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Enumerating Consecutive and Nested Partitions for Graphs

F. K. HWANG AND G. J. CHANG†

Consecutive and nested partitions have been extensively studied in the set-partition problem as tools
with which to search efficiently for an optimal partition. We extend the study of consecutive and
nested partitions on a set of integers to the vertex-set of a graph. A subset of vertices is considered
consecutive if the subgraph induced by the subset is connected. In this sense the partition problem on
a set of integers can be treated as a special case when the graph is a line. In this paper we give the
number of consecutive and nested partitions when the graph is a cycle. We also give a partial order
on general graphs with respect to these numbers.

c© 1998 Academic Press Limited

1. INTRODUCTION

Many problems in operations research can be formulated to find the optimal partition of a set
Sn = {1, . . . ,n} into either p unordered parts (called a p-partition) or an arbitrary number of
ordered parts (called an open partition). However, the exponential number of such partitions
prevents an efficient search for an optimal partition. The usual strategy is to prove the existence
of an optimal partition in a small class of partitions. The three classes which have received the
most attention in the literature [1–5,8,10] are the consecutive class, the order-consecutive class
and the nested class. A partition is consecutive if each part consists of numbers consecutive in
Sn. A partition is order-consecutive if the parts can be labeled π1, . . . , πp such that

⋃k
i=1 πi

is a set of consecutive integers for each k = 1, . . . , p. A part A is said to penetrate a part B,
written A→ B, if there exist a ∈ A and b,b′ ∈ B such that b < a < b′. A partition is nested
(also called noncrossed ) if the digraph whose nodes are parts of the partition and whose links
are defined by the penetration relation is acyclic. It is easily seen that a consecutive partition
is also order-consecutive, and an order-consecutive partition is nested. But the following
examples show the converse is not true.

EXAMPLE 1. π1 = {2}, π2 = {1, 3} is order-consecutive but not consecutive.

EXAMPLE 2. π1 = {2}, π2 = {4}, π3 = {1, 3, 5} is nested but not order-consecutive.

Hwang and Mallows [9] enumerated consecutive partitions, order-consecutive partitions and
nested partitions for Sn.

The optimal partition problem has been extended [6] from the set Sn to a connected graph
Gn(V, E) with n vertices. A subset S⊆ V is called consecutive if the subgraph induced by S
is connected. Thus the definitions of consecutiveness and order-consecutiveness easily extend
from Sn to Gn. A part A is said to penetrate another part B if every connected subgraph
containing A contains a vertex of B. A partition of V into V1, . . . ,Vp is called nested if the
digraph whose nodes are the parts Vi and whose links are defined by the penetration relation
is acyclic.

Let Nc(Gn, p) and Nc(Gn) denote the number of p-partitions and open-partitions in the
class c, where c is consecutive (C), order-consecutive (OC), or nested (N). When Gn is the
complete graph Kn, then the three classes are all equal to the set of all partitions of n elements.
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Namely,

NC(Kn, p) = NOC(Kn, p) = NN(Kn, p)

= N(n, p) ≡ 1

p!

p−1∑
k=0

(−1)k
(

p

k

)
(p− k)n (the Bell number),

and

NC(Kn) = NOC(Kn) = NN(Kn) =
n∑

p=1

N(n, p).

When Gn is the line Ln, then the problem is equivalent to the Sn problem. Hwang and
Mallow [9] gave

NC(Ln, p) =
(

n− 1

p− 1

)
, NC(Ln) = 2n−1,

NN(Ln, p) = 1

n

(
n

p− 1

)(
n

p

)
, NN(Ln) = 1

n+ 1

(
2n

n

)
(the Catalan number),

NOC(Ln, p) =
p−1∑
j=1

(
n− 1

2p− j − 2

)(
2p− j − 2

j

)
, NOC(Ln, p) =

n∑
p=1

NOC(Ln, p).

It should be noted that NN(Ln, p) was first given by Narayama [12] in a partition problem
with application to probability. Later, it was mentioned in Riordian’s book [13] as a number
obtained by Runyon in a telephone traffic problem. Later, it was also derived by Kreweras [11]
in a cycle-partition problem and by Dershowitz and Zaks [7] in a tree-enumeration problem.

