Available online at www.sciencedirect.com

computers &

ScienceDirect industrial

engineering

ELSEVIER Computers & Industrial Engineering 51 (2006) 791-808

www.elsevier.com/locate/dsw

A hybrid particle swarm optimization for job shop
scheduling problem

D.Y. Sha ***, Cheng-Yu Hsu °

& Department of Business Administration, Asia University, 500 Liufeng Road, Wufong, Taichung 413, Taiwan, ROC
® Department of Industrial Engineering and Management, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300,
Taiwan, ROC

Received 14 January 2006; received in revised form 14 September 2006; accepted 14 September 2006
Available online 27 October 2006

Abstract

A hybrid particle swarm optimization (PSO) for the job shop problem (JSP) is proposed in this paper. In previous
research, PSO particles search solutions in a continuous solution space. Since the solution space of the JSP is discrete,
we modified the particle position representation, particle movement, and particle velocity to better suit PSO for the
JSP. We modified the particle position based on preference list-based representation, particle movement based on swap
operator, and particle velocity based on the tabu list concept in our algorithm. Giffler and Thompson’s heuristic is used
to decode a particle position into a schedule. Furthermore, we applied tabu search to improve the solution quality. The
computational results show that the modified PSO performs better than the original design, and that the hybrid PSO is
better than other traditional metaheuristics.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Job shop problem; Scheduling; Particle swarm optimization

1. Introduction

The job shop scheduling problem (JSP) is one of the most difficult combinatorial optimization problems.
The JSP can be briefly stated as follows (French, 1982; Gen & Cheng, 1997). There are n jobs to be processed
through m machines. We shall suppose that each job must pass through each machine once and once only.
Each job should be processed through the machines in a particular order, and there are no precedence con-
straints among different job operations. Each machine can process only one job at a time, and it cannot be
interrupted. Furthermore, the processing time is fixed and known. The problem is to find a schedule to min-
imize the makespan (Cy,.x), that is, the time required to complete all jobs.

Garey, Johnson, and Sethi (1976) demonstrated that JSP is NP-hard, so it cannot be exactly solved in a
reasonable computation time. Many approximate methods have been developed in the last decade to solve

* Corresponding author. Tel.: +886 4 23323456x1936; fax: +886 4 2331 6699.
E-mail addresses: yjsha@mail.nctu.edu.tw (D.Y. Sha), cyhsu.iem92g@nctu.edu.tw (C.-Y. Hsu).

0360-8352/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.¢ie.2006.09.002

mailto:yjsha@mail.nctu.edu.tw
mailto:cyhsu.iem92g@nctu.edu.tw

792 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

JSP, such as simulated annealing (SA) (Lourengo, 1995), tabu search (TS) (Nowicki & Smutnicki, 1996; Pezz-
ella & Merelli, 2000; Sun, Batta, & Lin, 1995), and genetic algorithm (GA) (Bean, 1994; Gongalves, Mendes, &
Resende, 2005; Kobayashi, Ono, & Yamamura, 1995; Wang & Zheng, 2001). We applied a new evolutionary
search technique — particle swarm optimization (PSO) — to solve the JSP in this paper.

The optimal JSP solution should be an active schedule. In an active schedule the processing sequence is such
that no operation can be started any earlier without delaying some other operation (French, 1982). To reduce
the search solution space, the tabu search proposed by Sun et al. (1995) searches solutions within the set of
active schedules. In our algorithm, we applied Giffler and Thompson’s (1960) heuristic to decode a particle
position into a schedule. Furthermore, we applied a tabu search to improve the solution quality.

The background of particle swarm optimization (PSO) is introduced in the next section. In Section 3, we
propose a hybrid PSO for the JSP. In Section 4, we test the hybrid PSO on Fisher and Thompson (1963) and
Lawrence (1984) and Taillard (1993) test problems. Finally, conclusions and remarks for further works are
given in Section 5.

