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Abstract: This investigation experimentally demonstrates a tunable slow 
light device using a quantum dot (QD) semiconductor laser. The QD 
semiconductor laser at 1.3 μm fabricated on a GaAs substrate is grown by 
molecular beam epitaxy. Tunable slow light can be achieved by adjusting 
the bias current and wavelength detuning. The slow light device operated 
under probe signal from 5 to 10 GHz is presented. Moreover, we also 
demonstrate that the tunable slow light device can be used in a subcarrier 
multiplexed system. 
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1. Introduction 

Slow and fast light has attracted a lot of attention because it has significant applications in 
optical communication, optical memories, signal processing, and phase-array antenna systems 
[1-7]. Recently, slow light has been demonstrated in electromagnetically induced 
transparency, coherent population oscillations, and stimulated Brillouin and Raman scattering. 
The slow light based on semiconductor optoelectronic devices is also promising due to its 
inherent compactness, direct electrical controllability, and low power consumption [8-12]. 
Moreover, room temperature slow light in a quantum dot (QD) semiconductor optical 
amplifier has been recently demonstrated because quantum dots can provide better carrier 
confinement and offer reduced thermal ionization or carrier escape at room temperature [11-
12]. Therefore, the quantum dot gain medium is attractive compared with bulk and quantum 
wells. Semiconductor lasers with the quantum dot gain medium also have been studied to 
improve the laser characteristics, including low threshold currents, temperature insensitive, 
low chirp, and high differential gain [13-17]. Long-wavelength QD vertical-cavity surface-
emitting laser (VCSELs) using intracavity structures have been proposed [14-15]. However, 
the fabrication method of intracavity structures is critical and the device yields are low. 
Recently, there has been significant progress in the development of monolithically single-
mode QD VCSELs [16-17]. 

In this paper, we report the slow light device using the monolithically single-mode QD 
VCSEL in an external injection scheme. Tunable slow light can be achieved by adjusting the 
bias current and wavelength detuning. A 10 GHz modulation signal with optical group delay 
95 ps is presented. We also study the relationship between the modulation frequencies of 
probe signal and the time delay. The slow light device can be used in a subcarrier multiplexed 
(SCM) system. 

 
2. Experiment and Results 

The schematic diagram of the monolithically single-mode QD VCSEL is shown in Fig. 1. The 
structure is grown on a GaAs (100) substrate by molecular beam epitaxy (MBE). The p- and 
n-doped distributed Bragg reflectors (DBRs) are composed of 22 and 33.5 periods, 
respectively. The graded-index separate confinement heterostructure active region mainly 
consist of five groups of QDs active region embedded between two linear-graded AlxGa1-xAs 
(x = 0 to 0.9 and x = 0.9 to 0) confinement layers. Each group of QDs consists of three QD 
layers and is situated around the antinode of a standing wave. The thickness of the cavity 
active region is about 1.13μm. The fabrication method has been described in our previous 
works [17]. In addition, the monolithically single-mode QD VCSEL is hermetically sealed by 
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QD VCSEL Lens Fiber 

a standard TO-Can package with a built-in lens. The TO-Can packaged QD VCSEL and the 
single-mode fiber are assembled by laser welding technique, as shown in Fig. 2. Fig. 3 shows 
the output spectrum and light-current characteristics of the QD VCSEL. The threshold current 
is about 0.7 mA (Ith= 0.7 mA), and the lasing wavelength of QD VCSEL is around 1277.1 nm. 
Fig. 4 shows the experimental setup for measuring the slow light in the QD VCSEL. A probe 
signal is generated by a tunable laser and than modulated via an electro-optical modulator 
(EOM). The signal power is controlled by a variable optical attenuator (VA) at the output of 
the electro-optical modulator. The polarization of the probe signal is adjusted by a 
polarization controller (PC) to reach the maximum time delay in the QD VCSEL. An optical 
circulator (C) is used to couple the probe signal into the QD VCSEL. Fig. 5 shows the 
measurements of time delay for a 10 GHz probe signal at the various bias currents of QD 
VCSEL. The probe signal is tuned to the resonance of the QD VCSEL cavity, and the signal 
power is -14 dBm. Increasing the bias current of QD VCSEL can increase the time delay of 
probe signal. The maximum group delay of 42 ps is observed, and the driving current is at 1 
mA. Fig. 6 shows the measurements of time delay at the different wavelength detuning when 
the driving current is 1 mA. The optical delay can be achieved to 95 ps delay at the 
wavelength detuning 0.042 nm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. Schematic diagram of monolithically single-mode QD VCSEL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Schematic diagram of TO-Can packaged QD VCSEL. 
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Fig. 3. Output spectrum and light-current characteristics of quantum dot VCSEL. 
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Fig. 4. Experimental setup for measuring the slow light in QD VCSEL. (EOM: electro-optic 
modulator, VA: variable optical attenuator, C: optical circulator, OC: optical coupler, PC: 
polarization controller, RFA: RF amplifier, PD: photodetector, OSA: optical spectrum analyzer) 
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Fig. 5. The measurements of time delay of QD VCSEL at the various bias currents. 
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Fig. 6. The measurements of time delay at different wavelength detuning. 
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Fig. 7.  The waveform of probe signals at different modulation frequencies. 