In this paper we determine these numbers when Gn is the cycle Cn. We also study these
numbers for other graphs. In particular, we give a partial order on general graphs with respect
to these numbers.

2. THE NUMBER OF NONINTERSECTING DIAGONALS

To determine NOC(Cn), we need first to solve an auxiliary problem. Let f (g,d) denote the
number of ways to choose d nonintersecting (not even sharing a vertex) diagonals in a g-gon.
Let f ∗(g,d) denote the same except that a fixed vertex of the g-gon is avoided.

LEMMA 1.

f ∗(g,d)
f (g,d)

= g− 2d

g
.

PROOF. Let v be a vertex of the g-gon. Suppose that there are x sets of d nonintersecting
diagonals involving v. Then the g vertices are involved with gx sets of d nonintersecting
diagonals. But each such set involves 2d vertices, hence each set is counted 2d times. Thus

f (g,d) = gx/2d.

It follows

f ∗(g,d) = f (g,d)− x = f (g, x)− 2d f (g, x)/g

= (g− 2d) f (g,d)/g.

2

We now give the recursive equations of f (g,d).
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LEMMA 2. f (g,d) = 0 for d < 0 or g < 2d + 2,

f (g,d) = g

g− 2d
f (g− 1,d)+ g

g− 2
f (g− 2,d − 1) for g ≥ 2d + 2 ≥ 2.

PROOF. Let v be the vertex avoided in counting f ∗(g,d), and let u and w be the two
vertices adjacent to v on the g-gon, f ∗(g,d) is the sum of two types of choice: those not
using the diagonal (u, w) and those using it. The number of the first type is f (g−1,d), since
all diagonals must come from the (g− 1)-gon which is obtained from the g-gon by deleting
v. For any choice of the second type, we can again consider the (g− 1)-gon except that d− 1
more diagonals are needed since (u, w) is chosen. Furthermore, no diagonal involving u or w
can be chosen to avoid intersection with (u, w). Consider the (g− 2)-gon obtained from this
(g− 1)-gon by shrinking the side (u, w). Let z denote the new vertex born from the merging
of u and w. Then the requirement that no diagonal can involve either u or w is transformed
into the requirement that no diagonal can involve z. Therefore f ∗(g− 2,d− 1) is the number
of such choices. To summarize, we have

f ∗(g,d) = f (g− 1,d)+ f ∗(g− 2,d − 1).

Lemma 2 now follows immediately from Lemma 1. 2

THEOREM 3.

f (g,d) =
(

g− d

d

)(
g− d − 2

d

)
g

(d + 1)(g− d)
for g > d ≥ 0.

PROOF. While it is difficult to obtain a closed-form solution of f (g,d) from the recursive
equations of Lemma 2, once a solution is available, it can be inserted into the recursive
equations for a straightforward verification. The formula is easily checked to be correct for
f (g, 0) = 1 and f (g, g− 1) = 0. For g− 1 > d ≥ 1,

f (g,d) = g

g− 2d
f (g− 1,d)+ g

g− 2
f (g− 2,d − 1)

= g

g− 2d

(
g− d − 1

d

)(
g− d − 3

d

)
g− 1

(d + 1)(g− d − 1)

+ g

g− 2

(
g− d − 1

d − 1

)(
g− d − 3

d − 1

)
g− 2

d(g− d − 1)

= g(g− 2d − 2)

(g− d)(g− d − 2)

(
g− d

d

)(
g− d − 2

d

)
g− 1

(d + 1)(g− d − 1)

+ gd

(g− d)(g− d − 2)

(
g− d

d

)(
g− d − 2

d

)
1

g− d − 1

= g

(g− d)(g− d − 1)(g− d − 2)

(
g− d

d

)(
g− d − 2

d

)
×
[
(g− 2d − 2)(g− 1)

d + 1
+ d

]
= g

(g− d)(g− d − 1)(g− d − 2)

(
g− d

d

)(
g− d − 2

d

)
×g2 − (2d + 3)g+ (d + 1)(d + 2)

d + 1

=
(

g− d

d

)(
g− d − 2

d

)
g

(d + 1)(g− d)
.

2
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3. THE CYCLE NUMBERS

The numbers of consecutive partitions and nested partitions are rather easy to obtain.

