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Abstract This paper presents an
efficient caching-based rendering
technique for translucent materials.
The proposed caching scheme,
inspired by the irradiance caching
method, is integrated into a hier-
archical rendering technique for
translucent materials. We propose
a split-disk model to determine the
cache distribution and derive the
subsurface illuminance gradient used
for interpolation by reformulating
the equation of dipole diffusion
approximation as a 3D convolution
process. Our experiments show that
only a few caches are required to

interpolate the entire image, while the
visual difference is negligible. The
speedup could be achieved up to one
order of magnitude.

Keywords Subsurface scattering ·
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1 Introduction

Accurately modeling the behavior of light to produce re-
alistic images is a great challenge in computer graphics.
Over the years, many illumination models have been de-
veloped for realistic image synthesis, trying to describe
the scattering of light from materials. Most of them fo-
cused on developing models using BRDFs (bidirectional
reflectance distribution functions), which assume that light
enters and leaves a material at the same point on the sur-
face. In some cases like metals, this assumption is valid
and results in convincing visual appearances. But when
accounting for translucent materials that exhibit signifi-
cant light transport below the surface, BRDF is not suffi-
cient. Light hitting a translucent material does not merely
bounce from surfaces. Instead, light beams penetrate be-
low the surface, scatter inside the material, and leave
the object at a different point on the surface. This phe-
nomenon is known as subsurface scattering.

Traditionally, subsurface scattering has been approxi-
mated as Lambertian diffuse reflection that makes the final
images look hard and distinctly computer-generated. In
computer graphics, the first model dealing with subsurface
scattering was proposed by Hanrahan and Krueger [6].
They proposed an analytic expression for single scatter-
ing in a homogeneous, uniformly lit slab. Dorsey et al. [4]
later used photon mapping to simulate full subsurface
scattering for the rendering of weathered stones. Pharr and
Hanrahan [13] proposed the idea of nonlinear scattering
equations and demonstrated how the scattering equation
could be used to simulate subsurface scattering more ef-
ficiently than does a traditional Monte Carlo ray tracing.
For highly scattering material, Stam [14] first introduced
the diffusion theory to computer graphics and proposed
a multigrid method to solve a diffusion equation approxi-
mation.

A major breakthrough was recently proposed by Jensen
et al. [10] with an analytic BSSRDF (bidirectional sur-
face scattering reflection distribution function) model for
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subsurface scattering. Based on this model, Jensen and
Buhler [9] dramatically reduced computation time from
several minutes to a few seconds. The BSSRDF model
was then adopted for interactive rendering with mesh-
based objects using various rendering algorithms [1, 3, 7,
8, 11, 12].

Although recent researches have improved the speed
of rendering translucent materials to some extent, none
of them could be easily integrated into existing renderers.
They require either complex rendering algorithms or some
specific data structures. In other words, most of them are
isolated systems for the pure purpose of experiments. The
algorithms used in these rendering systems are not suit-
able for the movie industry, where some specific renderers
must be used and objects are often not mesh-based.

To devise an efficient rendering technique for the film
industry, we investigate the effect of subsurface scattering
and find that it has distinguishing characteristics just as the
effect of indirect lighting in the global illumination. They
both tend to change slowly and require a lot of sample
points to compute. This inspires us to use the classic ir-
radiance caching technique introduced by Ward et al. [17]
as a basis, and to extend it for calculating the subsurface
illuminance. Irradiance caching was originally designed
for accelerating the computation of indirect illumination
in a Monte Carlo ray tracer [16, 17]. It is a method for
caching and reusing irradiance values (via interpolation)
on Lambertian surfaces. The irradiance caching technique
was later extended to accelerate the computation of ambi-
ent occlusion in production [2]. In this paper, we show that
it is feasible to extend the irradiance caching technique to
accelerate the computation of the subsurface illuminance
as well.

