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mode-locked laser resonators

Kuei-Huei Lin and Wen-Feng Hsieh*

Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan

Received April 17, 1995; revised manuscript received January 2, 1996

An analytical method of spatio-temporal design for a Kerr lens mode-locked Ti:sapphire laser is presented.
Various spatial and temporal effects are considered to derive simple quadratic equations of the pulse width for
both standing- and traveling-wave cavities. By solving the quadratic equation, we obtain the relations be-
tween pulse width and other cavity parameters for a given system for optimal design of a Kerr lens mode-
locked cavity and to generate the shortest laser pulses. Our theoretical results agree well with the experi-
mental results, and the computation time of this analytic approach for cavity parameters is reduced drastically
as compared with an iteratively numerical approach. © 1996 Optical Society of America.
1. INTRODUCTION

After the first realization of Kerr lens mode locking in a
Ti:sapphire laser by Spence et al.,1 various theoretical
studies were dedicated to the Kerr lens mode-locked
(KLM) cavity design both numerically2 and analy-
tically.3,4 Among these analytical studies, most efforts
were concentrated in the spatial domain by assuming a
constant beam-spot size in a thin nonlinear crystal to cal-
culate the nonlinear round-trip loss for different laser
powers and cavity designs. Since an optical pulse will
undergo self-phase modulation (SPM) as it propagates
through a Kerr medium, temporal-domain analysis of a
KLM cavity is also important to optimize output pulse
width by compensation of the group-velocity dispersion
introduced by a laser crystal and SPM. Using a numeri-
cal iterative method, Chilla and Martinez5 adopted a tem-
poral ABCD matrix method6,7 to discuss the KLM proper-
ties of a Ti:sapphire laser. Because their method
involves iterative manipulation of a seeding pulse to get
steady-state output, a lot of computation time is needed.
Also, with the assumption of a constant beam radius in
the Kerr medium and without astigmatism compensation,
their method has to reduce the nonlinearity by a factor of
3 to meet the experimental result.8

In our previous studies,9,10 by introducing a renormal-
ized q parameter in a Kerr medium,11 we obtained a
quartic equation of the beam-spot size at the output cou-
pler in a general standing-wave KLM laser cavity and a
quadratic equation of that for a ring cavity with astigma-
tism compensation. Thus the beam-spot variation
throughout the Kerr medium can be calculated by ABCD
transformation. Based on these spatial results as well as
the concept of temporal ABCD transformation,6,7 we es-
tablished a general spatio-temporal approach to analyze
steady-state KLM cavities. The temporal ABCD matri-
ces included in our formulation to describe various linear
and nonlinear temporal effects are nonlinear absorption,
near-resonance phase shift, group-velocity dispersion, dis-
persion compensation, bandwidth limiting, and self-phase
modulation. The first two matrices are directly adopted
0740-3224/96/0801786-08$10.00
from Ref. 7, and we derive the other matrices from a co-
herent pulse transformation integral. Particularly, the
spot-size variation in a Kerr medium obtained from the
spatial results9,10 were considered in a SPM matrix.
We further assumed that the peak intensities of intra-

cavity laser pulses are not so high that the commutation
of the characteristic matrices of corresponding nonlinear
effects still satisfy the commutation law. This is true for
a pulse width of not less than 50 fs under intracavity
pulse energy of 200 nJ. Therefore we can combine
equivalent complex quadratic phase-modulator matrices
and nonlinear absorption matrices. By properly choosing
a self-consistent point at the cavities for temporal p pa-
rameters, we can derive a simple quadratic equation for
pulse width. After solving this quadratic equation, we
obtain the relation between pulse width and other cavity
parameters. We found that the optimal prism separa-
tions are shorter for broader cavity bandwidths, and the
pulse width depends more strongly on the prism separa-
tion. We also found that the optimal prism separations
for high-energy pulses are shorter than for low-energy
pulses and that this difference is more distinct in the
narrower-bandwidth case. As the intracavity pulse en-
ergy increases, the pulse width begins to decrease, which
is a result of stronger SPM and generation of more fre-
quency components. Using our formulation, we explain
why a traveling-wave cavity is capable of generating
shorter pulses than a standing-wave cavity. Since our
analytical method has taken into account the beam-
radius variation inside the Kerr medium, not only good
agreement with experimental results is obtained, but also
the computation time is reduced drastically as compared
with iteratively numerical methods.5

