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Simulated Annealing for Pattern Detection and Seismic Application

Kai-Ju Chen and Kou-Yuan Huang

Abstract—Simulated annealing algorithm is adopted to detect

the parameters of lines, circles, ellipses, and hyperbolic patterns.

We define the distance from a point to a pattern such that the
detection becomes feasible, especially in hyperbola. The
proposed simulated annealing parameter detection system has
the capability to find a set of parameter vectors with global
minimal error to the input data. Using average minimum
distance, we propose a method to determine the number of
patterns automatically. Experiments on the detection of lines,
circles, ellipses, and hyperbolas in images are quite successful.
The detection system is also applied to detect the line pattern of
direct wave and the hyperbolic pattern of reflection wave in the
simulated one-shot seismogram. The results are good and can
improve seismic interpretations and further seismic data
processing.

I. INTRODUCTION

Traditionally, Hough transform (HT) was used to detect
the parametric patterns such as lines and circles by mapping
the data in the image mto the parameter space and detecting
the peak (maximum) in the parameter space [1]-[2]. The
coordmnates of the peak m parameter space corresponds to a
pattern in the image space.

Seismic pattern recogmition plays an important role in o1l
exploration. In 1985, Huang et al had applied the HT to detect
line pattern of direct wave and hyperbolic pattern of
reflecion wave [3]-[4] in a one-shot seismogram [5].
However, it was not easy to determine the peak in the
parameter space and the large memory requirement was also a
serious problem.

The Hough transform neuwral network (HTNN) was
developed to solve the HT problem [6]. It was designed to
detect lines, circles, and ellipses by gradient descent method
to minimize the distance between patterns and points. HTNN
was also adopted to detect line and hyperbola i a one-shot
seismogram by Huang et al [7]. The iterative method required
less memory, but it suffered from local mimmum problem.

Simulated annealing (SA) was first proposed by
Kirkpatrick in 1983 [8]. The algorithm simulates the
procedure of the substance frozen from melt to form a perfect
crystal or low-energy state by careful annealing. The
Metropolis criterion which conditionally allows the state of
the system to higher energy condition is the key of the SA

This work was supported in part by the National Science Council, Taiwan,
under NSC 95-2221-E-009-221.

Kou-Yuan Huang is with the Department of Computer Science, National
Chiao Tung University, Hsinchu, Taiwan. (Corresponding author e-mail:
kyhuang2i@cs.netu.edu.tw)

Kai-Ju Chen is with the Department of Computer Science, National Chiao
Tung University, Hsinchu, Taiwan. (e-mail: chenkaiju@gmail.com)

1-4244-1380-X/07/$25.00 ©2007 |IEEE

algorithm to reach the global mmimum.

Here, we take the advantage of global optimization in SA
to mumimize the distance for detecting perametric patterns:
lines, circles, ellipses, and hyperbolas. Also the proposed
detection system is applied to the detection of line pattern of
direct wave and hyperbolic pattern of reflection wave in the
one-shot seismogram.

II. DETECTION SYSTEM

Fig. 1 is a system overview. The detection system takes the
N data as the mput, followed by the SA parameter detection
system to detect a set of parameter vectors of K patterns. After
convergence, patterns are recovered from the detected
parameter vectors.
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Fig. 1. System overview.

SA parameter detection system consists of two main parts:
1. defimtion of system error (energy, distance), and 2. SA
algorithm for determination of the parameter vectors with
mimmum error. To obtam the system error, we calculate the
error or the distance from a pomt to patterns, and then
combine the errors from all points to patterns and to get the
system error.

A. Parameltric Patterns
1) Equation of the Parametric Pattern

Circle, ellipse, and hyperbola can be expressed by its
center ¢ = [¢&,, cy]T, pattern matrix
A=|:a“ '112} (1)

Iy Ay
and the size # [6]. In the vector form, a parameter vector, p =
[¢r, €. Quu Qu2, Qou, G2, o represents a pattern, the equation
of pattern is
Qx)=x-e) Ax-¢)—-r' =0 (2)
where image data x=[x, y]".

An ellipse has a symmetric positive definite matrix A [6]
which has the property of det(A)>0 and a;;>0; circle has
det(A)=1. But a North-South opening hyperbola has a
symmetric negative definite matrix A which has det(A)<0. Tf
det(A)=0, (2) represents two parallel lines. A line can be
approximate to a segment of an ellipse or the asymptote of a
hyperbola. The properties of det(A) will affect the imtial
setting of the elements of A inthe SA detection system.