2 The dipole diffusion approximation

The dipole diffusion approximation, which approximates
the volumetric source distribution using a dipole (i.e., two
point sources), was originally developed in the medical
physics community. Farrell et al. [5] used a single dipole
to represent the incident source distribution for the non-
invasive determination of tissue optical properties in vivo.
Jensen et al. [10] then introduced the dipole diffusion
approximation to the computer graphics community for
modeling the subsurface light transport.

The dipole diffusion approximation consists of posi-
tioning two point sources near the surface to approximate
an incoming light. One point source, the positive real light
source, is located at a distance zr beneath the surface, and
the other one, the negative virtual light source, is located
above the surface at a distance zv. By using dipole diffu-
sion approximation to solve the diffusion equation, we can
get the following expression for the radiant exitance Mpi
at surface location po due to incident flux Φ(pi) at pi (see

[9] for the details of derivation):

dMpi (po) = dΦ(pi)
α′
4π

[
zr(1+σsr)

e−σsr

s3
r

+zv(1+σsv)
e−σsv

s3
v

]
, (1)

where α′ = σ ′
s/σ

′
t is the reduced albedo; σ ′

s = σs(1 − g)
is the reduced scattering coefficient and g is the mean
cosine of the scattering angle; σ ′

t = σ ′
s +σa is the re-

duced extinction coefficient; σa is the absorption coeffi-
cient; σ = √

3σaσ
′
t is the effective transport coefficient;

sr = √
r2 + z2

r is the distance from po to the positive real
light source; sv = √

r2 + z2
v is the distance from po to the

negative virtual light source; r = ‖po − pi‖ is the distance
from po to pi ; and zr = lu and zv = lu(1 + (4/3)A) are
the distances from the dipole sources to the surface. The
mean-free path lu = 1

σ ′
t

is the average distance at which the
light is scattered. Finally, the boundary condition for mis-
matched interfaces is taken into account by the A term that
is computed as A = (1+ Fdr)/(1− Fdr), where the diffuse
Fresnel term Fdr is rationally approximated from the rela-
tive index of refraction η by [10]:

Fdr(η) = −1.440

η2 + 0.710

η
+0.668+0.0636η.

By using Eq. 1, the subsurface illuminance, which is de-
fined as the light flux per unit area arriving at an inner
surface point within materials via subsurface scattering
from the nearby surfaces, then could be computed as:

S(po) =
∫

pi∈A

dΦ(pi)
α′
4π
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]
dpi

=
∫

pi∈A

Ê(pi)Rd(pi, po)dpi, (2)

where Ê(pi) = Fdt(η)E(pi) and E(pi) is the irradiance
at point pi within the material. The diffuse Fresnel trans-
mittance Fdt(η) is defined as Fdt(η) = 1 − Fdr(η), and
Rd(pi, po) is the diffuse BSSRDF defined as the ratio of
radiant exitance to incident flux [10].

Finally, since the diffusion approximation already in-
cludes a diffuse Fresnel transmittance, the diffuse radiance
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L is computed as:

L(po, ω) = Ft(1/η, ω)

Fdt(η)

S(po)

π
,

where Ft is the Fresnel transmittance.
Alternatively, we could omit the Fresnel terms and as-

sume a diffuse radiance:

L(po, ω) = S(po)

π
. (3)

3 A caching technique for rendering translucent
materials

3.1 Dipole diffusion approximation as a convolution
process

Recall that the subsurface illuminance function (Eq. 2) is

S(po) =
∫

pi∈A

Ê(pi)Rd(pi, po)d pi, (4)

where Ê is the transmitted irradiance function over the
surface and Rd is the diffuse BSSRDF:

Rd(pi, po) = α′

4π

[
zr(1+σsr)

e−σsr

s3
r

+ zv(1+σsv)
e−σsv

s3
v

]
.

In the assumption of semiinfinite plane-parallel medium,
Rd becomes a function of only the distance between pi
and po. By replacing parameter pi and po with the offset
‖pi − po‖ and expressing the vector parameter in terms of
scalar values, we can rewrite Rd as follows:

Rd(pi, po) = Rd(pi,x, pi,y, pi,z, po,x, po,y, po,z)

= Rs(pi,x − po,x, pi,y − po,y, pi,z − po,z),

where

Rs(x, y, z) = α′
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}
.