2. SPACE–TIME ANALOGY AND
TEMPORAL ABCD MATRICES
There exists an interesting analogy between the spatial
problem of Fresnel diffraction and the temporal problem
of dispersive pulse propagation.6,7 Under proper change
of variables, formulas describing spatial Gaussian beams
© 1996 Optical Society of America
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can be applied to temporal Gaussian pulses. By this
space–time analogy, the exceedingly complicated problem
of coherent pulse propagation through a general optical
system can be handled in a manner similar to the ray-
matrix approach of Gaussian-beam propagation. We
may proceed from different starting points to derive the
space–time formula analogy. One of the commonly
adopted starting points is the analogy between the
paraxial wave equation and the dispersive wave equation;
another starting point is the analogy between the Fresnel
diffraction integral and the coherent pulse transforma-
tion integral. These different approaches will lead to dif-
ferent sets of variable substitution in a space–time anal-
ogy as well as different temporal matrices. In this paper
we adopt the approach of the integral analogy.
By this space–time analogy,7 we can write the pulse

amplitude A(t) and the complex time parameter p as

A~t! 5 A0 expS i ct 2

2p D exp~ict/h!, (1)

1

p
5

2r

c
1 i

2

cs2 , (2)

where h is a complex effective refractive index determin-
ing the shifts of the central carrier frequency and the po-
sition of the pulse maximum and where r and s are chirp-
ing and pulse width of the Gaussian pulse. The temporal
ABCD matrix for a dispersive medium of length z (with
refractive index n 5 n0 1 n1v) is

MS 5 F1 S

0 1 G 5 F1 2zn1

0 1 G ; (3)

where S 5 2n1z, and the matrix for phase modulator
[with transmission coefficient T 5 T0 exp(iat

2 1 ibt)] is

Fig. 1. Four-mirror figure-x standing-wave laser with a Kerr
medium of length Lc placed between two curved mirrors. A pair
of Brewster-angle dispersive prisms P1 and P2 are placed in the
cavity to achieve group-velocity compensation of the laser pulses.

Fig. 2. Block diagram illustrating the six temporal effects in
Fig. 1.
Ma 5 F 1 0

2a
c

1G . (4)

The p parameter is equivalent to the spatial q parameter
and satisfies the temporal ABCD law as

pout 5
At p 1 Bt

Ct p 1 Dt
, (5)

where At , Bt , Ct , and Dt are the temporal matrix ele-
ments.
For the four-mirror figure-x standing-wave Ti:sapphire

laser with intracavity dispersion-compensation prisms
shown in Fig. 1, the equivalent block diagram considering
various linear and nonlinear temporal effects are shown
in Fig. 2, including material dispersion of the crystal,
group-velocity dispersion compensation, bandwidth limit-
ing, near-resonance phase shift, nonlinear absorption,
and self-phase modulation. The above effects also exist
in the four-mirror figure-8 traveling-wave cavity of Fig. 3,
and the equivalent block diagram is shown in Fig. 4. In
our formulation we do not consider the interplay between
SPM and dispersion in the Kerr medium; i.e., we assumed
that the peak intensities of intracavity laser pulses are
not so high such that the commutation of these character-
istic matrices of corresponding nonlinear effects still
holds. This approximation can give reasonable agree-
ments with experimental results for a pulse duration
longer than 50 fs. For KLM cavities capable of generat-
ing shorter pulses, numerical methods must be adopted to
obtain better predictions.
The near-resonance phase shift and nonlinear absorp-

tion matrices can be found in Ref. 7. For a near-
resonance phase shift,

MNR 5 F1 2 iNsc zT2
2c

0 1 G 5 F1 2 iGT2
2c

0 1 G , (6)

where N is the population inversion, sc is the cross sec-
tion, T2 is the transverse relaxation time of the transi-
tion, and G is the single-pass power gain. For nonlinear
absorption with transmission coefficient T 5 T0 exp
[kuA(t)u2],

MNA 5 F 1 0

2a

c
1G 5 F 1 0

i
4kA0

2

cs2
1G . (7)

Now we proceed to derive the other temporal ABCD
matrices representing group-velocity dispersion, SPM,
bandwidth limiting, and dispersion compensation by a
prism pair, respectively.

