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Rejection of Limit Cycles Induced From Disturbance
Observers in Motion Control
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Abstract—A disturbance observer (DOB) is generally intro-
duced into motion control systems to eliminate the unwanted
disturbance and plant uncertainty. Due to the quantization er-
ror from the sensors and D/A converter, DOB-based controller
might generate limit cycles which severely decreases positioning
accuracy as the system reaches steady-state positioning. This
paper presents a sufficient condition for removing limit cycles
and explores the condition to design controller parameters. In
addition, since the parameters based on the condition make the
system sluggish, an adaptive mechanism is introduced not only to
maintain the system performance but also to eliminate limit cycles.
The experimental results validate the analytical results and also
illustrate the effectiveness of the proposed method.

Index Terms—Disturbance observer (DOB), limit cycle,
linear-motor-driven motion system.

I. INTRODUCTION

IN RECENT years, a disturbance observer (DOB) is gen-
erally introduced into motion control systems to elimi-

nate the “equivalent disturbance” as much as possible, and
to force the actual system to become a nominal model. The
equivalent disturbance consists of external-disturbance signals
including friction, and signals due to model uncertainties and
nonlinearity. If the uncertainties are removed by the DOB,
the linear feedback controller can be applied to construct an
asymptotically stable system. This equivalent disturbance was
first introduced by Ohnishi [1] and refined by Umeno and
Hori [2]. For improving performance in tracking and point-
to-point control, Lee and Tomizuka [3] and other researchers
like Komada et al. [4], White et al. [5], Shahruz [6], and
Iwasaki et al. [7] demonstrated the effectiveness of the DOB
by experiments with various uncertainties and external dis-
turbances. However, the DOB has a drawback in steady-state
positioning. A limit-cycle oscillation might occur while the
system approaches the setpoint. Kobayashi et al. [8] judged
that this oscillation is caused by the pole close to z = −1 that
is introduced by the plant inversion in the DOB and encoder
quantization error. However, no analytical results are provided
concerning the mutual effect between the DOB and the quan-
tization from the sensors and D/A converter. The authors also
intuitively claimed that this problem can be solved by moving
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the DOB pole near z = −1 toward the inside of the unit circle
by modification of the nominal plant model. Their experimental
results show that the limit cycle can be suppressed without any
significant changes in positioning accuracy by this approach.
On the other hand, Fischer and Tomizuka [9] investigate high-
speed positioning systems containing a DOB-based controller
in an x−y table driven over a ball-screw-nut mechanism by a dc
servo motor along with two sensor systems, i.e., digital encoder
and laser interferometer. They reported that the compliance of
the coupling and the backlash increase the plant-model uncer-
tainty and may cause limit cycles. A series of experiments was
conducted, and consequently, the optimal controller settings in
tracking and point to point were determined for the alternative
position sensors. As stated above, limit cycles may be induced
by various factors in motion control systems. The focus of
this paper is to investigate the effect of quantization from the
sensors and D/A converter on the occurrence of limit cycles
in a positioning system. The experiments were conducted in
a linear-motor-driven system for excluding nonlinear effects
induced by the existing backlash and flexibility in a traditional
ball-screw-driven system. The theorem in [10] is employed to
derive sufficient conditions to avoid the limit cycles induced
by the DOB and quantization. This sufficient condition will
help us find adequate controller parameters in velocity loop
for taking out limit cycles in nonlinear discrete time systems.
After that, we will introduce an adaptive parameter tuning
mechanism to maintain the tracking performance in transient
state, and eliminate the limit cycle in steady state. Simulation
and experiments are illustrated to demonstrate the effectiveness
of the proposed method in the end.

II. SUFFICIENT CONDITION FOR ABSENCE

OF LIMIT CYCLE

The controller structure adopted in our motion system is
illustrated in Fig. 1. The controller of Cp(z) and Cν(z) in
position loop and velocity loop, respectively, can be any com-
mon used controller except integrator in position loop, which
will induce severe limit cycles caused by friction [11]. There-
fore, P control is the recommended position loop controller.
The velocity loop controller is PI control. The feed-forward
controller Fp(z) in position loop is a proper realization of a
pure differentiator, while Fν(z) in velocity loop is a proper
realization of the inverse of the nonminimum phase plant P (s).
The friction compensator (FC) based on dynamic friction mod-
els, the LueGre model, is a feedforward type [12]. A position
command illustrated in Fig. 2 is given to the system, and its
corresponding velocity command is shown in Fig. 3. In our
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Fig. 1. Controller structure and plant of the experiment.