THEOREM 4. NC(Cn, p) = (n
p

)
for p ≥ 2.

PROOF. There exists a one-to-one mapping between the set of consecutive p-partitions and
the set of choices of p edges (deleting the edges chosen partitions the vertices into p connected
components). 2

COROLLARY 5. NC(Cn) = 2n − n.

THEOREM 6. NN(Cn, p) = NN(Ln, p) = 1
n

( n
p−1

)(n
p

)
.

PROOF. There exists a one-to-one mapping between the set of nested p-partitions of Ln and
the corresponding set of Cn (the mapping is by bending the line into a cycle). 2

COROLLARY 7. NN(Cn) = NN(Ln) = 1
n+1

(2n
n

)
.

THEOREM 8. NOC(Cn, p) = n
p(p−1)

∑
i≥0

( n−1
p+i−1

)(p
i

)(p−1
i+1

)
for p ≥ 2.

PROOF. An order-consecutive p-partition can be obtained by first partitioning the vertices
into p+i , i ≥ 0, consecutive parts, and then choosing i pairs from the p+i parts and combining
each such pair into one final part. These pairs must satisfy the following conditions:

(1) The two parts in a pair are nonadjacent.
(2) Consider any two pairs with parts (a,b) and (c,d). Then the relative positions of

a,b, c,d on the cycle cannot be a, c,b,d or a,d,b, c (it does not matter whether the
cycle is clockwise or counter-clockwise).

The reason for condition (1) is that we want to add up the p-partitions generated from an
initial choice of p+ i parts over i . Combining two adjacent parts into a pair reduces an initial
choice of p+ i parts to a choice of p+ i − 1 parts. The reason for condition (2) is to preserve
the order-consecutiveness.

Viewing the p+i parts on the cycle as the vertices of a (p+i )-gon preserving their adjacency
relation on the cycle, then the number of ways of choosing i pairs satisfying conditions (1)
and (2) is simply f (p+ i, i ). Therefore

NOC(Cn, p) =
∑
i≥0

(
n

p+ i

)
f (p+ i, i ) =

∑
i≥0

(
n

p+ i

)(
p

i

)(
p− 2

i

)
p+ i

(i + 1)p

= n

p(p− 1)

∑
i≥0

(
n− 1

p+ i − 1

)(
p

i

)(
p− 1

i + 1

)
.

2

COROLLARY 9. NOC(Cn) = 1+∑n
p=2

n
p(p−1)

∑
i≥0

( n−1
p+i−1

)(p
i

)(p−1
i+1

)
.

From Theorems 4, 6 and 8, NC(Cn, p), NN(Cn, p) and NOC(Cn, p) are all polynomial in n
for fixed p, while without these restrictions, N(Cn, p) = N(n, p) is exponential in n (the
Bell number). Therefore, if we know that there exists an optimal consecutive (or nested or
order-consecutive) partition under a certain objective function, then there exists an efficient
algorithm to search for an optimal partition.

A partition problem involving Cn arises in the following context. Barnes et al [2] considered
a partition problem of points in a d-dimensional space. They showed that for certain objective
functions, there exists an optimal partition such that the conic hulls (issued from the origin) of
the points in a part are all disjoint. For d = 2, the points (as vectors) can be cyclically ordered
by the angles of the vectors. Thus there exists an optimal consecutive partition of vertices
on Cn.



Enumerating consecutive and nested partitions for graphs 67

4. OTHER GRAPHS

Let Tn denote a tree with n vertices. Then

THEOREM 10. NC(Tn, p) = (n−1
p−1

)
.

PROOF. There exists a one-to-one mapping between the set of p-partitions on Tn and the
set of choices of p− 1 edges. 2

COROLLARY 11. NC(Tn) = 2n−1.

Let Un(m) denote a connected graph with n vertices and a unique cycle of size m, i.e., Un

is a tree plus an additional edge.

THEOREM 12. NC(Un(m), p) = (n
p

)− (m− 1)
(n−m

p−1

)− (n−m
p

)
for p ≥ 2.

PROOF. Any cutting at p− 1 edges not in the cycle or at p edges including at least two in
the cycle induces a p-partition. There are

(n−m
p−1

)
of the first type and

(n
p

) − (n−m
p

) −m
(n−m

p−1

)
of the second type. 2

COROLLARY 13. NC(Un(m)) = 2n −m2n−m.