A. Group-Velocity Dispersion
Consider that the propagation constant b(v) for coherent
pulses propagating in the dispersive Ti:sapphire crystal
can be approximated by the first three terms of its Taylor
series expansion around center frequency v0 as

b~v! 5
v

c
n~v! ' b0 1 b8~v 2 v0! 1

1
2

b9~v 2 v0!2.

(8)

Let v8 5 v 2 v0; then
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v8

c
n~v8! ' b0 1

v8

c
~n0 1 n1v8!, (9)

where n0 5 b8c and n1 5 1/2b9c. Therefore we know
from Eq. (3) that the temporal ABCD is

MDTC 5 F1 2zn1

0 1 G 5 F1 b9cz

0 1 G . (10)

B. Self-Phase Modulation
For optical pulses passing through a thin Kerr medium
the transmission coefficient (under parabolic approxima-
tion) is

T ' T0 expS i 4pn2A0
2Lc

acl

t 2

s 2D 5 exp~iat 2!, (11)

where a 5 4pn2A0
2Lc/(acls 2); n2 , ac , and Lc are the

nonlinear refractive index, the correction factor, and the
length of the Ti:sapphire crystal, respectively. The tem-
poral ABCD matrix of this phase modulator is

MSPM 5 F 1 0

2a

c
1G 5 F 1 0

8pn2A0
2Lc

acl

1

cs 2
1G . (12)

However, for a thick Ti:sapphire rod, since the Gaussian
beam is tightly focused in the crystal, spatial variation of

Fig. 3. Four-mirror figure-8 ring cavity laser with a Kerr me-
dium of length Lc placed between two curved mirrors. Four
Brewster-angle dispersive prisms P1 , P2 , P3 , and P4 are placed
in the cavity to achieve group-velocity compensation of the laser
pulses.

Fig. 4. Block diagram illustrating the six temporal effects in
Fig. 3.
the beam spot must be taken into account. Thus A0 is
not constant, and the A0

2Lc term in the above equation
should be replaced by an integration from 0 to Lc .
Therefore

MSPM 5 F 1 0

2a
c

1G 5 F 1 0

8pn2

acl

1

cs 2 E
0

Lc
A0

2dz 1G .
(13)

The integration in the above equation can be related to
spatial Gaussian q parameters which can be analytically
calculated from Refs. 8 and 9. Let the q parameter on
surface I and in the Ti:sapphire crystal be

1
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5

1

R1
2 i

1

y1
5

1
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2 i

l
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2 ,

1
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5

1
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l
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2 ,

respectively. Since

A0
2 5

2P

pw2
2

5
2nP

ly2

5
2nP

l

1

S y1

nR1
2 1

1 2 K

2y1
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,

(14)
we have

E
0

Lc
A0

2dz

5
2nP

l
E
0

Lc 1

S y1

nR1
2 1

1 2 K

2y1
D z2 1

2y1

R1
z 1 ny1

dz.

(15)

The integration can be calculated easily by the following
formula:

E dz

az2 1 bz 1 c
5

2

~4ac 2 b2!1/2
tan21

2az 1 b

~4ac 2 b2!1/2
.

(16)

C. Bandwidth Limiting
To adjust the central wavelength of the pulses, one may
insert a birefringent filter in the laser cavity; therefore
the oscillation bandwidth will be limited. Even if this
real filter may be absent in order to generate the shortest
femtosecond pulses, other effects will still limit the pulse-
width shortening, such as third- and higher-order disper-
sion, birefringent filtering caused by the Brewster-cut
Ti:sapphire crystal, and the effect of the dispersion-
compensation prism. These effects are equivalent to
bandwidth limiters and must be included in our model.
We approximate the spectral response of the above
mechanisms by Gaussian-shaped functions.
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For a Gaussian bandwidth limiter the transmission co-
efficient is

T 5 T0 expS 2
v82

D2 D expS 2i
v8n0z

c D , (17)

where D is the half-width of the bandwidth limiter repre-
sented in angular frequency. By choosing n1 5 2ic/
(D2z),

T 5 T0 expF2i
v8~n0 1 n1v8!z

c G . (18)

Hence we can write the temporal ABCD matrix as

MBWL 5 F1 2zn1

0 1 G 5 F 1 2i
2c

D2

0 1
G . (19)

Comparing Eqs. (6) and (19), we found that the effect of a
near-resonance phase shift is equivalent to bandwidth
limiting.