Fig. 2. Typical position command in positioning control.

motion system as shown in Fig. 1, when the system approaches
the setpoint after acceleration–deceleration mechanism within
0–0.25 s, the velocity command uν(z) fed into the velocity
loop is almost zero because the velocity command coming
from the feed-forward controller Fp(z) is zero, and the signal
from Cp(z) is extremely small. At this moment, the signal-to-
noise ratio in the velocity loop is very low that the precision
of the system is seriously affected by the quantization error
coming from encoder and digital-to-analog converter (DAC).
Under the circumstances, the velocity loop, which has a DOB
inside, is sustained to correct the errors during the steady-state
positioning and might generate anxiety limit cycles if improper
controller parameters are employed.

Therefore, for derivation of sufficient conditions to avoid the
limit cycle induced by the DOB and quantization, we will focus
our attention to the velocity loop that has DOB in the inner loop
as shown in Fig. 4, and utilize the theorem in [10] for removing
zero-input limit cycles in nonlinear discrete time systems. Here,
we have two assumptions in our analysis.

1) External-disturbance signals including friction can be
compensated completely by feed-forward-type compen-
sator or DOB.

2) The limit cycle caused by the mutual effect between the
DOB and quantization only has harmonic components

Fig. 3. Velocity command corresponds to position command in Fig. 2.

with no dc component, i.e., a pure periodic unbiased
signal. This assumption makes sense when the experi-
mental results in Section V are presented.

In Fig. 4, H(z) denotes the discrete transfer function from
feedback-sensor output to velocity V (z). If the feedback sensor
is a tachometer, H(z) would be a constant. When a motor
encoder is used as in most cases, H(z) is some type of filter
to estimate velocity. Q1 and Q2 are truncation quantizers from
sensor and from DAC, respectively. The quantizers Q1 and Q2

conform to both of the two conditions listed as

Q(0) = 0 (1)

0 ≤ Q(x)
x

≤ 1 ∀x �= 0. (2)

If the system response exhibits a limit cycle of which period
length is N samples, a function Λ is defined as

Λ = N ·
N−1∑
k=0

{Q1 [x1(k)] · (x1(k) −Q1 [x1(k)])

+Q2 [x2(k)] · (x2(k) −Q2 [x2(k)])} (3)
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Fig. 4. Velocity loop of the controller structure in the Fig. 1.

where x1(k) is the signal before Q1 in time domain and x2(k)
denotes the signal before Q2 in time domain. According to
(1) and (2), the function Λ is always semipositive and can be
rewritten as

Λ = N ·
N−1∑
k=0

{y1(k) · (x1(k) − y1(k))

+y2(k) · (x2(k) − y2(k))} ≥ 0 (4)

where y1(k) denotes the signal after Q1 in time domain and
y2(k) indicates the signal after Q2 in time domain. Then,
discrete Parseval’s theorem is utilized to transform the function
Λ into frequency-domain representation

Λ =
N−1∑
l=0

{Y ∗
1 (zl) · (X1(zl) − Y1(zl))

+Y ∗
2 (zl) · (X2(zl) − Y2(zl))} ≥ 0

=
N−1∑
l=0

{Y ∗
1 (zl) · (P (zl) · Y2(zl) − Y1(zl))

+Y ∗
2 (zl) · (B(zl) · Y1(zl) − Y2(zl))} ≥ 0 (5)

where zl = ej·(2·π/N)·l, B(zl) is the discrete transfer func-
tion from Y1(zl) to X2(zl). Equation (5) can be written
by the matrix form

Λ =
N−1∑
l=0

[Y ∗
1 (zl) Y ∗

2 (zl) ] ·
[ −1 P (zl)
B(zl) −1

]
·
[
Y1(zl)
Y2(zl)

]
≥0.

(6)

Let �Y (zl) = [Y1(zl) Y2(zl)]T, �Y ∗(zl) denotes the conjugate

complex transpose of �Y (zl), and A(zl) =
[ −1 P (zl)
B(zl) −1

]
.

