,

(1)

where ρi(ω, b, l) is the ith mixture weight, gi(θX(ω, b, l)) de-
notes the ith Gaussian component density, and θX(ω, b, l) =
[θX(ω, 1, l) · · · θX(ω, Jb, l)]T is a Jb-dimensional training
phase difference vector derived from the training signals,
X1(ω), . . . ,XM(ω), as shown in the following equation:

θX(ω, j, l) = phase
(
Xj+M−Jb(ω)

)− phase
(
Xj(ω)

)

with 1 ≤ j ≤ Jb.
(2)

The GM location model parameter in the band b at loca-
tion l, λλλ(ω, b, l), is constructed by the mean matrix, covari-
ance matrices, and mixture weights vector from N Gaussian
component densities

λλλ(ω, b, l) = {ρ(ω, b, l), μμμ(ω, b, l),Σ(ω, b, l)
}

, (3)

where ρ(ω, b, l)=[ρ1(ω, b, l) · · · ρN (ω, b, l)] denotes the mix-
ture weights vector in the band b at location l. μμμ(ω, b, l) =
[μ1(ω, b, l) · · ·μN (ω, b, l)] denotes the mean matrix in the
band b at location l. Σ(ω, b, l) = [Σ1(ω, b, l) · · ·ΣN (ω, b, l)]
denotes the covariance matrix in the band b at location l.

The ith corresponding vector and matrix of the parame-
ters defined above are

μi(ω, b, l) = [μi(ω, 1, l) · · ·μi
(
ω, Jb, l

)]T
,

Σi(ω, b, l) =

⎡

⎢
⎢
⎢
⎣

σ2
i (ω, 1, l) 0 0

0
. . . 0

0 0 σ2
i

(
ω, Jb, l

)

⎤

⎥
⎥
⎥
⎦
.

(4)

Notably, the mixture weight must satisfy the constraint that

N∑

i=1

ρi(ω, b, l) = 1. (5)

The covariance matrix, Σi(ω, b, l), is selected as a diag-
onal matrix. Although the phase differences of the micro-
phone pairs may not be statistically independent of each
other, GMMs with diagonal covariance matrices have been
observed to be capable of modeling the correlations within
the data by increasing mixture number [32].
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Table 1: Relationship of frequency bands to the microphone pairs.

Frequency band Microphone pairs The number of microphone pairs The range of frequency band

Band 1 (b = 1) (m,m + M − 1) with m = 1 Jb = J1 = 1 0 < ω ≤ ν

2(M − 1)d

Band 2 (b = 2) (m,m + M − 2) with 1 ≤ m ≤ 2 Jb = J2 = 2
ν

2(M − 1)d
< ω ≤ ν

2(M − 2)d
...

...
...

...

Band M − 1 (b =M − 1) (m,m + 1) with 1 ≤ m ≤M − 1 Jb = JM−1 =M − 1
ν

4d
< ω ≤ ν

2d

3.2. GM location models training procedure and
parameters estimation

Several techniques are available for determining the param-
eters of the GMM, {λλλ(1), . . . , λλλ(L)}, from the received phase
differences. The most popular method is the EM algorithm
[33] that estimates the parameters by using an iterative
scheme to maximize the log-likelihood function shown as
follows:

log10 p
(
θX(ω, b, l) | λλλ(ω, b, l)

)

=
T∑

t=1

log10 p
(
θX

(t)(ω, b, l) | λλλ(ω, b, l)
)
,

(6)

where θθθX(ω, b, l) = {θX (1)(ω, b, l), . . . , θX
(T)(ω, b, l)} is a se-

quence of T input phase difference vectors.
The EM algorithm can guarantee a monotonic increase

in the model’s log-likelihood value and its iterative equations
corresponding to frequency band selection can be arranged
as follows.

Expectation step

Gb
(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

)

= ρi(ω, b, l)gi
(
θX

(t)(ω, b, l)
)

∑N
i=1 ρi(ω, b, l)gi

(
θX

(t)(ω, b, l)
) ,

(7)

where Gb(i | θX (t)(ω, b, l), λλλ(ω, b, l)) is a posteriori probabil-
ity.