D. Dispersion Compensation of the Prism Pair
For a single pass through the dispersion-compensation
prism pair the effective negative group-velocity dispersion
is12

b9z 5 2
2l3

pc2 S dndl
D 2Lp 1

l3

pc2 Fd2ndl2

1 S 2n 2
1

n3D S dndl
D 2Gdp , (20)

where Lp is the prism separation and dp is the insertion
width of the laser beam in the second prism P2. The
derivation of Eq. (20) is based on the marginal insertion of
prisms; i.e., the cavity beam propagates through the
apexes of both prisms. However, in a real system, deeper
insertions are needed to reduce intracavity loss, as de-
picted in Fig. 5, where e is the apex angle, dp1 and dp2 are
insertion width for P1 and P2, respectively. Under such
circumstances, the positive material dispersion for pulses
propagating through the prisms cannot be neglected. A
positive term of 2bp9 tan(e /2)(dp1 1 dp2), where bp9 is the

Fig. 5. In a real laser cavity, deeper prism insertions are needed
to reduce intracavity loss. Here e is the apex angle, and dp1 and
dp2 are the insertion widths for P1 and P2 , respectively.
material dispersion of prisms, must be included in Eq.
(20). In addition, dp can be approximated by twice the
angular dispersion:12,13

dp 5
4 sin~e/2!

@1 2 n2 sin2~e/2!#1/2

dn

dl
DlLp , (21)

where Dl is the FWHM bandwidth of the intracavity laser
spectrum. Therefore the effective negative group-
velocity dispersion becomes

b9z 5 2
2l3

pc2 S dndl
D 2Lp 1

l3

pc2 Fd2ndl2 1 S 2n 2
1

n3D
3 S dndl

D 2G 4 sin~e/2!

@1 2 n2 sin2~e/2!#1/2

dn

dl
DlLp

1
l3

pc2
d2n

dl2 tan~e/2!~dp1 1 dp2!. (22)

The temporal ABCD matrix for the prism pair is

MDPP 5 F1 2zn1

0 1 G 5 F1 b9zc

0 1 G , (23)

with b 9z given in Eq. (22).

3. ANALYTICAL SPATIO-TEMPORAL
FORMULATION OF KLM CAVITIES
In a previous paper9 we derived a quartic equation of
y0 5 hpw0

2/l at the output coupler for a four-mirror
standing-wave cavity of Fig. 1,

a4~y0
2!4 1 a3~y0

2!3 1 a2~y0
2!2 1 a1~y0

2! 1 a1 5 0,
(24)

where the coefficients a4 , a3 , a2 , a1 , and a0 are functions
of Kerr medium length Lc , intracavity power P, and ma-
trix elements of spatial matices. After Eq. (24) is solved
to give the beam radius at the output coupler, the beam
radius within the Kerr medium can be calculated by the
spatial ABCD law and renormalized q parameter propa-
gation, and then the temporal matrix for nonlinear ab-
sorption and SPM can be calculated from Eqs. (7) and
(13). In another paper10 we have also analyzed the spa-
tial behavior of the four-mirror figure-8 traveling-wave
cavity in Fig. 3. The q parameters throughout the
traveling-wave cavity can be calculated by solving an al-
gebraically quadratic equation for an arbitrarily thick
Kerr medium and an intracavity laser power less than
self-trapping power. Again the temporal matrix for non-
linear absorption and SPM can be calculated from Eqs. (7)
and (13).
Now we can proceed to find characteristic equations

that describe the behavior of pulse width and chirping in
the KLM cavity. As we can see from Figs. 2 and 4, the
temporal effects undergone by pulses in the standing-
wave and the traveling-wave cavities during a round trip
differ only in their magnitude. For a traveling-wave cav-
ity the pulses will undergo those temporal effects (except
for prism-pair compensation) only once in a round trip but
twice for a standing-wave cavity. Therefore in the fol-
lowing formulation we consider the standing-wave cavity
only. The obtained results can be applied to the
traveling-wave cavity after proper substitutions.
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The six matrices of Fig. 2 can be lumped into two ma-
trices:

F1 a 1 ib

0 1 G , (25)

F 1 0

g 1 id 1G . (26)

Let the reference plane be plane I; the round-trip tempo-
ral matrix is

FAt Bt

Ct Dt
G 5 F 1 1

4~a 1 ib!~g 1 id!

cs 2
2~a 1 ib!

