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We present a variational method to study the ground state of the newly realized 52Cr dipolar Bose-Einstein
condensate. Besides the usual contact potential term in the mean-field equation, there is an additional long-
range and anisotropic dipole-dipole interaction potential. We develop an efficient Newton-Raphson’s scheme to
solve the condensate state. The solution shows a double-peak feature in the loosely confined dimension.
Compared to the existing single-peak calculations, the double-peak solution has lower energy and reflects the
distinct property of the dipole-dipole interaction. Our method is easy and efficient to use for future investiga-
tions of the dipolar systems.
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I. INTRODUCTION

Since the realization of Bose-Einstein condensation
�BEC� of alkali metal atoms in 1995 �1�, its explosive
progress has made an important impact on science. The con-
tact atomic interaction has played a significant role in sys-
tems studied so far. Systems with long-ranged interaction
were proposed a few years later �2�. The properties of dipole-
dipole forces in an ultracold atomic systems were studied. Yi
and You studied the properties of an electric field induced
dipolar system �3�. The stability of a dipolar BEC system and
the possible species for realization were discussed by Santos
et al. and by Fischer �4�. Góral and Santos also studied the
ground state and excitations of the dipolar BEC �5�. The
collapse of dipolar BEC was discussed by Lushnikov �6�.
Góral et al. studied the dipolar BEC in optical lattice �7�.
Dipolar spinor BEC was also investigated recently �8�. Cal-
culations through the quantum hydrodynamics model and by
Thomas-Fermi approximations were also carried out �9�.

Experimentally, Bose-Einstein condensation for systems
with long-ranged interatomic interactions was first realized
in 2005 by Stuttgart group with aligned chromium atoms
�10�. The 52Cr atom used has permanent magnetic dipole
moment M of 6 bohr magneton. In their recent experiment
�11�, there are 105 condensate atoms in an anisotropic trap of
frequencies �x :�y :�z=942:712.5:116.5 �Hz�. The atomic
magnetic dipoles are aligned along the y direction by a dc
magnetic field, and the s wave scattering wavelength as was
measured to be 105 bohr radius. Under the mean-field
theory, the Gross-Pitaevskii equation �GPE� that describes
the BEC is written as

�−
�2

2m
�2 + Vext�r�� + Ngcn�r�� + NVdd�r�����r�� = ���r�� .

�1�

In the GPE, N is the number of condensate
atoms, and m is the atomic mass. The trap potential is

Vext=
m
2 ��x

2x2+�y
2y2+�z

2z2�, gc=
4��2as

m . The order parameter
is normalized as ����2d3r�=1, and n�r��= ���r���2. The dipole-
dipole potential Vdd with dipoles aligned along the y axis is
written as follows:

Vdd�r�� = gd	 
 1

�r� − r���3
−

3�y − y��2

�r� − r���5
����r����2d3r��, �2�

where gd=
�0M2

4� . We can see that the interaction potential
among atoms becomes nonlocal instead of just the pseudo-
potential of zero-ranged interaction.

In addition to the nonlocal property in the dipolar poten-
tial, the potential is also anisotropic. Along the polarization
direction, the forces between dipoles are attractive and are
repulsive in the directions perpendicular to the polarization
axis. The effect was discussed by Pfau et al. �2� and the
anisotropic nature was shown for a spherical trap case. The
dipole-dipole interaction leads to the result of double-peak in
the order parameter along the direction of the repulsive force.
To our knowledge, no other theoretical calculations treated
this property further because it is not easy to implement
double-peak trial functions. In practical experiment �11�, the
trap is not spherical but is anisotropic. It is tightly confined
in the x- and y-directions and loosely confined in the
z-direction. Since the dipole-dipole force is much weaker
than the confined forces in the x- and y-directions, the
dipole-dipole effect is negligible. However, along the
z-direction confinement is much weaker and the additional
repulsive dipole-dipole force may exhibit double-peak fea-
ture in the order parameter under experimental conditions.

We present in this paper a variational study for this prop-
erty. We found that the double-peak in order parameter will
lower down the total energy of the system in comparison
with the single Gaussian wave function which has been
popularly used in most previous related calculations. Due to
the nonlocality, in addition to the nonlinearity in the GPE,
the solution of the equation is not straightforward. We
present a robust but simple way to obtain the variational
solutions. We compare in detail the total energy, chemical
potential, order parameter of single peak and double-peak*Email address: tfjiang@faculty.nctu.edu.tw
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trial solutions in the z-direction with experimental param-
eters. We show that the double-peak order parameter corre-
sponds to the real experiment and it is quite different from
the single-peak picture. The method is easy to apply for fu-
ture dipolar BEC systems.