Maximization step

(i) Estimate the mixture weights

ρi(ω, b, l) = 1
T

T∑

t=1

Gb
(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

)
. (8)

(ii) Estimate the mean vector

μi(ω, b, l) =
∑T

t=1 Gb
(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

)
θX

(t)(ω, b, l)
∑T

t=1 Gb
(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

) .

(9)

(iii) Estimate the variances

σ2
i (ω, j, l)

=
∑T

t=1 Gb
(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

)
θX

(t)2
(ω, j, l)

∑T
t=1 Gb

(
i | θX (t)(ω, b, l), λλλ(ω, b, l)

)

− μi
2(ω, j, l) with 1 ≤ j ≤ Jb,

(10)

where i = {1, . . . ,N}.
According to the work in [27], the location can be de-

termined by finding the GM location model which has the
maximum posteriori probability for a given phase difference
testing sequences:

l̂ = arg max
1≤l≤L

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l) | θθθY (ω, b)

)]

= arg max
1≤l≤L

M−1∑

b=1

log10

Gb
(
θθθY (ω, b) | λλλ(ω, b, l)

)
p
(
λλλ(ω, b, l)

)

p
(
θθθY (ω, b)

) ,

(11)

where θθθY (ω, b) = {θY (1)(ω, b), . . . , θY
(Q)(ω, b)} is a phase

difference testing sequence derived from Y1(ω), . . . ,YM(ω),
and Q denotes the length of the testing sequence. However,
(11) only suits for the speech signals that are emitted from
one of the previously modeled locations. An unexpected
speech signal which is not emitted from one of the modeled
locations or a speech signal combined by the signals from
various modeled locations could trigger the VAD, resulting in
an incorrect detection of the speaker location. Furthermore,
how to find a suitable length of the testing sequence is also an
important issue.

Since conversational speech contains many short pauses,
Potamitis et al. [22] locates multiple speakers by detecting
the direction of individual speaker when the segments are
from one single speaker and other speakers are silent (i.e.,
nonoverlapped speech segments). Based on this concept, this
work proposes a threshold in (12) to determine whether
the segment originates from a modeled location, from an
unmodeled location, or from simultaneously active speak-
ers. Because each location has specific acoustical character-
istics, the threshold at each location can be used to deter-
mine whether it represents the radio broadcasting or speech
signals coming from unmodeled or modeled locations. This
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threshold identifies the segments in which probably only one
speaker in a modeled location is talking, and returns a valid
location detection result.

The lengths of testing sequences and thresholds can be
derived using the estimated parameters of the L GM loca-
tion models. The most suitable length of testing sequences
at location l is denoted as Q̂(l), the threshold at location l
is denoted as ζ(l), and the possible searching range of the
length of the testing sequence is set to [Q−,Q+]. T denotes
the total length of the training phase difference sequence.
θθθX ,Q(ω, b, l, t) = {θX (t)(ω, b, l), . . . , θX

(t+Q−1)(ω, b, l)} is a se-
quence of Q training phase difference vectors, where 1 ≤ t ≤
T −Q + 1. The threshold varies with different length of test-
ing sequences, so Q̂(l) should be determined first. To obtain a
representative threshold for each location, the length of test-
ing sequence is decided first. A suitable length of testing se-
quence should provide a robust characteristic under the GM
location model, and a clear discrimination level between the
location l and the other modeled or unmodeled GM loca-
tions. Consequently, Q̂(l) and ζ(l) can be obtained using the
following criteria:

Q̂(l) = arg max
Q−≤Q≤Q+

{
C(Q)

}
, (12)

where

C(Q) = α
[
P−
(
λλλ(l), θθθX(l),Q

)− P+
(
λλλ(l), θθθX(l),Q

)]

+ β
L∑

i=1
i �=l

I
[
P−
(
λλλ(l), θθθX(l),Q

)− P+
(
λλλ(i), θθθX(l),Q

)]

+ γP−
(
λλλ(l), θθθX(l),Q

)
with α + β + γ = 1

(13)

ζ(l) = P−

(
λλλ(l), θθθX(l), Q̂(l)

)

Q̂(l)
, (14)

where α, β, γ are weights and

I(k) =
⎧
⎨

⎩
k if k ≥ 0,

−∞ if k < 0.
(15)