2. The background of particle swarm optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart (1995). PSO is a population-
based optimization algorithm. Each particle is an individual and the swarm is composed of particles. The
problem solution space is formulated as a search space. Each position in the search space is a correlated solu-
tion of the problem. Particles cooperate to find out the best position (best solution) in the search space (solu-
tion space).

Particles move toward the pbest position and gbest position with each iteration. The pbest position is the
best position found by each particle so far. Each particle has its own pbest position. The gbest position is the
best position found by the swarm so far. The particle moves itself according to its velocity. The velocities are
randomly generated toward pbest and gbest positions. For each particle k and dimension j, the velocity and
position of particles can be updated by the following equations:

Uk = W X Uy + ¢ X rand, x (pbesty; — x;;) + ¢y X rand, x (gbest; — x;;) (1)

Xkj <—xkj+Ukj (2)

In Eqs. (1) and (2), v, is the velocity of particle £ on dimension j, and xy; is the position of particle k on dimen-
sion j. The pbest,; is the pbest position of particle k on dimension j, and gbest; is the gbest position of the
swarm on dimension j. The inertia weight w was first proposed by Shi and Eberhart (1998a, 1998b), and is
used to control exploration and exploitation. The particles maintain high velocities with a larger w, and
low velocities with a smaller w. A larger w can prevent particles from becoming trapped in local optima,
and a smaller w encourages particles exploiting the same search space area. The constants ¢; and ¢, are used
to decide whether particles prefer moving toward a pbest position or gbest position. The rand; and rand, are
random variables between 0 and 1. The process for PSO is as follows:

Step 1: Initialize a population of particles with random positions and velocities on d dimensions in the search
space.

Step 2: Update the velocity of each particle, according to Eq. (1).

Step 3: Update the position of each particle, according to Eq. (2).

Step 4: Map the position of each particle into solution space and evaluate its fitness value according to the
desired optimization fitness function. At the same time, update pbest and gbest position if necessary.

Step 5: Loop to step 2 until a criterion is met, usually a sufficiently good fitness or a maximum number of
iterations.

The original PSO design is suited to a continuous solution space. For better suiting to combinatorial opti-
mization problems, we have to modify PSO position representation, particle velocity, and particle movement.
Zhang, Li, Li, and Huang (2005) proposed a PSO for resource-constrained project scheduling, and compared
two kinds of position representation: (1) priority-based representation (particle position represented by prior-

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 793

ity values), and (2) permutation-based representation (particle position represented by a sequential order of
activities). Zhang’s results (2005) showed that permutation-based representation is better than priority-based
representation.

We modified the particle position based on preference list-based representation (Davis, 1985) and the par-
ticle movement based on a swap operator in this paper. These will be discussed in Section 3.

3. A hybrid particle swarm optimization

In this section, we will first describe how to associate a particle position into a schedule with two different
position representations, respectively, the priority-based representation and preference list-based representa-
tion. If we implement the priority-based representation, the particle position consists of continuous variables,
and it is suited to the original PSO design, as described in Section 2. When we implement the preference list-
based representation, we have to modify the particle velocity and particle movement, as described in Sections
3.2 and 3.3. Besides, we propose a diversification strategy and a local search procedure for better performance.

3.1. Position representation

3.1.1. Priority-based representation

When we implement the original PSO design, as described in Section 2 (i.e., the particles search solutions in
a continuous solution space), each value of a particle position represents the associated operation priority. For
an n-job m-machine problem, we can represent the particle k position by an m X n matrix, i.e.

k k k
o X Xy
k k k
. X1 X ot Xy,
X pr—
k k
xml xm2 xmn

where xfj denotes the priority of operation o; and o;; is the operation of job j that needs to be processed on
machine i. We can map (or decode) a particle position into an active schedule using Giffler and Thompson’s
(1960) heuristic. We briefly describe the G&T algorithm as follows:

Notation:

(i,/): the operation of job j that needs to be processed on machine i.

S: the partial schedule that contains scheduled operations.

Q: the set of schedulable operations.

s the earliest time at which operation (i,j) € Q could be started.