The layout of the paper is as follows. In Sec. II, we de-
scribe the energy variational formulation and introduce our
method of calculations. In Sec. III we present our results.
The discussion and conclusions are followed in Sec. IV.

II. FORMULATION AND METHOD
OF CALCULATION

The GPE of Eq. �1� can be obtained by minimization of
the following energy functional per particle with constraint
����2d3r�=1:

E��� =	 � �2

2m
����2 + Vext�r�����2 +

Ngc

2
���4

+
N

2
Vdd�r�����2�d3r� . �3�

In the following, we use ��y as the energy unit, where
�y =2��712.5 Hz, and L=�� /m�y =0.52261 �m as the
length unit. To include the double-peak property in the
z-direction, we employ the following trial functions:

��x,y,z� = �1�x��2�y��3�z� ,

�1�x� = ���1
2�−1/4 exp�−

x2

2�1
2� ,

�2�y� = ���2
2�−1/4 exp�−

y2

2�2
2� ,

�3�z� = c exp�−
�z − �4�2

2�3
2 � + c exp�−

�z + �4�2

2�3
2 � , �4�

where �i with i=1,2 ,3 ,4 are the four variational parameters
and c is used to normalize �3�z�. Here two Gaussian func-
tions with peaks displaced at �4 with the origin in the
z-direction are assumed. To compare with the commonly
used variational results, we also perform calculations with
�4=0 and then there will be three variational parameters. It
corresponds to the usual single-peak Gaussian trial solution.
We denote the former calculation by four-parameter type
and the latter by three-parameter type. In the variational cal-
culations, we need to calculate the total energy functional
E��i� and its derivatives. The minimization conditions are

�E

��i
= 0, i = 1,2,3,4. �5�

To find out the optimum parameters, we need to calculate the
energy functional. In the calculation of the kinetic energy
term, we transform the trial function in Eq. �4� into momen-
tum space and perform the integration by numerical quadra-
ture. The calculations of trap potential energy and contact

energy terms are numerically straightforward, we use the
Gauss-Legendre quadratures �12� for integrations. The calcu-
lation of the dipolar energy term in coordinate space is a
six-dimensional integral and hence is not easy. To make it
feasible, the dipolar energy term is transformed into the mo-
mentum space, and the integral becomes three-dimensional.
With transformations

	�k�� =	 ���r���2eik�·r�d3r� ,

Vdd�k�� =	 Vdd�r��eik�·r�d3r� , �6�

then the dipolar energy term is equal to

Edd =
N

2

1

8�3 	 �	�k���2Vdd�k��d3k� . �7�

We can calculate the momentum space density function 	�k��
directly by quadratures. The momentum representation of the
dipole-dipole potential has been studied �2,13�. With the di-
poles aligned along the y-axis and under the mean-field
theory,

Vdd�k�� = 4�gd
1 −
3ky

2

k2 �
 cos�ka�
�ka�2 −

sin�ka�
�ka�3 � . �8�

With these efforts, the dipolar energy term can be calculated
efficiently by Gauss-Legendre quadratures too.

The next problem is to find out the variational parameters
for a given number of trapped atoms N such that the total
energy is minimum. The Newton-Raphson’s scheme is useful
for the purpose. Let �i

�n� be the value of parameter �i in the
nth iteration, the next iteration value of �i will be �i

�n+1�,

�i
�n+1� = �i

�n� − �J−1�ij
 �E

�� j
�

n
; i, j = 1,2,3,4. �9�

In the expression, repeated index means summation from 1
to 4. �J�−1 is the inverse of the Jacobian matrix �J�, where in
our problem, the matrix elements of �J� are

�J�ij =
�2E���
��i�� j

. �10�

Even with the simple Gaussian trial functions with single-
peak in the z-direction, the analytic expressions for the prob-
lem and the Newton-Raphson’s scheme is still very hard. An
example of an analytic expression of total energy in a cylin-
drical trap with a two-parameter Gaussian trial function can
be found in Ref. �14�. With the double-peak Gaussian in the
z-direction, the analytic expression for Newton-Raphson’s
method becomes even much harder. Our method to the prob-
lem is simply using a numerical central difference for the
derivatives. For example,

�E���
��i

=
E��i + 
�i� − E��i − 
�i�

2
�i
. �11�

We have calibrated our quadrature results of the total energy
with the three-parameter trial functions so that the analytic
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results can easily be calculated. The accuracy of our numeri-
cal quadratures is to the fifth decimal place with 200 grids in
the x- and y-axes, 400 grids in the z-axis. So the numerical
derivatives work well. In Fig. 1, we show the examples of
iterations for a case of four-parameter and another for three-
parameter. Within a few iterations, the convergence is
achieved.