2~g 1 id!

cs 2
1

G .
(27)

The steady-state p parameter can be solved from Eq. (5)
by assuming pout 5 p owing to self-consistency. After
some simple manipulation, we have

1
p

5
Dt 2 At

2Bt
6

@~Dt 1 At!
2 2 4#1/2

2Bt
. (28)

Substituting Eqs. (2) and (27) into Eq. (28), we have
2r

c
1 i

2

cs 2 5 2
~g 1 id!

cs 2 6

F16~a 1 ib!2~g 1 id!2

c2s4 1
16~a 1 ib!~g 1 id!

cs 2 G1/2
4~a 1 ib!

. (29)
Equating the real part with the imaginary part in Eq.
(29), we obtain a set of simultaneous equations of vari-
ables r and s :

4r2s4 1 4grs 2 2 4~d 1 1 ! 5
c~ag 1 bd!

a2 1 b2 s 2,

(30)

4g 1 4~d 1 2 !rs 2 5
c~ad 2 bg!

a2 1 b2 s 2. (31)

After some tedious manipulations, a single variable equa-
tion of pulse width s is derived:

c2~ad 2 bg!2s4 1 4c~a2 1 b2!@gd~ad 2 bg!

2 ~d 1 2 !2~ag 1 bd!#s 2 2 16~d 1 1 !

3 ~a2 1 b2!2@g 2 1 ~d 1 2 !2# 5 0, (32)

and the chirping r is

r 5
1

4~d 1 2 !
F c~ad 2 bg!

a2 1 b2 2 4
g

s 2G . (33)

Since Eq. (32) is a quadratic equation of s 2, the pulse
width at plane I of the Kerr lens mode-locked laser sys-
tem can be solved by an analytical approach. Using tem-
poral ABCD transformation, we can calculate the pulse
widths throughout the laser cavity. For example, the
chirping r1 and the pulse width s1 at output coupler are
related to r and pulse width s at plane I by
r1 5

r 2
2ar2

c
2

2a

cs4

S 1 2
2ar

c
2

2b

cs 2D 2 1 S 2a

cs 2 2
2br

c D 2 , (34)

s1 5

S 1 2
2ar

c
2

2b

cs 2D 2 1 S 2a

cs 2 2
2br

c D 2
1

s 2 2
2br2

c
2

2b

cs4

. (35)

4. KLM Ti:SAPPHIRE LASER SYSTEM
DESIGN
As an example to demonstrate the applicability of the
above-mentioned analytical approach, we consider a
figure-x standing-wave Ti:sapphire laser, as shown in Fig.
1, with a 20-mm-long Ti:sapphire laser rod as a Kerr me-
dium (n0 5 1.76, n2 5 3 3 10220 m2 W21, correction fac-
tor a ; 5.35, Pcr ; 2.6 MW, and single-pass group-
velocity dispersion of 1280 fs2, as in Ref. 14). The
distance between M1 and M2 is d1 5 70 cm, the distance
between M3 and M4 is d2 5 100 cm, and the focal length
of the curved mirrors is f 5 5 cm with a separation of
11.4 cm, which is located near the center of the second
stable range. The Brewster-angle dispersive prisms are
made of SF10, with apex angle « 5 60.6°, refractive
index n 5 1.71125, dn/dl 5 20.04958 mm21, and
d2n/dl2 5 0.1755 mm22. As reported by several research
groups, the mode-locked average power is approximately
equal to that of steady-state cw. After pumping and cav-
ity parameters (such as cavity length, mirror curvature,
reflection loss of mirrors, and doping concentration of
Ti31) are specified, the cw average power can be
calculated,15 and the intracavity mode-locked pulse en-
ergy can be estimated accordingly. Since the Ti:sapphire
laser is usually pumped far above its threshold, the spec-
tral gain bandwidth is much larger than any other band-
width limiter in the cavity, and thus the effect of a near-
resonance phase shift can be neglected. Also, we will not
consider the nonlinear gain for already saturated gain in
the steady-state condition.
Now we may begin to analyze the spatio-temporal be-