2) Distance from a Foint fo a Pattern

Here the detected patterns include line, circle, ellipse, and
hyperbola, the distance from a point x; to the kth pattern is
defined as

a,x)= |, - e A, x, - e -5, &)

with |det(Ap)|=1. For hyperbola, A, 1s negative definite,
(x;-c0) Ai(x,-¢;) may be negative. So we take absolute value
before square root. This definition makes computation
feasible, especially in hyperbolic detection.

B. Distance from a Point to K Patterns

Error or distance from a point to the patterns 1s defined as
the product of the distances from the point to all patterns. The
error of the ith pomt x; 15
E, =E(x)=d(x)d,(x,)..d,(x,)..d,(x), (4)
where K 1s the total number of pattemns. If the pomt 13 on any
pattern, the error of this point will be zero. Fig. 2 shows the
error of a point to all patterns. The distance layer computes
the distance from a point to each pattern by (3), and the error
layer outputs the error from a pomt to all patterns by (4).
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Fig. 2. Distance from a point to all patterns. i is the index of the input point. &
is the index of the pattern, and K is the number of patterns.

C. Error from N input points to K Patterns in the System

Fig. 3 illustrates the error or energy of the system from NV
mput points to X patterns. The error or energy of the system 1s
defined as the average of the error of points powered by
reciprocal of the number of patterns,

. l i 1K (5)
B=(138)

The use of power 1/K 1s to keep the energy £ m some
magnitude instead of growing as K increasing.
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Fig. 3. Total error of the system and simulated annealing procedure.

D. Simulated Annealing Parameter Detection System

We use SA to detect the parameter vector of each pattern.
Our goal 1s to find a set of parameter vectors that can globally
mimmize the emror of the system. Using the temperature
decreasing function 7(#)

T(H)= Tpax /In(1+8)  for =1, 2,3, ..., (6)
can converge to global minimum with probability 1 [9].

Adjusting all parameters at one time is not efficient in
convergence [6]. We use three steps in adjusting parameters
also. The adjusting order 1s the center, the shape matrix A,
and then the size ». Tn order to get fast convergence, we use
the accepted counts to change the adjusting amount [10]. The
algorithm is in the following.

Algorithm: SA to detect parameter vectors of K patterns.

Input: N points 1 an image.

Output: A set of detected K parameter vectors.

Steps:

Step 1: Imitialization.
At initial step #=1, choose T(1)=Th./In(2) at high
temperature, and define the temperature decreasing
function
T(H= Tpax M(1+H)  for=1,2,3, ...,
Tnitialize parameter vectors pr, pz, - P ---
= [Chos Chys Akt Qiz Qh2ls G le2z r %, one p s for one
patterr, and set P = (p;, p2 ... Pis - » P&)-
Calculate energy £(P) as (5).

Step 2: Randomly change parameter vectors and decide the

new parameter vectors in the same temperature.

For m = 1 to Nr (adjust the step size Nr times in a
temperature)
Forj =1 to Ns (adjust the step size per N trials)
Fork=1 to K (kis the index of the pattern)
(a) Randomly change the center of the ith pattern:

, Pr. where py

(¢ crky]f =[c., ck,y]T 8 Vi, (7

where v, 15 a 2%1 random vector with its elements are
uniformly distributed over (0, 1), and s, 1s the step size.
Now, P’r= [k C b yo Gotts G i Goats iz, 1], and PP=
PPz P PR

Calculate the new energy E(P") from N points to K
patterns. Using Metropolis criterion decides whether or
not to accept P*. Metropolis criterion is a rule [11]: for the
new energy less than or equal to the original one, AF =
E(P") - E(P) < 0, accept P°. Otherwise, new energy 1s
higher than the original one, AE = E(P”) - E(P) > 0. In this
case, compute prob = exp(-AE/T(#), and generate a
random number x uniformly distributed over (0, 1). If
prob = x, accept P°; otherwise, reject it, and keep P.