Equation (6) can be rewritten as

Λ =
N−1∑
l=0

�Y ∗(zl) ·A(zl) · �Y (zl). (7)

Furthermore, (7) can be arranged in the form

Λ=
N−1∑
l=0

[
�Y ∗(zl) ·AH(zl) · �Y (zl) + �Y ∗(zl) ·ASH(zl) · �Y (zl)

]
(8)

where AH(zl) = (1/2) · (A(zl) + A∗(zl)) is Hermitian part
of A(zl), and ASH(zl) = (1/2) · (A(zl) −A∗(zl)) is skew
Hermitian part of A(zl).

Because the value of �Y ∗(zl) ·AH(zl) · �Y (zl) is only real and
�Y ∗(zl) ·ASH(zl) · �Y (zl) is zero or pure imaginary, �Y ∗(zl) ·
AH(zl) · �Y (zl) is the real part of �Y ∗(zl) ·A(zl) · �Y (zl), and
�Y ∗(zl) ·ASH(zl) · �Y (zl) is the imaginary part of �Y ∗(zl) ·
A(zl) · �Y (zl), i.e.

�Y ∗(zl)·AH(zl)·�Y (zl)= Re
(
�Y ∗(zl)·A(zl)·�Y (zl)

)
(9)

�Y ∗(zl)·ASH(zl)·�Y (zl)= Im
(
�Y ∗(zl)·A(zl)·�Y (zl)

)
. (10)

In (7), the values of �Y ∗(zl) ·A(zl) · �Y (zl) for
l = 1 ∼ ((N/2) − 1) and l = ((N/2) + 1) ∼ (N − 1)
are conjugate complex. Therefore, function Λ can be rewritten
by the form, or Λ = �Y ∗(z0) ·A(z0) · �Y (z0) + 2 · ∑(N/2)−1

l=1

Re (�Y ∗(zl) ·A(zl) · �Y (zl)) + �Y ∗(zN/2) ·A(zN/2) · �Y (zN/2).
Since the limit cycle is assumed to be a pure harmonic signal,
i.e., �Y (z0) = �0, and �Y ∗(zN/2) ·A(zN/2) · �Y (zN/2) only has
real part, the above equation can be rewritten as

Λ = 2 ·
N
2 −1∑
l=1

Re
(
�Y ∗(zl) ·A(zl) · �Y (zl)

)

+Re
(
�Y ∗(zN/2) ·A(zN/2) · �Y (zN/2)

)
. (11)

If we substitute (9) into (11), we find that

Λ = 2 ·
N
2 −1∑
l=1

�Y ∗(zl) ·AH(zl) · �Y (zl)

+ �Y ∗(zN/2) ·AH(zN/2) · �Y (zN/2). (12)

Given that AH(zl) is negative definite (i.e., AH(zl) < 0)
for l = 1 ∼ (N/2), then the right-hand side of (12) is always
seminegative, while the left-hand side Λ is always semipositive.
The only condition to satisfy both sides is �Y (zl) = �0 for l =
1 ∼ (N/2), and consequently, no limit cycles will generate.
Because negative definite of AH(zl) is the sufficient condition
for eliminating zero-input limit cycles, we could design the
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Fig. 5. Motion control structure proposed by Kobayashi [8].

Fig. 6. Simulation results for the six controller structures. (a) PD. (b) PD + DOB (pole near −1). (c) PD + DOB (pole at −0.79). (d) PD + DOB (pole at −0.6).
(e) PD + DOB (pole at −0.4). (f) PD + DOB (pole at 0.98).

controller parameters to make AH(zl) negative definite for l =
1 ∼ (N/2), in order to avoid limit cycles.