havior of the KLM cavity. Substituting these data into
the temporal ABCD matrices and using K 5 P/Pcr , Lp ,
and Dl as parameters, we solve for the output pulse width
s of the KLM cavity. The obtained relation between s
and K can further be transformed to the relation between
s and intracavity pulse energy E, since E 5 (p/2)1/2

3 KPcrs. In the results of the following calculations the
pulse widths are given by the FWHM value Dt
5 (2 ln 2)1/2s.
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Figure 6(a) shows the dependence of output pulse
widths Dt on the single-pass prism-pair dispersion for
Dl 5 10 nm and Dl 5 20 nm, respectively. The intrac-
avity pulse energy is 120 nJ, corresponding to 700-mW
output power with 7% coupling. We found that the opti-
mal prism separations for 10-nm and 20-nm bandwidths
are different. For Dl 5 10 nm, the shortest output
pulses (147 fs) are obtained with 22780-fs2 prism-pair
dispersion, which corresponds to Lp 5 59 cm (the prism
insertions dp1 and dp2 were chosen as 5 mm and 6 mm,
respectively, for low round-trip loss), while for Dl 5 20
nm the shortest output pulses (67 fs) are obtained with
21772-fs2 prism-pair dispersion, which corresponds to
Lp 5 40.5 cm (now dp1 and dp2 are chosen as 3 mm and 4
mm, because in a real system one has to minimize the

Fig. 6. Calculated FWHM pulse width at the output coupler of a
standing-wave cavity for 10-nm and 20-nm intracavity band-
widths as functions of prism-pair dispersion with (a) intracavity
pulse energy of 120 nJ and (b) intracavity pulse energy of 180 nJ.
The distance between curved mirrors is 114 mm.
prism insertion to reduce the more severe higher-order
dispersion in the sub-50-fs regime). In order to generate
the shortest pulses for the KLM laser, we make the total
intracavity dispersion negative. The above differences in
prism separation and insertions must be taken into ac-
count in the practical KLM laser constructions. Further-
more, we notice that for broader bandwidth the pulse-
width depends more strongly on the prism separation. A
decrease of 20-cm separation broadens the pulse to 385 fs
(5.7 times) for the 20-nm bandwidth case but only to 170
fs (1.2 times) for the 10-nm case. As a comparison, the
dependence of output pulse widths on prism-pair disper-
sion for a pulse energy of 180 nJ is shown in Fig. 6(b).
We find that the optimal prism-pair dispersion for gener-
ating the shortest pulses is reduced, which is 22286 fs2

for Dl 5 10 nm and 21659 fs2 for Dl 5 20 nm. The
change of optimal dispersion compensation is more dis-
tinct in the narrower bandwidth case. We also notice
that the shortest pulse obtainable for a 10-nm bandwidth
is reduced to 137 fs, while it is almost unchanged for the
20-nm case.
Table 1 lists several published systems of a mode-

locked Ti:sapphire laser4,16–19 and our theoretical calcula-
tions, in which Ti:sapphire crystal lengths are equal (2
cm) and the prism materials are also SF10. Since some
of these papers do not give detailed values of cavity
length, intracavity power, or prism insertions, we adopt
typical values. The calculated optimal prism separation
and shortest pulsewidth are very close to the experimen-
tal results (within 10% and 30%, respectively), which is
apparently better than the iterative numerical approach,5

in which the nonlinearity is overestimated and n2 must
be corrected to be 3 times less than the real value. We
notice that for systems generating shorter pulses (broader
bandwidth), the prism separations are also shorter, which
is consistent with our theoretical prediction.
In certain circumstances we may increase the pump