P+(λλλ(l), θθθX(l),Q) and P−(λλλ(l), θθθX(l),Q) denote the proba-
bility upper bound and lower bound when the length of the
training phase difference sequence is Q. They are derived
from the following equations:

P+
(
λλλ(l), θθθX(l),Q

)

= max
∀t

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l)

) | θθθX ,Q(ω, b, l, t)
]

P−
(
λλλ(l), θθθX(l),Q

)

= min
∀t

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l)

) | θθθX ,Q(ω, b, l, t)
]
,

(16)

where

log10

[
Gb
(
λλλ(ω, b, l) | θθθX ,Q(ω, b, l, t)

)]

= log10

[
Gb
(
θθθX ,Q(ω, b, l, t) | λλλ(ω, b, l)

)
p
(
λλλ(ω, b, l)

)

p
(
θθθX ,Q(ω, b, l, t)

)

]

.

(17)

The term p(λλλ(ω, b, l)) could be eliminated because p(λλλ(ω,
b, l)) is independent to t and the probability p(θθθX ,Q(ω, b,
l, t)) is the same for all t. Therefore, (16) can be rewritten
as

P+
(
λλλ(l), θθθX(l),Q

)

= max
∀t

M−1∑

b=1

Q−1∑

q=0

log10 Gb
(
θX

(t+q)(ω, b, l) | λλλ(ω, b, l)
)
,

P−
(
λλλ(l), θθθX(l),Q

)

= min
∀t

M−1∑

b=1

Q−1∑

q=0

log10 Gb
(
θX

(t+q)(ω, b, l) | λλλ(ω, b, l)
)
.

(18)

The first term of (13) represents the negative maximum
probability variation of the trained model when the length
of the training phase difference sequence is Q. As the value of
this term increases, the corresponding selection of Q yields
a more robust result under the trained GM location model.
The second term of (13) is the sum of the probability dif-
ferences of the location l versus other locations and a larger
value means the corresponding selection of Q has a higher
discrimination level between the location l and the other
trained GM locations. Finally, a high discrimination level be-
tween the location l and other unmodeled locations can be
achieved if the third term of (13) is large. Figure 3 shows the
GM location model training procedure with the total loca-
tion number L.

3.3. Location detection method

The location is detected as

l̂ = arg max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l) | θθθY (ω, b, l)

)]

= arg max
1≤l≤L

M−1∑

b=1

log10

Gb
(
θθθY (ω, b, l) | λλλ(ω, b, l)

)
p
(
λλλ(ω, b, l)

)

Q̂(l)p
(
θθθY (ω, b, l)

)

(19)

if

ζ

(

arg max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l) | θθθY (ω, b, l)

)]
)

≤ max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

log10

[
Gb
(
λλλ(ω, b, l) | θθθY (ω, b, l)

)]
,

(20)
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where θθθY (ω, b, l) = {θY (1)(ω, b), . . . , θY
(Q̂(l))(ω, b)} is a test-

ing sequence derived from Y1(ω), . . . ,YM(ω). If the proba-
bility densities at all locations are equally likely, then p(λλλ(ω,
b, l)) could be chosen as 1/L. The probability p(θθθY (ω, b, l)) is
the same for all location models and then the detection rule
can be rewritten as

l̂ = arg max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

Q̂(l)∑

q=1

log10

[
Gb
(
θY

(q)(ω, b) | λλλ(ω, b, l)
)]

(21)

if

ζ

(

arg max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

Q̂(l)∑

q=1

log10

[
Gb
(
θY

(q)(ω, b) | λλλ(ω, b, l)
)]
)

≤max
1≤l≤L

1

Q̂(l)

M−1∑

b=1

Q̂(l)∑

q=1

log10

[
Gb
(
θY

(q)(ω, b) | λλλ(ω, b, l)
)]
.

(22)

If the value of

max
1≤l≤L

M−1∑

b=1

Q̂(l)∑

q=1

log10

[
Gb
(
θY

(q)(ω, b) | λλλ(ω, b, l)
)]

Q̂(l)
(23)

is not larger than the corresponding threshold, then the seg-
ments may contain speech components that come simultane-
ously from multiple modeled locations or from unmodeled
locations.