The eigenvalue of AH(zl) can be obtained as follows:

AH(zl) =
[ −1 P (zl)+B∗(zl)

2
(P (zl)+B∗(zl))

∗

2 −1

]

|λ · I −AH(zl)| = 0∣∣∣∣ λ + 1 − (P (zl)+B∗(zl))
2

− (P (zl)+B∗(zl))
∗

2 λ + 1

∣∣∣∣ = 0

λ2 + 2 · λ + 1 − |P (zl) + B∗(zl)|2
4

= 0. (13)

If and only if all coefficients in the polynomial (13) are
positive, the eigenvalue λ of AH(zl) is negative. This implies
that if the following conditions are satisfied, or

1 − |P (zl) + B∗(zl)|2
4

> 0

|P (zl) + B∗(zl)|2
4

< 1

|P (zl) + B∗(zl)| < 2 (14)

then AH(zl) is negative definite Hermitian matrix and satisfies
the sufficient condition for removing limit cycles. Now, we will
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obtain the discrete transfer function B(zl). Let us take a close
look at the path from Y1(zl) to X2(zl) in Fig. 4 as follows:

− Y1(zl) ·H(zl) · Cν(zl)

+ [X2(zl) ·D2(zl) − Y1(zl) ·H(zl) ·D1(zl)]

=X2(zl)

X2(zl) =
[
H(zl) · Cν(zl) + H(zl) ·D1(zl)

D2(zl) − 1

]
· Y1(zl)

so

B(zl) =
[
H(zl) · Cν(zl) + H(zl) ·D1(zl)

D2(zl) − 1

]
. (15)

Substituting the discrete transfer function B(zl) of (15) into
(14) yields∣∣∣∣P (zl) +

(
H(zl) · Cν(zl) + H(zl) ·D1(zl)

D2(zl) − 1

)∗∣∣∣∣ < 2 (16)

for l = 1 ∼ (N/2)(zl = ej·(2·π/N)·l).
Theorem: As demonstrated in Fig. 4, the N length limit

cycles induced by DOB and quantization are absent from the
velocity loop if the following condition is satisfied:∣∣∣∣P (zl) +

(
H(zl) · Cν(zl) + H(zl) ·D1(zl)

D2(zl) − 1

)∗∣∣∣∣ < 2

for l = 1 ∼ N

2
(zl = ej·(2·π/N)·l)

(proof as above paragraph).

III. PARAMETER TUNING FOR MOTION CONTROL

The general mathematical model of a motion system from
driving voltage to motion position can be expressed as

P (s) =
kt · ka

s(J · s + B)

where J is the linear inertia (Kg), B is the viscous friction
coefficient (Kg/s), ka is the current driver gain (A/V), and
kt is the motor force constant (Nt/A). For verifying the validity
of the inequality (16), three tuning algorithms to treat limit
cycles are described in this section.

The first tuning algorithm is presented by Fischer and
Tomizuka [9] concerning the feedback controller, DOB, and
the type of position sensors. The overall controller structure
under study is difficult to analyze because the compliance of
the coupling and the backlash of the mechanical properties
are involved in the forward loop. Tracking and point-to-point
performance can be improved by choosing suitable controller
parameters based on a series of experiments. Guidelines for
the controller tuning are provided depending on the type of
the position sensors and the control task. Improper-controller-
parameter settings may reduce or enlarge the limit-cycle oscil-
lation when the system approaches setpoint.

As to the second tuning algorithm proposed by
Kobayashi et al. [8], the motion control structure is illustrated

in Fig. 5. The motion system only has position loop with no
velocity loop, so the Cν(zl) in the inequality (16) is set to zero.
Since the inverse plant transfer function P−1(s) in the system
is from position to voltage, not from velocity to voltage, the
H(zl) equals one and the continuous transfer function P−1(s)
is listed as

P−1(s) =
s · (J · s + B)

kt · ka
.

A third-order low-pass filter Q(s) is used to make P−1(s)
become realizable

Q(s) =
3 · tau · s + 1
(tau · s + 1)3

tau =
1

2 · π ·Bw

where Bw is the cutoff frequency (Hz) of the low-pass filter.
In Kobayashi’s work, the authors transferred the continuous

transfer function P (s) into a discrete transfer function P (z) by
zero-order hold method and found that P (z) had zero near −1.
Consequently, P−1(z) in the DOB had pole near −1 [has pole
near ±j(ωs/2) in S domain and ωs is its sampling frequency
(rad/s)]. They considered the outcome as the reason why the
system generated limit cycles. Disregarding the nature of the
system, they moved the pole of P−1(z) much more inside
the unit circle by a parameter r [see (17)].

P−1(z−1) =
1 + a1 · z−1 + a2 · z−2

(b1 + r) · z−1 + (b2 − r) · z−2
. (17)

Furthermore, the authors moved the pole of P−1(z) to −0.6,
and the experimental results showed that the limit cycles could
be reduced (but not eliminated).