(5)

Note that Rs is a three-dimensional radial function
with its value decaying exponentially with the distance.

The original equation (Eq. 4) integrates pi over the sur-
face A. It seems that the integration is a two-dimensional
process. But actually the integration is reformed in three-
dimensional space because pi is a three-dimensional
point. So we change the integral domain and rewrite Eq. 4
in a form of three dimensions:

S(px,py, pz)

=
∫∫∫
XYZ

Ê(x, y, z)Rd(x, y, z, px, py, pz)dxdydz.

Then replacing Rd , we get:

S(px, py, pz)

=
∫∫∫
XYZ

Ê(x, y, z)Rs(x − px, y − py, z − pz)dxdydz.

Because Rs(x − px, y − py, z − pz) is a symmetric func-
tion, we can change the sign of the parameter:

S(px, py, pz)

=
∫∫∫
XYZ

Ê(x, y, z)Rs(px − x, py − x, pz − z)dxdydz.

(6)

Obviously, the resultant equation is in the form of a three-
dimensional convolution of two functions. Finally we ar-
rive at:

S = Ê ⊗ Rs,

where ⊗ denotes the operator of convolution.

3.2 Derivation of the subsurface illuminance gradient

Given the subsurface illuminance function (Eq. 4), it is
not clear how to calculate the gradient of the subsurface
illuminance. With the reformulated convolution form in
Eq. 6, the gradient could be derived straightforwardly. Re-
call that the derivative of a convolution function is

d

dx
( f ⊗ g) = d f

dx
⊗ g = f ⊗ dg

dx
.

The gradient of the subsurface illuminance is then derived
as follows:

∇S =
(

∂S

∂x
,
∂S

∂y
,
∂S

∂z

)

=
(

∂

∂x

(
Ê ⊗ Rs

)
,

∂

∂y

(
Ê ⊗ Rs

)
,

∂

∂z

(
Ê ⊗ Rs

))

=
(

∂ Ê

∂x
⊗ Rs,

∂ Ê

∂y
⊗ Rs,

∂ Ê

∂z
⊗ Rs

)
(7)
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or

=
(

Ê ⊗ ∂Rs

∂x
, Ê ⊗ ∂Rs

∂y
, Ê ⊗ ∂Rs

∂z

)
. (8)

As shown in Eqs. 7 and 8, once we get either ∇ Ê or ∇Rs ,
we could calculate the gradient of subsurface illuminance.
Unfortunately, since ∇ Ê does not have an analytic form, it
is infeasible to calculate ∇ Ê in practice. Therefore, in our
implementation, we choose Eq. 8 to calculate the gradient
of subsurface illuminance. To better clarify the following
formulation, we change notation, replacing zr and zv with
hr and hv, respectively. Note that

∂Rs(x, y, z)

∂x
= α′

4π
x
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sr =
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and

sv =
√
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Thus the problem is reduced to the evaluation of the in-
tegrals of convolution. In the case of partial derivative of S
with respect to x, this results in

∂S(px, py, pz)

∂x

=
∫∫∫
XYZ

Ê(x, y, z)
∂Rs(px − x, py − y, pz − z)

∂x
dxdydz.

(9)

Although the integrals still do not have an analytic so-
lution, by exploiting the properties of ∇R (see Fig. 1),
we could use some integration techniques such as Monte
Carlo and quadrature methods to get a good approxima-
tion.

Fig. 1. The graph of ∂Rs/∂x

3.3 Applying the gradient to interpolation

Once we calculate the gradient of subsurface illuminance,
we could use the gradient to interpolate the subsurface
illuminance more accurately. We use the same weighted
average as proposed in [16] to interpolate the subsurface
illuminance value:

S(p) =
∑

k∈C wk(p)[Sk + (p− pk) ·∇Sk]∑
k∈C wk(p)

, (10)

where p is the position of the point to be computed; pk
is the position of cache k; wk(p) is the weight of cache
k with respect to p; C is the set of valid caches such
that {cache k : wk(p) > 1/a}; Sk is the computed subsur-
face illuminance of cache k; ∇Sk is the computed gradient
of subsurface illuminance of cache k; and a is a user-
specified error bound.