If P’ 1s accepted, merease the number of acceptance for
the adjusting center of the kth pattern, N, = N .+1.
(b) Randomly change the shape parameters:

B e 4E "
(nin @iz Qo Tl =l ae gy a1 45,0, (8)
where v 4 is a 4%1 random vector with its elements are

uniformly distributed over (0, 1) and s 4 is the step size.
Then, [a’y 5 @ b2 @ 125 Q’M]T is normalized by the



square root of |[det(A”)|. Now, P*, = [¢i v, Ck v @ k110 @ k125
@ tan @ g2 1l5 and PP=(P 1. Pas oo Phs -ves Pi)-

Similar to Step 2(a), calculate the new energy E(P’)
from N points to K patterns. Using Metropolis criterion
decides whether or not to accept P°. If P’ is accepted,
increase the number of acceptance for the adjusting shape
of the ith pattern, N, 4 = Ny 4+1.

(c) Randomly change the size:

B =T+ S,V )
where vy, is a random number uniformly distributed over
(0, 1) and sy, is the step size. Now, P’y = [ck . Ck y» Tk 125
Qg 125 Q215 A 225 ”k’]rﬁ and P’=(p;, p2. ... Pt ---» Px)-
Similar to Step 2(a), calculate the new energy E(P’) from
N points to K patterns. Using Metropolis criterion decides
whether or not to accept P’. If P’ is accepted, increase the
number of acceptance for the adjusting size of the kth
pattern, N;, = N, +1.

End for &

End for j

(d) Adjust the step size s, S¢.4, and sy, in (7), (8), and (9).
Compute the accepted rate for sy, sg4, and s, k=1,
2,...K:

rate, , = N, ./ Ns
rate, ;= N, ,/ Ns
rate,, = N, ,/Ns

(10)

Calculate function value
(1+2(rate—0.6)/0.4) if rate>0.6

(11)

if rate < 0.4

S(rate) = (1+2(0.4 —rate)/ 0.4)

1 if 0.4 <rate<0.6

And get the adjusted step size
s =s- f(rate) (12)
where rate is for ratey, rate, 4, and ratey,, and s is for s,
Sk As and Sk,
End for m

Step 3: Cool the System.
Decrease temperature 7 according to the cooling function
(6), and repeat Step 2, and 3 until the temperature is low
enough, for examples, repeat 1,000 times.

In Step 2(d), adjust the step size s, sx.4, and s, in (7), (8),
and (9). Adjusting P to P* must get fast convergence. As in
[10], the step sizes sg, Sk4, and sg,., £ =1, 2, ..., K, are
adjusted to keep a 1:1 ratio between accepted and rejected
parameters. The large accepted rate in (10) means that the
randomly changed P’ is too close to the old P, so expand the
step size. Contrarily, the small accepted rate implies the new
parameter P’ is too far from the old P, so the step size must be
shrunk to avoid too many rejections. As in [10], the function
to adjust the step size is in (11) and shown in Fig. 4. The step
size is adjusted as s = s - flrate). This adjustment in step size
Ske» Sk, and i, can control the accepted rate approximately
between 0.4 and 0.6.
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Accepted rate

Fig. 4. Function for step size adjustment.

[II. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We do the experiments on simulated pattern detections in

images with size 50%X50. Because the properties of the pattern
matrix A are different, to detect lines, circles, and ellipses, we
use (14) and (15) in the following in order to meet the positive
semi-definite matrix A. But, in hyperbolic pattern detection,
we use (2) and (3). We also do the experiments on detecting
line pattern of direct wave and hyperbolic pattern of
reflection wave in a simulated one-shot seismogram. The
effect of step size adjustments is discussed. And the final is
the method for estimating the number of patterns.

A. Detection of lines, Circles, and Ellipses

For line, circle, and ellipse, matrix A is symmetric positive
semi-definite and det(A) > 0. A matrix B is used with
|det(B)I=1,

B:|:}’|| b12j| (13)
bZl b22

and A=BB [6]. Thus, we can rewrite (2) to

Q) =(x~¢) BB  Yx—¢)-r* =0 (14)
and the distance measure (3) becomes

d(x):‘\/\ (x—¢)! (BB! )(x—¢)| - 1| (15)

Here, b, is assumed to be equal to b,; to reduce the size of
parameter vector. The parameter vector is

p =lcx ¢y, by, b2, by, 7] ! (16)
size r>0,

and (8) becomes

[bl'c.ll b/L,lz b/’alz b;722]1 =b., bmz bip buz I+ SeaVear a7

and then divided by the square root of |det(B”)|.

In initial stage, ¢, and ¢, are randomly distributed over (0,
50), n=1, b;~=1, b5,=1, and b;,=0. The cooling function is as
(6) with a high enough temperature, 7,,.,,=0.2. We adjust step
size per Ns=20 as suggested in [10], and repeat N,=5 times, so
there are totally 100 trials in the same temperature. The
temperature decreases 1,000 times to 7=0.0289, and this
temperature is low enough.