If we take P−1(z) with pole near −1 into the inequality
(16), we are not able to find parameters which satisfy the
sufficient condition, even if we lower the cutoff frequency
of the low-pass filter in the DOB to a very low value (e.g.,
5 Hz). The solutions that can satisfy the sufficient condition
are moving the pole of original P−1(z) to the right-hand side
(approximately on the 0.98 in Z-plane), and 5 Hz of the low-
pass filter cutoff frequency. Simulation with our motion system
parameters is performed to compare Kobayashi’s work with
our method. Six controller structures are concerned, i.e., the
position PD controller (PD), PD + DOB with inverse plant
pole near −1, PD + DOB with modified inverse plant pole near
−0.78, PD + DOB with modified inverse plant pole near −0.6,
PD + DOB with modified inverse plant pole near −0.4, and
PD + DOB with modified inverse plant pole near 0.98, driven
by the S-curve position command.

xr(t)=


A

[
6
(

t
Tr

)5

−15
(

t
Tr

)4

+10
(

t
Tr

)3
]
, 0≤ t≤Tacc

A, t>Tacc

(18)

where A = 1 × 10−3 m and Tacc = 0.25 s. Simulation results
are shown in Fig. 6 with 40-Hz PD bandwidth and 5-Hz low-
pass filter cutoff frequency. If the pole of P−1(z) near z = −1
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Fig. 7. Equivalent controller structure after acceleration–deceleration period.

Fig. 8. Experimental linear-motor-driven motion system together with the resolution calibration system.

TABLE I
MOTION SYSTEM PARAMETERS

TABLE II
ORIGINAL AND THE TUNED PARAMETERS FOR CASCADE CONTROL

is moved away from −1 to −0.78, the magnitude and frequency
of limit-cycle oscillation is reduced but not eliminated. As the
pole is moved further inside the unit circle, such as z = −0.6
or z = −0.4, high-frequency oscillation occurs during steady-
state positioning. However, the limit-cycle oscillation can be
eliminated if the pole P−1(z) near z = −1 is shifted to 0.98
to satisfy the sufficient condition. Therefore, the condition in
(16) is much more stringent than that used by Kobayashi, but
the ways to treat limit cycles happen to be the same on moving
the pole to the right. Besides, the inverse plant P−1(z) used
in our observer design (see Fig. 1) is transformed by pole-
zero matched method and, the inverse plant does not have pole
on the left-hand side like Kobayashi’s systems. However, our
system still generates limit cycles. In the next paragraph, we
will present the way to design controller parameters (see Fig. 1)
by inequality (16) for limit-cycles elimination.

As to our tuning algorithm, the velocity loop of the motion
control structure can be shown in Fig. 4. The feedback sensor
is encoder, so the discrete transfer function H(z), i.e., α− β
filter [13] is used to estimate the velocity V (z). The α− β filter

TABLE III
TUNED PARAMETERS FOR LINEAR ADAPTIVE MECHANISM

we used here is critical damping of a second-order type and is
listed as

H(z−1)=
β−β ·z−1

T+T ·(2·√β−2)·z−1+T ·(1−2 · √β+β)·z−2

(19)

where T indicates the sampling time and β denotes a coefficient
which can determine the cutoff frequency of the α− β filter.

D1(z) is the low-pass filter transfer function multiplied by
the inverse plant transfer function (The inverse plant transfer
function in the D1(z) is from velocity to voltage). We use pole-
zero matched method to design D1(z) as

D1(z−1)=
B ·(1−e(−T/tau)

)2

kt ·ka ·
(
1−e(−B·T/J)

)
·

(
z−1−e(−B·T/J) ·z−2

)(
1−2·e(−T/tau) ·z−1+e(−2·T/tau) ·z−2

) (20)

tau =
1

2·π ·Bw
(21)

where Bw is low-pass filter cutoff frequency (Hz).
D2(z) is the low-pass filter that is identical to the one in

D1(z) and is shown as

D2(z−1) =
(1 − e(−T/tau))2

2

· (z−1 + z−2)
(1 − 2 · e(−T/tau) · z−1 + e(−2·T/tau) · z−2)

. (22)
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Fig. 9. Simulation structure of the motion system.