The next problem is how to determine the spacing of
samples, i.e., how to determine the weight of each sample
or how to estimate the error of each sample. The simplest
and theoretically most accurate solution is directly using
the inner product of the offset (p − pk) and ∇Sk derived
in last section as our error estimate of cache k (assuming
that the error due to interpolation is proportional to the es-
timated directional change rate of subsurface illuminance
from pk to p), i.e.,

ε ∝ S′
p = lim

h→0

∆S

h

= ∆px
∂S

∂x
+∆py

∂S

∂y
+∆pz

∂S

∂z
= ∆p ·∇S,

where S′
p is the directional derivative of S in direction p.

Unfortunately, this will lead to bias in the calcula-
tion. Since the gradient is a very local property, areas that
just happen to have small subsurface illuminance gradi-
ents would be sampled at low density, even though there



An efficient caching-based rendering of translucent materials 63

Fig. 2. The split-disk model. A surface element is located at the
center of a half-dark disk

could still be sudden changes in the subsurface illumi-
nance value due to nearby surfaces. A possible solution
is to use some approximation models to capture the larg-
est expected gradient in determining the sample density so
that we do not miss anything relevant.

To estimate the largest expected gradient, we introduce
a split-disk model analogous to the split-sphere model pro-
posed by Ward et al. [17]. The split-disk model, based on
the assumption that the geometry is locally flat, relates the
subsurface illuminance gradient to the variance V of the
irradiance values within nearby surfaces. It assumes that
a surface element is located at the center of a disk that ap-
proximates nearby surfaces (see Fig. 2). The radius of the
disk, R, is heuristically determined according to the ma-
terial scattering property. Half of the disk is totally bright
with constant irradiance E and the other half is totally dark
with constant irradiance of zero. Because the variance of
the irradiance values within the disk is V , we can con-
clude that E = 2V . The split disk has the largest expected
gradient possible for surfaces with variance V .

An approximate bound to the change rate of subsurface
illuminance in the split disk, ε, is just given by the first
order Taylor expansion of the function S of one variable:

ε(u) ≤
∣∣∣∣(u −uo)

∂S

∂u

∣∣∣∣ ,
where uo is the center of the disk and u is some other
point on the disk. Note uo and u are both one-dimensional
values because we only care about the distance between
two points. To derive

∂S

∂u
= lim

h→0

S(u +h)− S(u)

h

= lim
h→0

∆S

h
,

we firstly consider a surface element moving from uo to
u, the change of S could be computed as twice an integral

over sector of circle A plus an integral over right triangle
B (see Fig. 2):

∆S = 2(∆SA +∆SB),

where

∆SA =
θR∫

0

R∫
0

E(r)Rd(r)rdrdθ

and

∆SB = 1

2

√
R2−∆u2∫
0

∆u∫
0

E(x, y)Rd(

√
x2 + y2)dxdy.

Unfortunately, we cannot find an analytic solution of the
integral describing subsurface scattering over right trian-
gle ∆SB. Inspired by [12], where Mertens et al. derive
a semianalytic integration method to solve the integral de-
scribing subsurface scattering over an arbitrary triangle,
we can approximate ∆S by an integral over four sectors of
a circle:

∆S ≈ 4∆SA.

The derivation of ∆S is as follows:

∆S ≈ 2V
α′

π
arcsin

(
∆u

R

)(
e−σzr − zr

Rr
e−σRr

+ e−σzv − zv

Rv

e−σRv

)
,

where Rr = √
R2 + z2

r and Rv = √
R2 + z2

v. Since ∂S
∂u =

limh→0(
∆S
h ), we get

∂S

∂u
≈ V

2α′
πR

(
e−σzr − zr

Rr
e−σRr + e−σzv − zv

Rv

e−σRv

)
.