III. RESULTS

We present in Table I the results of double-peak, four-
parameter calculations, and results of single-peak, three-
parameter calculations. In the calculations, we vary the num-
ber of atoms from 1000 to 105 with experimental parameters
of trap frequencies, gc and gd. As expected, the tabulated �1
and �2 show not much differences in widths of �1�x� and
�2�y� for both three-parameter and four-parameter calcula-
tions because the dipole-dipole effect is relatively smaller
than the confined potential and the contact potential. But the
widths in �3�z� do show notable differences; and through the
wide range of particle numbers, the total energies of double-
peak calculations are lower than the single-peak calculations.
However, the difference is not drastic. This is because the
energy of trap potential and contact energy terms are an or-
der of magnitude larger than the dipole-dipole term. Here we
just perform simulations according to the real experimental
parameters. We can expect that if we lower down the trap
frequencies and tune the scattering length to a smaller value
by the Feshbach resonance method �15�, the more dominant

TABLE I. Results of variational calculations. �1,�2 are widths of Gaussian density in the x- and in the y-directions, respectively. �3 in
three-parameter calculation is the width of density in the z-direction, while in four-parameter calculations, it is the width of the single
Gaussian in a sum of double Gaussians separated at a distance of 2�4. The numbers of atoms are from 1000 to 100 000.

N /1000

Four-parameter Three-parameter

Etotal �1 �2 �3 �4 Etotal �1 �2 �3

1 2.044 1.031 1.306 3.826 3.995 2.062 1.035 1.313 6.253
5 3.297 1.236 1.679 5.544 5.881 3.338 1.243 1.691 9.180
10 4.202 1.369 1.905 6.452 6.858 4.260 1.378 1.919 10.699
15 4.874 1.462 2.057 7.035 7.483 4.943 1.471 2.073 11.672
20 5.428 1.535 2.174 7.475 7.954 5.505 1.545 2.191 12.405
25 5.905 1.595 2.270 7.832 8.335 5.991 1.606 2.287 12.999
30 6.330 1.648 2.352 8.135 8.659 6.423 1.659 2.370 13.503
35 6.716 1.694 2.424 8.399 8.941 6.814 1.706 2.443 13.942
40 7.070 1.736 2.489 8.633 9.191 7.174 1.748 2.507 14.332
45 7.400 1.774 2.547 8.845 9.417 7.509 1.786 2.566 14.684
50 7.708 1.808 2.600 9.038 9.623 7.822 1.821 2.620 15.006
55 7.999 1.841 2.650 9.216 9.814 8.118 1.854 2.670 15.302
60 8.274 1.871 2.695 9.382 9.991 8.397 1.884 2.716 15.577
65 8.537 1.899 2.738 9.537 10.156 8.664 1.913 2.759 15.835
70 8.787 1.925 2.779 9.683 10.311 8.919 1.939 2.800 16.076
75 9.028 1.950 2.817 9.820 10.457 9.163 1.965 2.838 16.304
80 9.259 1.975 2.853 9.949 10.595 9.397 1.989 2.875 16.520
85 9.482 1.997 2.887 10.075 10.729 9.623 2.012 2.910 16.725
90 9.697 2.019 2.920 10.192 10.854 9.842 2.034 2.943 16.921
95 9.905 2.040 2.952 10.303 10.973 10.053 2.055 2.974 17.109
100 10.106 2.060 2.982 10.411 11.088 10.258 2.075 3.005 17.288

(a) (b)

FIG. 1. Examples of convergence. �a� N=1000, four-parameter
case, and �b� N=40 000, three-parameter case.
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FIG. 2. �Color online� The
comparisons of �3�z� for three-
parameter �solid line� and four-
parameter �dashed line� results
with N=1000, 10 000, 50 000,
and 100 000. The horizontal axis
is z in units of L=0.522 61 �m,
vertical axis is �3�z�.

FIG. 3. �Color online� The comparisons of
momentum space �3�kz� for three-parameter
�solid line� and four-parameter �dashed line� re-
sults with N=1000, 10 000, 50 000, and 100 000.
The horizontal axis is kz, and the vertical axis is
�3�kz�.