Fig. 10. Simulation results for the six controller structures. (a) TC. (b) TC + DOB with original parameters. (c) TC + DOB with adaptive mechanism.
(d) TC + FC. (e) TC + FC + DOB with original parameters. (f) TC + FC + DOB with adaptive mechanism.

Cν(z) in the velocity loop is PI control which is realized as
follows:

Cν(z−1) = kνp +
kνi · T
1 − z−1

(23)

where kνp and kνi are P gain and I gain in the velocity loop.
Now, we will obtain the plant transfer function P (z) includ-

ing zero-order hold (see Fig. 4). Take the z-transform of the
signal X1(s) in (24), which is found at the bottom of the next
page. Then, we can take the discrete transfer functions (19),
(20), (22)–(24) into the inequality (16) to find the appropriate
parameters.

Since the plant parameters, J , B, kt, and ka, are dependent
on the characteristics of the system, we can only adjust the
controlled parameters, kνp, kνi, β, and Bw, for eliminating
limit cycles. Let the limit cycles that occur in the system be
a finite length (period) N . The larger the N is, the more
stringent the inequality (16) is. From our analytical results
presented later in Section V, we are aware that the value of
the controlled parameters for eliminating the limit cycles is
much smaller than the original one, and the system designed
under these parameters has poor performance. Therefore, in
the next section, we will propose an adaptive parameter tuning
mechanism to tackle this problem.
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Fig. 11. Position command in Case (I).

IV. ADAPTIVE PARAMETER TUNING MECHANISM

According to the parameters, we found by conforming to
the inequality (16), the performance in the velocity loop is
too poor to meet the performance requirement of the modern
motion control system. The purpose of the adaptive parame-
ter tuning mechanism is to maintain the performance of the
system by keeping the original designed parameters during
acceleration–deceleration period in the velocity loop. When the
system gradually becomes steady state, we linearly tune the
velocity loop parameters into the values for eliminating limit
cycles without severely impacting the overall performance of
the system, and linearly increase the P gain in the position loop
to make the system rapidly approach the setpoint. The reason
for increasing the P gain in the position loop is explained as
follow. After acceleration–deceleration mechanism, the system
is almost in the steady state. The velocity of the system is very
slow in this phase, so the DOB, making the system become
nominal plant, will actually take effect, and in addition, the
feed-forward controller Fν(s), which is designed based on the
nominal plant, will make the transfer function from velocity
command uν(s) to velocity response ν(s) become one. The
block diagram can be simplified as Fig. 7. The system plant
becomes 1/s and has a P control in the position loop. Thus,
increasing the P gain will make the system quickly move to the

setpoint and decrease the steady-state error. The linear adaptive
mechanism after the acceleration–deceleration period will be
listed as


ρi, 0 ≤ t < Tacc

ρi − (ρi−ρf )·(t−Tacc)
∆Ttune

, Tacc ≤ t ≤ Tacc + ∆Ttune

ρf , t > Tacc + ∆Ttune

(25)

where ρi is the parameters before tuning, ρf denotes the parame-
ters after tuning, Tacc represents the acceleration–deceleration
period in the positioning control, and ∆Ttune is the period of
tuning parameters. The parameters in velocity loop and position
loop controllers need to be tuned, and their values before and
after tuning are described in the next section.

V. SIMULATION AND EXPERIMENTAL RESULTS

The experimental motion system illustrated in Fig. 8 con-
sists of the following components: a linear-motor-driven mo-
tion system, a laser displacement meter, and a PC (PC1 in
this figure) with a DAC and encoder interface. The linear
motor system is composed of a linear motor (IL6-050A1)
and an ac servo amplifier (SERVOSTAR CD) operating in
torque (current) mode, both of which are made by Kollmorgen
Corporation [14]. Two sensors are in use in this system, i.e., a
linear scale (RENISHAW RGH24Y, resolution 1.0 × 10−7 m)
which provides position information for the vector control of
servo amplifier, and a fiber optic laser encoder (RENISHAW
RLE10) for measuring the displacement of the motion table
with adjustable resolutions. The accuracy of the resolution sup-
plied by RLE10 is influenced by some environmental effects,
such as relative humidity, temperature, pressure, and cosine
errors. Therefore, calibration by another measurement instru-
ment is required. The RENISHOW laser interferometer system,
which includes an environmental compensation unit (EC10), is
in use. After calibration, the basic length units for course and
fine resolutions are found to be 7.91 × 10−8 and 2.0 × 10−8 m,
respectively. The choice of resolution scale is dependent on
the encoder transition time (1 MHz in our system), desired
maximum velocity, and travel range. The sample rate is 2 kHz
(T = 0.0005 s). The parameters of the motion system identified
in our previous research [12] are listed in Table I. The original
control parameters designed based on the cascade control are
with 2-Hz position controller bandwidth and 30-Hz velocity
controller bandwidth, and the original and the tuned parameters