4. EXPERIMENTAL RESULTS

The experiment was performed in a minivan with six seats
[34] (L = 6). Figure 4 shows the locations of the six in-car
loudspeakers and the locations that are tested for the exper-
iment. The first six locations correspond to modeled loca-
tions, and the radio broadcasting emits from the six in-car
loudspeakers, locations no. 7, 8, and 9 correspond to unmod-
eled locations. A uniform linear array of six off-the-shelf,
low-cost and noncalibrated microphones with 5 cm spacing

Microphone array

1 7 2

3 8 4

5 9 6

Figure 4: Locations number of the seats.

is mounted in front of location no. 2. Additionally, the dis-
tance between the microphone array and the mouth of the
speaker who sits in location no. 2 is about 0.62 m. In this ex-
periment, locations no. 1 and 2 are in the near-field condi-
tion, and the signals from locations no. 3 and 5 are regarded
as the far-field source according to the definition in [35].
Moreover, locations no. 4 and 6 are under the non-line-of-
sight condition because the direct paths to the microphone
array are sheltered by the speaker at location no. 2. The sam-
pling rate is 8 kHz, and the A/D resolution is 16 bits. The
processing window for calculating phase differences contains
256 zero-padded samples, and 32 milliseconds speech signals
(512 samples in total). All windows are closed during the ex-
periment to protect the microphones from saturation, and
the cabinet temperature was set to 24◦C using the in-car air
conditioner.

Figure 5 depicts the histograms of phase differences from
individual location, and the radio broadcasting between the
third and sixth microphones at the frequency of 921.875 Hz
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(a) Location number 1
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(b) Location number 2
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(c) Location number 3
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(d) Location number 4
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(e) Location number 5
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(f) Location number 6
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(g) Location number 7

�4 �3 �2 �1 0 1 2 3 4
0

5

10

15

20

25

30

35

40

Phase difference (rad)

H
is

to
gr

am

(h) Location number 8
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(i) Location number 9
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(j) Radio broadcasting
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(k) Locations numbers 1 and 2

Figure 5: Various histograms of phase differences.

which is in the third frequency band. The histogram of phase
difference in an overlapped speech segment derived when
two passengers at locations no. 1 and 2 speak simultane-
ously is also shown in Figure 5. These phase differences are

acquired when the environment is quiet. Due to the complex
propagation behavior of speech signal and room acoustics,
the phase difference obtained from a fixed location is a dis-
tribution instead of a fixed value. As shown in Figure 5, these
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Table 2: SNR ranges at various speeds.

SNR ranges (dB)

Speed (km/h) Multiple speakers at locations
no. 1 to 6 (1–5 speakers)

Radio
broadcasting

Single speaker at
location no. 7

Single speaker at
location no. 8

Single speaker at
location no. 9

Speed = 0 km/h 10.81–18.15 dB 13.10 dB 14.96 dB 13.18 dB 17.31 dB

Speed = 20 km/h 5.62–12.96 dB 7.20 dB 10.15 dB 9.37 dB 11.50 dB

Speed = 40 km/h 0.19–7.54 dB 2.18 dB 4.53 dB 2.76 dB 6.89 dB

Speed = 60 km/h −0.54–6.81 dB 1.75 dB 3.81 dB 2.03 dB 5.16 dB

Speed = 80 km/h −5.32–2.02 dB −3.04 dB −0.98 dB −2.76 dB 1.37 dB

Speed = 100 km/h −7.28–0.07 dB −5.99 dB −2.93 dB −4.71 dB −0.58 dB

Table 3: The frequency bands correspond to the microphone pairs.

Frequency band Microphone pairs The number of microphone pairs The range of frequency band

Band 1 (b = 1) (1, 6) J1 = 1 (0 Hz, 680 Hz]

Band 2 (b = 2) (1, 5); (2, 6) J2 = 2 (680 Hz, 850 Hz]

Band 3 (b = 3) (1, 4); (2, 5); (3, 6) J3 = 3 (850 Hz, 1100 Hz]

Band 4 (b = 4) (1, 3); (2, 4); (3, 5); (4, 6) J4 = 4 (1100 Hz, 1700 Hz]

Band 5 (b = 5) (1, 2); (2, 3); (3, 4); (4, 5); (5, 6) J5 = 5 (1700 Hz, 3400 Hz]

phase difference distributions are quite different, as indicated
by several research reports [36, 37]. Even locations no. 2,
4, and 6 which have the same angle to the microphone ar-
ray cannot provide the similar distributions; given why these
locations are distinguishable by pattern matching methods.
Notably, the phase difference distribution from two simulta-
neously speaking passengers at locations no. 1 and 2 is not
similar to the one from location no. 1 or 2, and thus may
lead to a detection error. This phenomenon indicates that a
properly selected threshold for each location can avoid the
detection error caused by unmodeled locations and the over-
lapped speech segments.