And the error estimate εk(p) of cache k with respect to p
can be computed as

εk(p) = |p− pk|Vk
2α′

πR

×
(

e−σzr − zr

Rr
e−σRr + e−σzv − zv

Rv

e−σRv

)
,

where Vk is the variance of irradiance values within the
disk of cache k. As in [17], the inverse of the error estimate

wk(p) = 1

εk(p)

= 1

|p− pk|Vk
2α′
πR (e−σzr − zr

Rr
e−σRr + e−σzv − zv

Rv
e−σRv )

(11)



64 S.-L. Keng et al.

is then used as our weight. Substituting Eq. 11 into Eq. 10,
the subsurface illuminance of some point of interest then
can be computed by interpolating nearby caches.

3.4 A three-pass technique for rendering translucent
materials

To integrate our model into Jensen’s hierarchical evalua-
tion method [9] , we use a three-pass approach, in which
the first pass consists of computing the irradiance at se-
lected points on the surface, the second pass generates all
the necessary cache samples, whose values including sub-
surface illuminance, gradient of subsurface illuminance,
and variance of irradiance over nearby surface, are com-
puted by using the precomputed irradiance values, and the
last pass reuses the caches to produce the final image via
interpolation.

Note that the second pass in our three-pass approach
only generates caches. It does not use caches to interpo-
late any value. The interpolation using caches is done in
the third pass.

Pass 1: Sampling the irradiance

To solve Eq. 4, firstly, we need to sample the irradiance
function E(x). There are a number of methods to gen-
erate sampling positions on the surface. In [9], Turk’s
point repulsion algorithm [15] is used to obtain a uni-
form sampling of points on a polygon mesh. However,
a uniform sampling seems irrelevant in their hierarchical
approach as each sample point is weighted by the area
associated with it. Instead of using the Turk’s point re-
pulsion algorithm, which is hard to implement, we use
a very simple method to obtain the sampling positions on
the polygon mesh. We directly use the centroid of each
face as our sample point and assign the area of the face
as the area associated with this sample point. If a model
is too coarse and results in low-frequency noise in the
final image, we subdivide the model until the noise disap-
pears.

For each sample point, we store the position, the area
associated with the point, and a computed irradiance es-
timate. Since we focus on a caching technique in this
paper, we do not use any rendering technique that ac-
counts for global illumination (such as photon mapping
and distributed ray racing) to compute the irradiance. We
simply sum up irradiance contributions from each light
source for evaluating direct illumination on each sample
point.

As stated in [9], these irradiance samples should be
stored in a hierarchical structure so that by clustering dis-
tant samples, we can exploit the exponentially shaped fall-
off property of Rd . Here we choose an octree as proposed
by Jensen et al. [10] in our implementation. Each octree
node contains the average position, the average irradiance,
and the total areas of its subnodes.

Pass 2: Generating necessary caches

Before we state when and where all the necessary caches
should be generated, we present how to compute the
values stored in each cache. The values we stored in each
cache are subsurface illuminance S, gradient of subsurface
illuminance ∇S, and variance V of irradiance over nearby
surfaces. All these values are computed by using the pre-
computed irradiance values (distributed in Pass 1) stored
in a hierarchical structure.

The subsurface illuminance S is computed using the
rapid hierarchical integration technique proposed by [9].
As for evaluating the gradient of subsurface illuminance
∇S, ideally, we should devise some integration technique
exploiting the properties of ∇Rs (Fig. 1) to solve Eq. 9;
and the integration technique has to be evaluated very fast,
or the cost for computing the gradient will cancel out the
gain from the interpolation. Fortunately, directly using the
hierarchical integration technique proposed by [9] yields
reasonable results and the variance V can be evaluated at
the same time.