X1(s) =
1 − e−T ·S

s
· ka · kt

s · (J · s + B)
· Y2(z−1)

X1(z−1) =Z

[
ka · kt

s2 · (J · s + B)

]
· (1 − z−1) · Y2(z−1)

X1(z−1) =
kt · ka · J

B2
· (B · T/J − 1 + e−B·T/J) · z−1 + (1 − e−B·T/J −B · T/J · e−B·T/J) · z−2

1 − (1 + e−B·T/J) · z−1 + e−B·T/J · z−2
· Y2(z−1)

P (z−1) =
kt · ka · J

B2
· (B · T/J − 1 + e−B·T/J) · z−1 + (1 − e−B·T/J −B · T/J · e−B·T/J) · z−2

1 − (1 + e−B·T/J) · z−1 + e−B·T/J · z−2
(24)
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Fig. 12. Position errors in Case (I) for the four controller structures. (a) TC. (b) TC + FC + DOB with original parameters. (c) TC + FC + DOB with only
lower. (d) TC + FC + DOB with adaptive mechanism.

for removing limit cycles are listed in Table II. Moreover, for in-
creasing the tracking performance, a linear adaptive mechanism
is introduced, in particular (25). All the controlled parameters
needed to be tuned are listed in Table III.

Simulation based on a motion control structure as shown
in Fig. 9 with system parameters in Tables I–III is first ex-
ecuted to investigate the effect of each control components,
i.e., traditional controller (TC), FC, and DOB in the steady-
state positioning on the occurrence of limit cycles. Here, Q1

for 2 × 10−8-m quantizer of fiber optic laser encoder and
Q2 for 14-bit DAC quantizer are employed, and the S-curve
position command is given as in (18) with A = 1 × 10−3 m and
Tacc = 0.25 s. Six controller structures are performed, i.e.,
(a) TC, (b) TC + DOB with original parameters, (c) TC +
DOB with adaptive mechanism, (d) TC + FC, (e) TC + FC +
DOB with original parameters, and (f) TC + FC + DOB with
adaptive mechanism. Simulation results are shown in Fig. 10,
where Fig. 10(a1)–(f1) are the position errors viewed in a large
scale, and Fig. 10(a2)–(f2) are viewed in a small scale. Several
observations are obtained in the following.

1) FC can improve only the tracking but not the final posi-
tioning.

2) Adding FC or not will not have any impact on the
occurrence of limit cycles during state-state positioning.

3) The limit-cycle oscillation occurs in a DOB-based con-
troller during state-state positioning, and this behavior
can be eliminated when the adaptive tuned parameters in
DOB controller are employed.

Next, to further verify the validity of our analytical results
and the effectiveness of the adaptive mechanism, the experi-
ments will be conducted for different controller structures and
parameters.

The S-curve position command in (18) is used. The indexes
we use to evaluate the system performance are listed as follows:

Etr =

√
1
N

∑
N

(xr − x)2, for 0 ≤ t ≤ tr (26)

Eqs =

√
1
N

∑
N

(xr − x)2, for tr < t ≤ tqs (27)