Let Sn denote a star with n vertices.

THEOREM 14. NN(Sn, p) = NOC(Sn, p) = N(n, p).

PROOF. Any p-partition is an order-consecutive partition, hence a nested partition, by la-
beling the part containing the center of the star π1. 2

COROLLARY 15. NN(Sn) = NOC(Sn) =
∑n

p=1 N(n, p).

We do not have explicit formulas for the nested and order-consecutive classes, which are
likely to depend on some graph parameters. But we will give two partial orders on Gn and
use them to obtain bounds.

THEOREM 16. If G′n is obtained from Gn by adding an edge, then Nc(G′n, p) ≥ Nc(Gn, p)
for c ∈ {C, N,OC}.

PROOF. Clearly, any c partitions on Gn is also a c partition on G′n. 2

THEOREM 17. Let Gn be a graph which contains a vertex v1 of degree at least three and with
two linear branches, say, `1 and `2 (both including v1). Let G′n be a graph obtained from Gn

by combining `1 and `2 into one linear branch, say, `, at v1. Then

NN(Gn, p) ≥ NN(G
′
n, p)

and
NOC(Gn, p) ≥ NOC(G

′
n, p).

PROOF. Let P′ denote a nested partition on G′n. Suppose that ` consists of the sequence
of vertices v1, . . . , vm. Let P be a partition on Gn obtained from P′ by distributing the parts
assigned to ` to `1 ∪ `2. We will actually give a one-to-one mapping between the vertices in `
and those in `1 ∪ `2, with the understanding that the corresponding vertices are assigned the
same part. Let R denote the rest of Gn, i.e., R= Gn \ ` = G′n \ {`1 ∪ `2}. Then the mapping
is shown in Figure 1.

Suppose that P is not nested. Call a sequence of four vertices (a,b, c,d) a pairwise violation
if a and c belong to one part of P while b and d belong to another part. Then one of the
following two events must happen:
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vm

vk vm

v2 vk+1

v1

vk

v2

v1

R R

FIGURE 1. The mapping between ` and `1 ∪ `2.

(1) P does not contain a pairwise violation; but for w > 3 there exists a cycle pw of
penetrations i1 → i2, i2 → i3, . . . , iw−1 → iw, iw → iw+1 = i1.

(2) P contains a pairwise violation.

We consider case 1 first. Note that at least one of the pw penetrations is new, i.e. it does
not exist in P′. Without loss of generality, assume that it is i1 → i2. Then `1 must contain
two elements x1 and x2, x2 succeeding x1, and `2 an element y2 such that x2 and y2 are in i2
and x1 in i1. Since i3 6→ i2 (or pairwise violation occurs), i3 cannot have an element on `2
preceding y2. Thus y2 must be succeeded by an element y3 of i3 on `2, for otherwise i2 → i3
on `1 ∪ R implies i2 → i3 and i3 → i2 on ` ∪ R. Similarly, i j → i j+1 implies i j+1 has
an element yj+1 succeeding an element yj of i j on `2, and i j+1 has an element zj+1 on R.
In particular, this implies that i1 has an element y1 on `2 succeeding yw, hence succeeding
yw−1, . . . , y2. But then we have i1 → i2 and i2 → i1, contradicting the assumption that P
has no pairwise violation.

Next we consider case 2. Note that the ordering of vertices in `1 ∪ R and `2 ∪ R is the
same as in ` ∪ R. Therefore, if P is not nested, there must exist four vertices, two belonging
to part i , and two to part j , whose order in ` induces the order (i, j, j, i ) of parts, but whose
order in `′ = (vk, vk−1, . . . , v1, vk+1, . . . , vm) induces the order ( j, i, j, i ). Counting v1 as a
vertex of `1, then two of the four vertices must be in `1 and two in `2 (or the ordering in `
and `′ would not be different). Furthermore, if v1 is one of the four vertices (so v1 belongs
to part i ), then R cannot have any vertex with part j ; and if v1 is not, then R cannot have a
pair of vertices with parts (i, j ). (It is easily verified that otherwise P′ would not be nested.)
By interchanging parts i and j of the two involved vertices in `2, the four vertices now have
the nested order in `′ but not in `.