 
 

Figure 7 shows the waveform at different modulation frequencies of probe signals when the 
bias current of QD VCSEL is at 1 mA and the wavelength detuning is 0 nm. For 8 GHz and 6 
GHz, the time delays are 44 ps and 60 ps, respectively. Moreover, the relationship between 
the time delays and modulation frequencies of probe signal are shown in the inset of Fig. 7. 
The time delay in the QD VCSEL increases as the modulation frequency decreases. We also 
demonstrate that this slow light device can be used for SCM systems. Figure 8 shows the 
experimental setup for the slow light device in a SCM system. A 100 Mb/s non-return-to-zero 
(NRZ) pseudo-random binary sequence (PRBS) data with 231 – 1 pattern length from a pattern 
generator (PG) is mixed with a 9 GHz RF carrier. The electrical microwave signal is then used 
to modulate the electro-optic modulator. Fig. 9 shows the time domain measurements of the 9 
GHz 100 Mb/s signal. The time delays are around 42.5 ps. Then, the 9 GHz 100 Mb/s is down 
converted using a mixer, where it is mixed with the same RF carrier generated by the signal 
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generator. The corresponding eye diagrams are shown in the inset of Fig. 9. Measurements of 
eye diagrams indicate that the developed slow light device is appropriate for use in a 9 GHz 
100 Mb/s SCM system. 
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Fig. 8. Experimental setup for the QD VCSEL in a subcarrier multiplexed system. (PG: pattern 
generator, LPF: low pass filter, OA: optical amplifier). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. 9 GHz 100 Mb/s data signal and eye diagram of 100 Mb/s signal from the oscilloscope. 
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mitigation of chromatic dispersion. Although present-day fibers have PMD values ~ 0.1 
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ps/km1/2, much of the previously embedded fiber has PMD values ranging from 1 to as high as 
10 ps/km1/2 [18, 19]. For SCM systems, when the relative propagation delay between the two 
orthogonal principal states of polarization of the fiber (i.e., first-order PMD) is the half of 
period of the subcarrier, a serious SCM signal fading occurs. Due to PMD varying with 
temperature and other environmental changes, a tunable optical delay is required to 
compensate the PMD [18, 20]. However, the tunable optical delay is often implemented by 
using a mechanical system. The speed and size of the mechanical system raise concerns. 
Therefore, the tunable slow light device based on semiconductor optoelectronic devices is 
promising due to inherent compactness and electrical controllability. 

Using the tunable slow light device is possible for the PMD compensation in a SCM 
system, as shown in Fig. 10. A polarization beam splitter is used to separate the signal carrier 
by the two principal states of polarization. A polarization controller precedes the polarization 
beam splitter to align the two principal states of polarization with the principal axes of the 
polarization beam splitter. Following the polarization beam splitter is the slow light devices 
using the QD VCSEL to compensate for the link differential time delay. The two optical paths 
are recombined, and the effects of polarization-mode dispersion can be entirely compensated 
in the optical domain.  
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Fig. 10. Proposed architecture for the PMD compensation using a QD VCSEL. (SCM signal: 
subcarrier multiplexed signal, PBS: polarization beam splitter) 

 

3. Conclusion 

We experimentally demonstrate a tunable slow light device using a 1.3 μm QD VCSEL at 
room temperature for the first time. The monolithically single-mode QD VCSEL based on 
GaAs substrate is the fully doped structure. Optical delays 95 ps for 10 GHz are achieved by 
varying the bias current and wavelength detuning. Moreover, we also study that the 
relationship between the modulation frequency of probe signal and the time delay. The slow 
light device for a 9 GHz 100 Mb/s SCM system has been demonstrated. Additionally, a novel 
PMD compensating system using the tunable slow light device is also proposed. The idea has 
the potential to reduce the size and cost of the PMD compensator. 
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