We use (14) and (15) to detect line. So a line can be
considered as a segment of a long ellipse. Fig. 5 shows the
results of detecting lines. There are two lines in each figure,
and each line has 50 points. Data are disturbed by Gaussian

noise N(0, 0.5)XN(0, 0.5). The error vs. cooling cycles shows
that the error quickly decreases in the first few cycles and



goes toward lower energy gradually.
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Fig. 5. Detection of lines — (a): 2 cross lines with noise. (b): 2 lines with noise.
(c)~(d): corresponding error vs. cooling cycle of (a) and (b).
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Fig. 6. Detection of circles and ellipses — (a): 2 ellipses with noise. (b): 2
ellipses and a circle with noise. (c)-(d): corresponding plot of error vs.
cooling cycle of (a) and (b).

Result of detecting circles and ellipses are shown in Fig. 6.
Each pattern has 50 points with Gaussian noise N(O,
0.5)XN(0, 0.5). Figures of energy vs. cooling cycles are also
shown.

B. Detection of Hyperbolas

For a hyperbola, matrix A in (2) is negative definite and
det(A)<0. Moreover, in a seismogram, hyperbola is always
North-South vertical opening and non-rotated patterns. So we
constrain the parameters to be a;,<0, a;,=0, a,;=0, and a,,>0,
and size 7>0. Then, the parameter vector becomes
P = [¢x ¢y, a1, a2, ”]T
and the distance calculation is in (3).

(18)

We initialize that ¢, and ¢, are randomly distributed over (0,
50), and a;;= -1, a,,=1, r=0 for hyperbolic pattern detection,
and the cooling schedule is the same as the previous setting.

Fig. 7 shows the results of hyperbolic pattern detection,
where Fig.7 (a) has 187 points and Fig. 7 (b) has 146 points.

Each data is with Gaussian noise N(0, 0.5)XN(0, 0.5).
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Fig. 7. Detection of hyperbolas — (a)-(b): 2 hyperbolas with noise. (c¢)-(d):
corresponding plot of error vs. cooling cycle of (a) and (b).

C. Seismic Applications

Experiments have two cases: horizontal reflection layer
and dipping reflection layer. Two lines are the asymptote of
the hyperbola [3], and the asymptote is a hyperbola with the
same shape but small size or size zero. So the asymptote can
be treated as a hyperbola.

Fig. 8 (a) shows a one-shot seismogram from horizontal
reflection layer. The two-sided one-shot seismogram has 65
receiving stations with 50 meters between each others, and
512 samples with sampling interval 0.004 seconds. The
one-shot seismogram is first preprocessed by envelope
processing and thresholding [5] as in Fig. 8 (b). The image
size is 512X65. The points are then used as the input to the
parameter detection system. The initial parameter ¢ = (20, 20),
a;=—1, a;»=1, and r=0. The cooling function is as (6) with a
high enough temperature, 7;,,,=0.4. The cooling schedule is
Ns=20 for the step adjustment, and repeat Nr=5 times in a
temperature. The temperature decreases 1,000 times. The
result and the error plot are shown in Fig. 8 (c¢) and (d). The
detection of direct wave and reflection wave from the dipping
reflection layer is shown in Fig. 9.

Table I and II list the detected parameters for the above two
seismic experiments. Comparing parameters of direct wave
and hyperbolic wave in each experiment, the matrices A of
both patterns are almost the same. Direct wave pattern is the
asymptote of a hyperbola.
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Fig. 8. Detection of seismic patterns — (a): simulated one-shot seismogram
(horizontal reflection layer). (b) after envelope processing and thresholding.
(c): detection result. (d): plot of error vs. cooling cycle.
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Fig. 9. Detection of seismic patterns — (a): simulated one-shot seismogram
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(dipping reflection layer). (b): after envelope processing and thresholding. (c):

detection result. (d): plot of error vs. cooling cycle.

D. Step Size Adjustments

In the algorithm, we adjust the step size per Ns trials. The
purpose is to get the fast convergence by choosing the
appropriate step size.

A simple example compares the results of fixed step size in
Fig. 10 and variable step size in Fig. 11. Here, the cooling
function is the same as in the previous Section III 4. But, the
initial center is (0, 0) instead of random number, and the
initial step size for all parameters are 0.1.