The environmental noises are varied as the vehicle runs at
various speeds of 0, 20, 40, 60, 80, and 100 km/h. Table 2 lists
the SNR ranges at various speeds and Table 3 presents the fre-
quency bands that correspond to the pairs of microphones.
The voice activity detection algorithm in [29] is utilized in
this experiment. The total length of the training phase differ-
ence sequence T is set to 300 (3-second duration). The values
of Q−, Q+, α, β, and γ are set to 10, 35, 0.3, 0.4, and 0.3, re-
spectively.

The mixture number of GMM model has six choices, 1,
3, 5, 7, 9, and 11. The trial number for localization detec-
tion is 300 for each mixture number at each speed. For the
condition of a single speaker, Figure 6 plots the average cor-
rect rates versus mixture numbers and indicates that a single
Gaussian distribution, M = 1, could not yield a satisfactory
performance, and that increasing the mixture number im-
proves the performance.

Fifteen possible combinations, such as locations no. 1
and 2, locations no. 1 and 3, exist with two speakers talk-
ing. Three, four, and five speakers talking yield 20, 15, and

6 possible combinations, respectively. Table 4 lists the aver-
age error rates of these conditions with a mixture number of
11. Notably, an error is defined as a detection result that does
not give the location of any of these speakers. For example,
if the speech signals come from locations no. 2 and 3, then
an error occurs when the detection result is neither 2 nor 3.
Table 5 lists the average error rates of radio broadcasting and
the speech signals coming from locations no. 7, 8, and 9 with
a mixture number of 11. The error in the table is defined as
the detection result pointing to one of the modeled locations.
The work in [27] cannot deal with multiple speakers and un-
modeled speech sources because the detection result is deter-
mined as the location with maximum a posteriori probabil-
ity. However, the experimental results in Table 5 indicate that
the method proposed in this work can successfully deal with
these two conditions.

5. CONCLUSION

This work utilizes the distributions of location dependent
features to construct GM location models. The proposed
approach is proved to be suitable for a vehicular environ-
ment which simultaneously contains many practical issues,
such as reverberation, near-filed, far-field, line-of-sight, and
non-line-of-sight conditions. To prevent the detection errors
caused by unmodeled location and multiple speakers’ speech
signal, the proposed approach computes a suitable length
of testing sequence and a corresponding threshold for each
modeled location. Experimental results show that the pro-
posed approach with the suitable length of testing sequences
and thresholds performs well on detecting speaker’s location
and on reducing the average error rates at various SNRs.
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Figure 6: Average correct rates versus the mixture numbers.

Table 4: Average error rates at various speeds under multiple speakers’ conditions.

Speaker
number

Average error rates (%)

Speed = 0 km/h Speed = 20 km/h Speed = 40 km/h Speed = 60 km/h Speed = 80 km/h Speed = 100 km/h

2 0.67% 1.11% 0.44% 0.67% 1.56% 1.78%

3 0.50% 1.00% 0.67% 0.50% 1.17% 1.83%

4 0.89% 0.89% 0.66% 0.44% 1.11% 1.56%

5 0.11% 0.05% 0% 0% 0.05% 0.11%

Table 5: Average error rates of unmodeled locations at various speeds.

Speed (km/h)
Average error rates (%)

Radio broadcasting
Single speaker at
location no. 7

Single speaker at
location no. 8

Single speaker at
location no. 9

Speed = 0 km/h 0.22% 0% 0.06% 0.22%

Speed = 20 km/h 0.28% 0% 0.17% 0%

Speed = 40 km/h 0% 0% 0% 0%

Speed = 60 km/h 0.06% 0% 0% 0.33%

Speed = 80 km/h 0.28% 0.33% 0.33% 0.33%

Speed = 100 km/h 0.33% 0% 0.39% 0.67%
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bio, “Efficient voice activity detection algorithms using long-
term speech information,” Speech Communication, vol. 42,
no. 3-4, pp. 271–287, 2004.