power to obtain higher output; then the SPM in the
Ti:sapphire crystal changes as a result of increasing
intracavity power. In order to realize the effect of SPM
on pulse width, the dependence of Dt on pulse energy E is
depicted in Figs. 7(a) and 7(b) for Dl 5 10 nm and Dl
5 20 nm, respectively. The pulse widths are calculated
at a 22780-fs2 prism-pair dispersion for a 10-nm band-
width and a 21772-fs2 dispersion for a 20-nm bandwidth.
We find that as the intracavity pulse energy increases,
the pulsewidth begins to decrease, which is a result of in-
creasing SPM. However, when the pulse energy is larger
than 140 nJ for a 10-nm bandwidth and 70 nJ for a 20-nm
bandwidth, the pulse widths are almost unchanged.
Table 1. Prism Separation and Temporal Characteristics of Published Ti:Sapphire Laser Systems

Parameters
Gabetta et al.
[Ref. (16)]

Pan et al.
[Ref. (17)]

Keller et al.
[Ref. (18)]

Cerullo et al.
[Ref. (4)]

Rizvi et al.
[Ref. (19)]

Prism separation (cm)
experimental (theory)

80 (79) 66 (59) 41.2 (41) 35 (38) 35 (36)

Pulse width Dt (fs)
experimental (theory)

190 (270) 150 (145) 73 (86) 50–60 (64) 47 (54)

Bandwidth Dl (nm) 4.3 8 11.1 15 17.4
DtDn 0.39 0.58 0.33 0.36–0.43 0.39
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Next, we may compare the standing-wave cavity with
the traveling-wave cavity of the same cavity length and
optical components (except for an addition pair of prisms
in the traveling-wave cavity). For the same output
power of 700 mW the intracavity pulse energy is 240 nJ
because the pulse repetition rate is only half that of the
standing-wave cavity. In Fig. 8(a) we plot the output
pulse widths as a function of prism separations for Dl
5 10 nm. We find that the shortest pulses (95 fs) are ob-
tained with a 2926-fs2 prism-pair dispersion (correspond-
ing to Lp 5 27 cm, dp1 5 3 mm, and dp2 5 4 mm; round-
trip dispersion is 21852 fs2), which is quite different from
the standing-wave case shown in Fig. 6(a). Since the
pulses in a traveling-wave cavity propagate through the
bandwidth limiter only once in a round trip, whereas for
standing-wave pulses it is twice, the effective bandwidth
of the traveling-wave cavity is thus A2 times that of the
standing-wave cavity, as can be seen from Eq. (19).
Therefore a traveling-wave cavity is capable of producing
pulses shorter than the standing-wave cavity. The de-
pendence of Dt on pulse energy E for a traveling-wave
cavity is depicted in Fig. 8(b). Again we find that the
pulse width decreases as the intracavity pulse energy in-
creases, which is the same as for a standing-wave cavity.
Finally, let us compare theoretical predictions of this

analytical spatio-temporal approach with the experimen-
tal results of our self-starting KLM Ti:sapphire.20 At
5-W pumping, the shortest pulses are obtained with
prism separation Lp 5 60 cm. The prism insertions are

Fig. 7. Calculated pulse width at the output coupler of a
standing-wave cavity as a function of intracavity pulse energy:
(a) 10-nm bandwidth, 22780-fs2 prism-pair dispersion; (b) 20-nm
bandwidth, 21772-fs2 prism-pair dispersion.
dp1 5 5 mm and dp2 5 6 mm. The distance between M1
and M2 is 70 cm, and the total length between M3 and M4
is 100 cm; the distance between end face I and M2 is 49
mm, and the distance between end face II and M3 is 47
mm. The total output power (7% coupling) is 700 mW,
corresponding to an intracavity pulse energy of 120 nJ.
Assuming a sech2 pulse shape, the pulse width is 146 fs.
From Fig. 6(a) we can see that the shortest output pulse
width is 147 fs, which is obtained with a prism separation
of 59 cm. Both the optimal prism separation and the
shortest pulse width are very close to the experimental re-
sults, which demonstrates the accuracy of our analytical
approach.
In practical systems, higher-order dispersive effects

will limit the minimum achievable pulse width even
though the second-order dispersion in the KLM cavity has
been compensated. In fact, it was the reduction of
higher-order dispersions that led to the decrease of pulse
durations from ;50 fs to the sub-10-fs regime. Since
higher-order dispersion does not act as a Gaussian fre-
quency filter, precise formulation of the pulse duration,
the beam-spot size, and the KLM cavity design are be-
yond the scope of our analytical second-order theory. An
estimation of the amount of bandwidth limited by higher
order dispersions can be found in other papers.21 How-