After 50 cooling cycles, the result of fixed step size in Fig.
10(a) is far from data, but the result of variable step size
nearly matches data. The error of the system at the 50th
cooling cycle is 2.4179 in Fig. 10(b) and 0.3613 in Fig. 11(b).
Also note that, Fig. 10(c), the accepted rates of the adjusting

center and size are high. This implies the step size 0.1 is small.

Also in the middle of Fig. 10(c), since the accepted rate of the
adjusting shape is low, the step size 0.1 is too large.

For using variable step size in Fig. 11, the adjustment gets
fast error decreasing and fast convergence. The step size at
the 1,000¢% cycle are 0.2335, 0.0174, and 0.2356 for ¢, A, and
r correspondingly.
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Fig. 10. Results of fixed step size — (a): after 50 cycles, (b): plot of error vs.
cooling cycle. (c): accepted rate of ¢, A, and .
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Fig. 11. Results of variable step size — (a): after 50 cycles, (b): plot of error vs.
cooling cycle. (c): accepted rate of ¢, A, and r.
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TABLE 1
DETECTED PARAMETERS IN FIG. 8 (C) INIMAGE SPACE 512X65
Cx Cy ap a r
Reflection  33.0344  55.1778  -11.5977  0.0862  48.8329
wave
Direct 33.0146  12.9000  -12.3629  0.0809 5.8269
wave
TABLEII
DETECTED PARAMETERS IN FIG. 9 (C) IN IMAGE SPACE 512X65
Cy ¢y ap; a r
Reflection  30.2009  20.2330  -12.2347  0.0817 523164
wave
Direct 32.9537 3.1057 -12.7919  0.0782 7.5254
wave




E. Determination of the Number of Patterns
In HTNN [6], the number of patterns was chosen by
comparing the results from different number of patterns. Here
we propose a method to determine the number of patterns, K,
in the image. We define the detection error as

S =S min(d, () (5, s )

where N is the number of input points. Equation (19) implies
that the detection error is the average of the minimum
distance from N points to their nearest patterns. Algorithm
runs from pattern number K=1, 2, ..., until the detection error
has a minimum or no improvement. At that time, the best
choice of K is determined. Fig. 12 has two circles and two
ellipses and shows the result of getting K automatically. In
Fig. 12(f), the detection error greatly decreases and reaches
minimum when K=4. So we choose K=4. Table III lists the
detection error in Fig. 12(a)-(e).

(19)
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Fig. 12. Choice of K —(a) K=1, (b) K=2, (c) K=3, (d) K=4, (¢) K=5, and (f)
detection error of (a), (b), (¢), (d), and (e).

TABLE III
DETECTION ERROR IN FIG. 12
K 1 2 3 4 5
Error  6.283951 2907172 1.557019 0.901486  0.998616

IV. CONCLUSION AND DISCUSSION

SA algorithm detects the line, circle, ellipse, and hyperbola
by finding their parameters in an unsupervised manner and
global minimum fitting error related to points in an image.
The formulas used in the detections of ellipse and hyperbola
are different because of the properties of the pattern matrix A.
The iterative adjustment requires less memory space. Also,

we define the distance from point to pattern and this makes
the computation feasible, especially for hyperbola. Using
three steps to adjust parameters from center, shape, to size of
the pattern can get fast convergence. Moreover, in order to
speed the convergence, we adjust the variable learning step
based on the accepted counts. Using the average minimum
distance, we have proposed a method to determine the
number of patterns automatically. Experimental results on the
detection of line, circle, ellipse, and hyperbola in images are
quite successful. The detection results of line pattern of direct
wave and hyperbolic pattern of reflection wave in one-shot
seismogram are good, and can improve seismic
interpretations and further seismic data processing.

In the cooling schedule, the value of T, , N, and N; are

tested many times. The used value in this paper can get good
performance in the experiments. Also we find the setting of
Tmax is proportional to the image size.

In the ellipse detection, matrix A is symmetric positive
definite, so in the distance computation, we can use

d,(x,)= ‘\/(X, —¢) A (x,—¢,) -7, [6]. And (3) can be just

ax ?

for hyperbolic detection.

In seismic application, we have no constraint on the center.
However, for ideal case, the hyperbola has the center on
x-axis, i.e. r=0. In simulated seismic data, we can find that the
center does not lie on the x-axis, because convolution
produces a shift. So preprocessing is quite critical. Wavelet
and deconvolution processing may be needed in the
preprocessing to improve the detection result.
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