Dqijy: the processing time of operation (i,).

Jiij): the earliest time at which operation (i,j) € Q could be finished, f; , = 55 + P(i-

G&T algorithm:

Step 1: Initialize S = ¢; Q2 is initialized to contain all operations without predecessors.

Step 2: Determine f* = min; yco {f(;} and the machine m* on which f* could be realized.

Step 3: (1) Identify the operation set (i’,j") € Q such that (i’,j’) requires machine m", and s ;) <f".
(2) Choose (i,j) from the operation set identified in (1) with the largest priority.
(3) Add (i,)) to S.
(4) Assign s(; as the starting time of (i,j).

794 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

Step 4: If a complete schedule has been generated, stop. Else, delete (7,j) from Q and include its immediate
successor in 2, then go to Step 2.

For example, there are two jobs and two machines, as shown on Table 1, and the position of particle k is

Xk_[o.é 1.3}
108 05]

We can use the G&T algorithm to decode X* into a schedule in the following steps:
Initialization

Step 1: S=¢; 2=1{(1, 1), (2, 2)}.
Iteration 1

Step 2: 51,1y =0, S22y =0, f(1,1y=3, fo) = 4 f = min{f{l,l)»fiz,z)} =4, m" =2.

Step 3: Identify the operation set {(2, 2)}; choose operation (2,2), which has the largest priority, and add it
into schedule S, as illustrated in Fig. 1(a).

Step 4: Update Q@ = {(1, 1), (1, 2)}.

Iteration 2

Step 2: S,y = O, S1,2) = 4,f(1,1) = 57f(1,2) = 7,f = min{f(l,l),f(l,z)} = 5, m*=1.

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2), which has the largest priority, and
add it into schedule S, as illustrated in Fig. 1(b).

Step 4: Update Q = {(1, 1)}.

Iteration 3

Step 2: S, = 7,]?1)1) = 12,]{* = min{f(l,l)} = 12, m"=1.

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1), which has the largest priority, and add it
into schedule S, as illustrated in Fig. 1(c).

Step 4: Update Q = {(2, 1)}

Iteration 4

Step 2: S2,1) = 12,]((.2’1) = 16,]‘* = min{f('zﬁl)} = 16, m"=2.

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1), which has the largest priority, and add it
into schedule S, as illustrated in Fig. 1(d).

Step 4: A complete schedule has been generated, and then stops.

However, there is a shortcoming of priority-based representation. The schedules of two particles may be
quite different even though their positions are very close to each other. For example, if there are six operations
to be sorted on a machine, and there are two positions of two particles as follows:

position 1 : [0.25,0.27,0.21,0.24,0.26,0.23]

Table 1

A 2 %2 example

Jobs Machine sequence Processing times

1 1,2 pany =35 pan=4

2 2,1 Pe2y =4 pa2 =3

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

a

M,

M, 2,2)

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Partial schedule after the operation (2, 2) scheduled.

b

M, 1,2)

M, 2,2)

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Partial schedule after the operation (1, 2) scheduled.

C

M, (1,2) (1, 1)

M, 2,2)

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Partial schedule after the operation (1, 1) scheduled.

d

M, 1,2) 1, 1)

M, 2,2) 2,10

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A complete schedule after the operation (2, 1) scheduled.

Fig. 1. An illustration of decoding a particle position into a schedule.

position 2 : [0.22,0.25,0.23,0.26,0.24,0.21]

then we sort the operations according to the decreasing order of their position values as follows:

4 6 3]

permutation 1: [2 5 1

permutation 2: [4 2 5 3

1

6]

795

We can find that these two permutations are quite different even though the particle positions are very close to
each other. This is because the location in the permutation of one operation depends on the position values of

other operations.