Fig. 8. (a) Output pulse width of a traveling wave cavity for a
10-nm intracavity bandwidth as a function of prism separation
with intracavity pulse energy 240 nJ. The distance between
curved mirrors is 112 mm. (b) Output pulse width of a
traveling-wave cavity as a function of intracavity pulse energy.
The bandwidth is 10 nm, and the prism-pair dispersion is
2926 fs2.
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ever, analytic spatio-temporal higher order theory has, to
our knowledge, not been established and is worth study-
ing in the future.

5. CONCLUSIONS
In this paper we have established a general but simple
spatio-temporal approach to study both the standing- and
the traveling-wave Kerr lens mode-locked (KLM) laser
resonators. Various spatial and temporal effects are
combined to derive simple quadratic equations of pulse
width for both standing- and traveling-wave cavities. By
solving the quadratic equation, we obtain the relations
between pulse width and other cavity parameters. We
find that the optimal prism separations are shorter for
broader cavity bandwidths, and the pulse width depends
more strongly on the prism separation. This fact is con-
sistent with published papers. We also find that the op-
timal prism separations for high-energy pulses are
shorter than for low-energy pulses, which is more distinct
in the narrower-bandwidth case. As the intracavity
pulse energy increases, the pulse width begins to de-
crease, which is a result of stronger SPM and generation
of more frequency components. We have explained why
a traveling-wave cavity is capable of generating shorter
pulses than a standing-wave cavity even if higher-order
effects are not introduced. As compared with a numeri-
cal approach, the computation time of our analytic ap-
proach for cavity parameters has been reduced drasti-
cally, yet without loss of accuracy in the prediction of
experimental results. Finally, we compare theoretical
predictions of this analytical spatio-temporal approach
with the experimental results of our self-starting KLM
Ti:sapphire. Both the optimal prism separation and the
shortest pulse width are very close to the experimental re-
sults, which demonstrates the accuracy of our analytical
approach.
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13. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin
1981), p. 128.

14. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G.
Fujimoto, ‘‘Self-focusing-induced saturable loss for laser
mode-locking,’’ Opt. Lett. 17, 511 (1992).

15. A. J. Alfrey, ‘‘Modeling of longitudinally pumped cw Ti:sap-
phire laser oscillators,’’ IEEE J. Quantum Electron. 25, 760
(1989).

16. G. Gabetta, D. Huang, J. Jacobson, M. Ramaswamy, E. P.
Ippen, and J. G. Fujimoto, ‘‘Femtosecond pulse generation
in Ti:Al2O3 using a microdot mirror mode locker,’’ Opt. Lett.
16, 1756 (1991).

17. C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, and K.-H.
Wu, ‘‘Effect of dye concentration on picosecond and femto-
second cw passively mode-locked Ti:sapphire/DDI laser,’’
Opt. Lett. 17, 1444 (1992).

18. U. Keller, G. W. ’tHooft, W. H. Knox, and J. E. Cunning-
ham, ‘‘Femtosecond pulses from a continuously self-starting
passively mode-locked Ti:sapphire laser,’’ Opt. Lett. 16,
1022 (1991).

19. N. H. Rizvi, P. M. W. French, and J. R. Taylor, ‘‘Continu-
ously self-mode-locked Ti:sapphire laser that produces sub-
50-fs pulses,’’ Opt. Lett. 17, 279 (1992).

20. J.-M. Shieh, F. Ganikhanov, K.-H. Lin, W.-F. Hsieh, and
C.-L. Pan, ‘‘Completely self-starting picosecond and femto-
second Kerr-lens mode-locked Ti:sapphire laser,’’ J. Opt.
Soc. Am. B 12, 945 (1995).

21. Ch. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, ‘‘Ul-
trabroadband femtosecond lasers,’’ IEEE J. Quantum Elec-
tron. 30, 1100 (1994).