T. F. JIANG AND W. C. SU PHYSICAL REVIEW A 74, 063602 �2006�

063602-4



role of dipole-dipole effect will emerge from the adjustment.
In Fig. 2, we plot the comparison of order parameter �3�z�

for four- and three-parameter calculations with N=1000,
10 000, 50 000, and 100 000. The four-parameter results are
combinations of two Gaussian functions. The difference in
order parameters at z=0 is mainly due to the result of the
dipole-dipole effect. Also, Fig. 3 shows the corresponding
order parameter in momentum space. There are negative val-
ues of �3�kz� for four-parameter results which are very dif-
ferent from three-parameter results. Corresponding to the ex-
perimental case with 100 000 52Cr atoms trapped and aligned
in the y direction �11�, we plot the density as a function of y
and z �see Fig. 4�. The trap is far more loosely confined in
the z direction and the dipole-dipole repulsions among atoms
exhibit the notable double-peak structure in density. This is a

very unique feature of dipolar BEC that does not appear in
BEC systems without the long-ranged interaction.

We show in Fig. 5 the chemical potentials from both cal-
culations. The chemical potential can be derived as

� =	 � �2

2m
����2 + Vext�r�����2 + Ngc���4 + NVdd�r�����2�d3r� .

�12�

We can see that the there are visible differences for double-
peak and single-peak results for all N. The double-peak
chemical potential is smaller than single-peak for each N. It
means variationally that the four-parameter results are better
than the three-parameter ones.

One question that naturally happens is how reliable is the
simple double-peak trail function? To shed some light on
this, we perform many-Gaussian trail functions for the cases
of N=1000 and N=105. We make an expansion with three
sets of four-parameter Gaussian trial functions:

��x,y,z� = �1�x��2�y��3�z� ,

�1�x� = 
i=1

3

ai exp�−
x2

2�i
2� ,

�2�y� = 
i=1

3

bi exp�−
y2

2�i
2� ,

�3�z� = 
i=1

3

ci
exp�−
�z − �i�2

2
i
2 � + exp�−

�z + �i�2

2
i
2 �� .

�13�

We obtain the value of total energy as 2.043 83 compared to
the single set of four-parameter 2.0443 for N=1000, and to-

FIG. 4. �Color online� The three-dimensional density plot for the
experimental case. The number of atoms is 100 000 and trap fre-
quencies and scattering length were described in Ref. �11�. The
dipoles are aligned along the y direction. The coordinates are in
units of �� /m�y =0.522 61 �m.

FIG. 5. The chemical potential as a function of number of con-
densate atoms. Solid dots are results of four-parameter calculations
while empty dots are three-parameter results.

FIG. 6. The interaction energy of the dipolar BEC vs the ratio of
gc /gd. For a ratio less than 3.2, the interaction energy becomes
negative and instability may happen. The parameter gd is fixed with
the atomic magnetic dipole moment of a chromium atom. gc is
adjusted by the Feshbach resonance technique.
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tal energy of 10.0708 vs 10.1063 for N=100 000. Thus we
conclude that the four-parameter model is satisfactory for
dipolar BEC.

With the method described above, we now turn to the
instability problem of the dipolar BEC system. As shown in
�1�, the instability will occur when the mutual atomic inter-
action becomes attractive. Then due to the increase of three-
body collisional loss, the BEC may collapse. In the 52Cr
dipolar system, the contact interaction energy Ec

= 1
2Ngc� ���4d3r� is repulsive with positive gc, while the

dipole-dipole energy term Edd is attractive. A predicted crite-
rion of the instability, gc /gd4� /3 can be found in �2,6� for
instance. Since the scattering length can be tuned by the
Feshbach resonance technique, we perform our calculation
with experimental gd and adjust the scattering length near the
criterion region. In Fig. 6, we show the results with 100 000
atoms �which is in the Thomas-Fermi regime�. The total in-
teraction energy Ec+Edd becomes negative for gc /gd3.2.
This is quite close to the estimated criterion condition while
the calculation here is in realistic experimental parameters.

IV. DISCUSSIONS AND CONCLUSIONS

In the past few years, simple single-peak Gaussian trial
functions are used to model the order parameter of dipolar
BEC. From our study, we find that the double-peak order
parameter is a special property of dipolar BEC. We present a
simple but efficient method to perform the variational calcu-
lation of its ground state. Our simulation results agree with
the real experimental parameters. Due to the relatively larger
trap potential and contact potential in comparison to the
dipole-dipole potential, the double-peak property does
emerge but is not drastically dominant. For the future dipolar
systems, the dipole-dipole effect may become dominant if
the physical conditions are adjusted. The method can be ap-
plied to future systems straightforwardly.
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