To determine when and where all the necessary caches
should be generated, we firstly use ray casting to find a set
of visible points X. For each point xi in X, we check
if there is a previously computed cache at a nearby sur-
face that could be used for interpolation, i.e., any cache
k with wk(xi) > 1/a. If any, we leave xi to next pass;
otherwise, we generate a new cache at point xi , evaluate
S(xi), ∇S(xi), and V associated with the cache. Checking
each point xi in X in a different order such as bottom-
up, top-down, and random scan-line order can change the
distribution of caches; but the visual difference of inter-
polated images using these resulting cache distributions
would be negligible. Here we choose the bottom-up scan-
line order in our implementation.

As stated in [17], each previously computed cache is
only valid for interpolation in some finite space. A hier-
archical structure is required for efficiently searching
nearby valid caches. Here we use the same data structure
as proposed by [17], an octree, to store the caches.

Pass 3: Reusing caches to interpolate the image

After we generate all the necessary caches, we use Eq. 10
to calculate the subsurface illuminance of each point xi in
X (which is a set of visible points computed by ray cast-
ing) via interpolation. Finally, the radiance of each point xi
is obtained using Eq. 3.

3.5 Discussion

In Ward’s original paper [17], though the split-sphere
model is only a crude estimate of the gradient magnitude,
generating cache and reusing cache were proposed to be
done in a single pass. This results in some rather disturb-
ing artifacts due to inaccurate interpolation and extrapola-
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Fig. 3. Inaccurate interpolation due to a single-pass scan-line ren-
dering

tion. Figure 3 shows an example of inaccurate interpola-
tion.

In single-pass scan-line rendering (assuming in bottom-
up scan-line order), the four points P, C1, C2, and C3 are
examined in the order of C1, P, C2, and C3. Assuming that
we generate C1, C2, and C3 as caches; and P is within
their valid domains, we can find that when we examine
point P, cache C2 and C3 have not yet been generated,
thus using only one cache C1 to interpolate point P. If
we use two pass, i.e., the first pass generates the cache
C1, C2, and C3, then the second pass interpolates P using
these three caches. That way would result in more accurate
interpolation.

Fig. 4. a Two-pass approach.
b One-pass approach

To solve this problem, Ward then proposed irradiance
gradient [16], which computes actual irradiance gradients,
not just a directionless upper bound, to make the interpo-
lation and extrapolation significantly more accurate, thus
avoiding separating generating cache and reusing cache
into two passes. However, in our translucent caching tech-
nique, although we have successfully computed the gra-
dient of subsurface illuminance, we still need a two-pass
calculation to get an acceptable image. This is mainly due
to the fact that subsurface illuminance gradient is much
greater than the irradiance gradient. Figure 4 compares
images rendered in one-pass and two-pass approaches.

Instead of the split-disk model, we could use other
approaches to determine the cache distribution. One alter-
native is applying a filter to ∇R, i.e., convolving ∇R with
some filter function G (e.g., Gaussian function):

Fx = ∂Rs(x, y, z)

∂x
⊗ G,

Fy = ∂Rs(x, y, z)

∂y
⊗ G,

Fz = ∂Rs(x, y, z)

∂z
⊗ G.

Then by using the resultant functions, we can derive the
average subsurface illuminance gradient:

∇S∗ = (Ê ⊗ Fx, Ê ⊗ Fy, Ê ⊗ Fz).

This approach has advantages of capturing the average
subsurface illuminance gradient more accurately and com-
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puting by using the same hierarchical integration tech-
nique for S and ∇S. Unfortunately, we did not find any
filter function that could produce analytic solutions of
function F. Thus we leave it as our future work.

4 Results

In this section we present several results from our im-
plementation of the rendering technique. All the images
are rendered by a Monte Carlo ray tracer at the resolution
of 1024×1024 pixels. Our timings are recorded on a PC
with an AMD Athlon XP 1800+ (1.53 GHz) processor
and 512 MB main memory.

To validate our algorithm, we have implemented Jen-
sen’s hierarchical rendering technique [9] and compared
the images generated by Jensen’s hierarchical rendering
technique with ours using four different models. Figures 5
and 6 demonstrate the visual comparisons of the rendered
images of Dragon with material Skimmilk and Buddha
with material Marble [10]. Our approach gives almost the
same visual appearance while achieving about one order
of magnitude speedup.