[30] I. Potamitis, “Estimation of speech presence probability in
the field of microphone array,” IEEE Signal Processing Letters,
vol. 11, no. 12, pp. 956–959, 2004.

[31] M. Brandstein and D. Ward, Microphone Arrays: Signal Pro-
cessing Techniques and Applications, chapter 2, Springer, New
York, NY, USA, 2001.

[32] D. A. Reynolds and R. C. Rose, “Robust text-independent
speaker identification using Gaussian mixture speaker mod-
els,” IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 1, pp. 72–83, 1995.

[33] G. Xuan, W. Zhang, and P. Chai, “EM algorithms of Gaussian
mixture model and hidden Markov model,” in Proceedings of
the IEEE International Conference on Image Processing (ICIP
’01), vol. 1, pp. 145–148, Thessaloniki, Greece, October 2001.

[34] Mitsubishi Motors - Savrin (http://www.sym-motor.com.tw/
savrin-1.htm).

[35] J. G. Ryan and R. A. Goubran, “Near-field beamforming for
microphone arrays,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP
’97), vol. 1, pp. 363–366, Munich, Germany, April 1997.

http://www.sym-motor.com.tw/savrin-1.htm
http://www.sym-motor.com.tw/savrin-1.htm


Jwu-Sheng Hu et al. 11

[36] D. D. Vries, E. M. Hulsebos, and J. Bann, “Spatial fluctuations
in measures for spaciousness,” Journal of the Acoustical Society
of America, vol. 110, no. 2, pp. 947–954, 2001.

[37] X. Pelorson, J.-P. Vian, and J.-D. Polack, “On the variability
of room acoustical parameters: reproducibility and statistical
validity,” Applied Acoustics, vol. 37, no. 3, pp. 175–198, 1992.

Jwu-Sheng Hu was born in Taipei, Taiwan,
in 1962. He received the B.S. degree from
the Department of Mechanical Engineer-
ing, National Taiwan University, Taiwan, in
1984, and the M.S. and Ph.D. degrees from
the Department of Mechanical Engineering,
University of California at Berkeley, in 1988
and 1990, respectively. He is currently a Pro-
fessor in the Department of Electrical and
Control Engineering, National Chiao Tung
University, Taiwan, His current research interests include micro-
phone array signal processing, active noise control, embedded sys-
tem design, and robotics.

Chieh-Cheng Cheng was born in 1978.
He received the B.S. and Ph.D. degrees
in electrical and control engineering from
National Chiao Tung University, Taiwan,
in 2000 and 2006, respectively. He is the
Championship of TI DSP Solutions Design
Challenge in 2000 and of the national com-
petition held by Ministry of Education Ad-
visor Office in 2001. His research interests
include sound source localization, micro-
phone array signal processing, adaptive signal processing, pattern
recognition, speech signal processing, and echo and noise cancella-
tions.

Wei-Han Liu was born in Kaohsiung, Tai-
wan, in 1977. He received the B.S. and M.S.
degrees in electrical and control engineering
from National Chiao Tung University, Tai-
wan, in 2000 and 2002, respectively. He is
currently a Ph.D. candidate in Department
of Electrical and Control Engineering at Na-
tional Chiao Tung University, Taiwan. He is
the Championship of TI DSP Solutions De-
sign Challenge in 2000 and of the national
competition held by Ministry of Education Advisor Office in 2001.
He is the winner of the Best Paper Award at IEEE/ASME 2002. His
research interests include sound source localization, microphone
array signal processing, adaptive signal processing, speech signal
processing, and robot localization.


	Introduction
	System architecture and microphone pairs selection
	Overall system architecture
	Frequency band divisions based on a uniform  linear microphone array

	Gaussian mixture location model training procedure and location detection method
	GM location model description
	GM location models training procedure and  parameters estimation
	Expectation step
	Maximization step

	Location detection method

	Experimental results
	Conclusion
	Acknowledgments
	REFERENCES