After making the above interchange, `′ may still not be nested because there may exist other
sets of four nonnested vertices. But an extension of the above scheme can handle that. First
assume that each of the four involved vertices really represents a group of vertices all having
the same part. Because of the nestedness of `, the spans of these groups over ` are disjoint.
By interchanging the parts i and j over all vertices in `, the nonnestedness caused by i and j
is eliminated (this interchange does not preserve the size of a part).

It there are more than two parts involved in nonnestedness, then these parts can be ordered
according to their nested order in `, namely, the span of a later part is not covered by the span
of an earlier part. Reversing their ordering in `2 will result in a nested partition on Gn.

To summarize, for every nested partition P′ which induces a nonnested partition P, we find
a nested partition Q which is induced by a nonnested partition Q′. Thus the number of nested
partitions of Gn is at least as numerous as that of G′n.

A similar scheme works for order-consecutiveness. Suppose that parts are labeled accord-
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ing to their order in the order-consecutive sequence. It is easily verified that the only time
P becomes not order-consecutive is when part 1 appears both at the end of `1 and the be-
ginning of `2. Let v1 have part i and the end vertex of `2 part j . Then the ordering of
parts in `′ is (1, 2, . . . , i, 1, 2, . . . , j ). Reverse the order of `1. Then the new order of
`′(i, . . . , 2, 1, 1, 2, . . . , j ) is order-consecutive. Since `1 and R can have at most one part in
common, i.e. part i , the reverse operation preserves the order-consecutiveness in `1 ∪ R. 2

We now give a lower bound.

THEOREM 18. Nc(Gn, p) ≥ Nc(Ln, p) for c ∈ {C, N,OC}.
PROOF. If Gn = Cn, then Theorem 18 follows from Theorem 16. If Gn 6= Cn or Tn,

then Gn can be reduced to Tn by deleting edges,

NC(Gn, p) ≥ NC(Tn, p) = NC(Ln, p)

by Theorems 16 and 10. We also have

Nc(Gn, p) ≥ Nc(Tn, p) for some Tn, c ∈ {N,OC}.
If Tn 6= Ln, then there exists a vertex v of degree at least three and with two linear branches.

Combine the two linear branches to obtain a tree T ′n. Define D(Gn) to be the sum of degrees
over all vertices with degree at least three. Then D(Tn) > D(T ′n). Since D(Gn) ≥ 2n− 2 for
any graph Gn with n vertices, and the equality holds if and only if Gn = Ln. If T ′n 6= Ln, do
the same. Eventually we obtain Ln. By Theorem 12, the number of nested or order-consecutive
partitions is nonincreasing through these transformations. Hence Theorem 18. 2

For p = 2 we can say a little more for Tn.

THEOREM 19. NN(Tn, 2) = NOC(Tn, 2) = (the number of subtrees Tn)− n+ 1.

PROOF. For p = 2, a partition is nested if and only if it is order-consecutive. While every
nested partition must contain a subtree as a part, every subtree also induces a partition for
which vertices in and out of the subtree constitute the two parts. However, each consecutive
partition yields two subtrees, i.e. both substrees induce the same partition. We correct this
overcount by subtracting NC(Tn, 2) = n− 1. 2

The number g(Tn) of subtrees in Tn can be counted algorithmically. Designate a node r as
the root of Tn. Let r ′ be a node adjacent to r . View Tn as the union of two trees T(r ) with
root r and T(r ′) with root r ′, where r and r ′ are linked by an edge. Define g1(T, rT ) as the
number of subtrees in T with the root rT in the subtree, and g2(T, rT ) as the number without.
Then

g(Tn) = g1(Tn, r )+ g2(Tn, r ),

g1(Tn, r ) = g1(T(r ), r )[1+ g1(T(r
′), r ′)],

g2(Tn, r ) = g2(T(r ), r )+ g(T(r ′), r ′).

These recursive equations can be solved in linear time if two numbers can be added in constant
time.

Finally, we comment that by Theorems 14 and 16, any Gn with a vertex of degree n−1 has

NN(Gn, p) = NOC(Gn, p) = N(n, p).
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