Ess =

√
1
N

∑
N

(xr − x)2, for tqs < t ≤ tss (28)

where Etr is the rms index used to analyze the transient
performance within the acceleration–deceleration period. Eqs is
the rms index applied to analyze the system performance when
converging to the final position. Ess is the rms index for
analyzing the steady-state performance and judge whether the
controller can reduce or eliminate the limit cycles.
Case (I): As to the position command with A = 1 × 10−3 m

and Tacc = 0.25 s, the time intervals for each index are Etr

for 0 ≤ t ≤ 0.25 s, Eqs for 0.25 ≤ t ≤ 2.5 s, Ess for 2.5 ≤
t ≤ 15 s. The tuning period ∆Ttune in (25) is 0.5 s. The
encoder resolution we use in Case (I) positioning control is
2.0 × 10−9 m. Four controller structures, TC, TC + FC + DOB
with original parameters, TC + FC + DOB with only lower
Bw(1 Hz), and TC + FC + DOB with adaptive mechanism are
performed. Fig. 11 illustrates the position command, and the
position errors resulted from the four types of controllers are
shown in Fig. 12. From Table IV, the controller structure 4
with adaptive mechanism has the best overall performance.
The transient performance of the controller structure 4 is as
good as the controller structure 2 and 3, and increases by
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TABLE IV
PERFORMANCE INDEXES FOR THE FOUR CONTROLLER STRUCTURES IN CASE (I)

Fig. 13. Position command in Case (II).

76% as compared with the controller structure 1. Furthermore,
the performance of converging to the final position for the
controller structure 4 is almost two times better than the other
three, and the steady-state error (Ess) also decreases by 85% as
compared with the controller structure 2 without the adaptive
mechanism. As we can see from Fig. 12, the controller structure
3 with only lowered cutoff frequency Bw of the low-pass filter
cannot avoid the limit cycles while reducing the amplitude and
frequency of the limit cycles.
Case (II): For the position command with A = 5 × 10−2 m

and Tacc = 5 s, the time intervals for each index are Etr for
0 ≤ t ≤ 5 s, Eqs for 5 ≤ t ≤ 7.5 s, and Ess for 7.5 ≤ t ≤ 15 s.
The tuning period ∆Ttune in (25) is 0.5 s. Three controller
structures are performed, i.e., the TC, TC + FC + DOB with
original parameters, and TC + FC + DOB with adaptive mech-
anism. The TC is a controller structure that is identical to the
one in Fig. 1 but without DOB and feed-forward-type FC.
The encoder resolution we used in this case is 7.9 × 10−8 m.
Fig. 13 illustrates the position command, and the position errors
resulted from three types of controllers are shown in Fig. 14.
From Table V, we can see that the transient performance of
the controller structure 2 increases by almost 57% as compared
with the controller structure 1 (TC), but it has the worst perfor-
mance in steady state because it generates the limit cycles as
illustrated in Fig. 14.

The same as controller structure 2, the controller structure
3 has a good transient performance. Because controller struc-
ture 3 is with the adaptive mechanism, the performance of

Fig. 14. Position errors in Case (II) for the three controller structures.
(a) TC. (b) TC + FC + DOB with original parameters. (c) TC + FC + DOB
with adaptive mechanism.

converging to the final position (Eqs) and steady state (Ess) is
superior to the controller structure 2 and is the best of the three.
As we can see in controller structure 2, the limit cycles caused
by the mutual effect between the DOB and the quantization
are the pure harmonic limit cycles (no dc components), so the
assumption in Section II makes sense. The periodical behaviors
of the controller structure 1 (TC) within 5–15 s are not identical
with the limit cycles of the controller structure 2. Since the
desired position 5 × 10−2 m of the position command cannot
be divided by the encoder resolution 7.91 × 10−8 m with no
remainder, there is always an offset error for the position.
Under the circumstances, the effect of correcting the offset error
continuously in the feedback loop causes a periodical response
which has only one count drift at the final stage for controller
structure 1. Controller structure 3 is not sensitive to the offset
error because the gain of the velocity loop controller Cν(s) has
been reduced to a very low value.

VI. CONCLUSION

In this paper, we introduce a sufficient condition of eliminat-
ing the limit cycles induced by the DOB and quantization. The
sufficient condition enables us to design appropriate parameters
in the velocity loop to avoid the limit cycles. However, we are
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TABLE V
PERFORMANCE INDEXES FOR THE THREE CONTROLLER STRUCTURES IN CASE (II)

not satisfied about the performance of the parameters which
conforms to the sufficient condition. We further introduce a
linear adaptive mechanism that not only maintains the transient
performance but also reduces the limit cycles in the steady state.
As we can see from the experimental results in Section V, the
TC + FC + DOB control structure with the adaptive mecha-
nism has the best overall performance in positioning control.
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