Table 1 illustrates the performance and timing statis-
tics of our approach with different models. The first row
(No. irr. samples) is the number of samples for sampling
irradiance; second row (No. caches) is the number of total
caches; third row (No. hit pixels) is the number of total
hit pixels; Ratio is the ratio of number of caches to num-
ber hit pixels; RMS is the root-mean-square error with

Fig. 5a,b. Visual comparison
of model Dragon with mate-
rial Skimmilk. a Image with
Jensen’s hierachical rendering
technique. b Image with the
proposed method

Model Buddha Dragon Igea Teapot

No. irr. samples 293 232 202 520 268 686 261 632
No. caches 7698 9454 11 654 7646

No. hit pixels 342 601 446 151 491 830 315 883
Ratio 2.25% 2.12% 2.37% 2.42%
RMS 0.0068 0.0061 0.0046 0.0049

T1 (sec.) 25.80 30.86 35.80 16.75
T2 (sec.) 2.34 2.70 2.91 1.88
Speedup 11.03 11.43 12.30 8.91

Table 1. Overview of performance with different models

respect to the averaged RGB value of each pixel; T1 and
T2 are the rendering times used in Jensen’s approach and
ours, respectively. The time for sampling the irradiance
and computing the specular term is not taken into account.
Note the ratio of total caches to total hit pixels is about
2%. Almost 98% pixels could be calculated via interpola-
tion. While we only use such small amounts of caches, we
still get very good visual appearances with RMS smaller
than 0.01. The speedup ratio is dependent on the average
cost for computing subsurface illuminance of each cache.
The more the computation of subsurface illuminance costs
(e.g., for better image quality), the higher speedup we get.
Typically, it varies from 5 to 15.

Figures 8 and 9 shows the distribution of the caches,
the visualization of the subsurface illuminance gradient,
and the visualization of the variance V of irradiance with
model Dragon and model Igea. The world coordinate
of the gradient is mapped to the RGB channel in the
image. The brightness of a pixel corresponds to the magni-
tude of the gradient. Figure 7a shows examples of Teapot
with material Marble and Fig. 7b shows Igea with mate-
rial Skin1 [10] generated by our proposed rendering tech-
nique.

5 Conclusion

We present an efficient caching technique for rendering
translucent materials. Our approach is efficient for pro-
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Fig. 6a,b. Visual comparison of
model Buddha with material
Marble. a Image with Jensen’s
hierachical rendering technique.
b Image with the proposed
method

Fig. 7. a Teapot with material
Marble. b Igea with material
Skin1

ducing high-quality images with high resolution and is
particularly useful in animations. It also integrates seam-
lessly with Monte Carlo ray tracing, scan-line rendering,
and global illumination methods. Our results demonstrate
that speedup could be achieved up to one order of mag-

nitude compared to the hierarchical rendering technique
proposed by Jensen and Buhler [9] with negligible visual
difference in the final images. The success of our approach
is mainly due to the caching technique using the gradient
of subsurface illuminance.
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Fig. 8a–c. Visualization of cache
distribution, subsurface illu-
minance gradient, and vari-
ance of irradiance with model
Dragon. a Cache distribution.
b Subsurface illumination gra-
dient. c Variance of irradiance

Fig. 9a–c. Visualization of cache
distribution, subsurface illu-
minance gradient, and vari-
ance of irradiance with model
Igea. a Cache distribution.
b Subsurface illumination gra-
dient. c Variance of irradiance

Further improvements include exploring more com-
plex models to determine the cache distribution and
devising a reasonable model to determine the radius
of split-disk and the upper bound of valid domain of
each cache, which are set heuristically in our imple-

mentation. Finally, it would also be useful to investi-
gate the accuracy of the dipole diffusion approxima-
tion in the presence of complex geometries and to
find the solution methods for the heterogeneous materi-
als.
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