3.1.2. Preference list-based representation
In the preference list-based representation, there is a preference list for each machine. For an n-job m-
machine problem, we can also represent the particle k position by an m X n matrix, and the ith row is the pref-

erence list of machine i, i.e.

k k k
o X o Xy
k k k
Xy Xyt Xy,
Xt =
e I3 k
Xl X2 7 X
where xf; € {1,2,...,n} denotes the job on location j in the preference list of machine i. We can also use Giffler

and Thompson’s (1960) heuristic to map a particle position into an active schedule. The same example, as
shown in Table 1, and the position of particle k is

Initialization

796 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808
Step I: S=¢: @ = {(1, 1), (2, 2)}.
Iteration 1

Step 2: S(1,1) = O, S22 = Oaﬁl,l) = 57ﬁ2~2) = 4,f“= = min{‘f(l’l),fiz’z)} = 4, m*=2.

Step 3: Identify the operation set {(2, 2)}; choose operation (2, 2), which is ahead of others in the preference
list of machine 2, and add it into schedule S, as illustrated in Fig. 1(a).

Step 4: Update Q = {(1, 1), (1, 2)}.

Iteration 2

Step 2: 51,1y =0, sa2 =4 fuy =5, fuz =7 =min{f 1), fu2} =5 m" =1

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2), which is ahead of others in the pref-
erence list of machine 1, and add it into schedule S, as illustrated in Fig. 1(b).

Step 4: Update Q@ = {(1, 1)}.

Iteration 3

Step 2: S, = 7,f(1v1) = 12,]{* = min{f(lsl)} = 12, m"=1.

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1), which is ahead of others in the preference
list of machine 1, and add it into schedule S, as illustrated in Fig. 1(c).

Step 4: Update Q@ = {(2, 1)}

Iteration 4

Step 2: S2,1) = 12, f(2,1) = 16,]{’k = min{f(z’l)} = 16, m"=2.

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1), which is ahead of others in the preference
list of machine 2, and add it into schedule S, as illustrated in Fig. 1(d).

Step 4: A complete schedule has been generated, and then stops.

The preference list-based PSO we proposed differs from the original PSO design in that the pbest solutions
and gbest solution do not record the best positions found so far, but rather the best schedules generated by the
G&T algorithm. For the above example, we do not record the particle position X*, but record the schedule

into pbest and gbest solutions if necessary. Because the particle position representation differs from the origi-
nal design, we also modified the movement based on the swap operator. This will be discussed in Section 3.3.

3.2. Modified particle velocity

When a particle moves in a continuous solution space, due to inertia, the particle velocity not only moves
the particle to a better position, but also prevents the particle from moving back to the current position. The
velocity can be controlled by inertia weight w in Eq. (1). The larger the inertia weight, the harder the particle
backs to the current position.

If we implement preference list-based representation, the velocity of operation o;; of particle k is denoted by
vﬁ., vfj € {0, 1}, where o is the operation of job j that needs to be processed on machine i. When vf; equals 1, it
means that operation o;; in the preference list of particle k (the position matrix, X*) has just been moved to the
current location, and we should not move it in this iteration. On the contrary, if operation o; is moved to a
new location in this iteration, we set vff/. « 1, indicating that o, has been moved in this iteration and should not

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 797

been moved in the next few iterations. The particle velocity can prevent recently moved operations from mov-
ing back to the original location in the next iterations.

Just as the original PSO is applied to a continuous solution space, inertia weight w is used to control particle
velocities. We randomly update velocities at the beginning of the iteration. For each particle £ and operation
o0y, if vf.fj equals 1, vf.fj will be set to 0 with probability (1 — w). This means that if operation o is fixed on the
current location in the preference list of particle k, o; is allowed to move in this iteration with probability
(1 — w). The newly moved operations will then be fixed for more iterations with larger inertia weight, and fixed
for less iterations with smaller inertia weight. The pseudo code for updating velocities is given in Fig. 2.

3.3. Modified particle movement

The modified particle movement is based on the swap operator. If Ufj = 0, the job j on x* will be moved to
the corresponding location of pbestf.‘ with probability ¢;, and will be moved to the corresponding location of
gbest; with probability ¢,. Where x* is the preference list of machine 7 of particle k, pbest! is the preference list
of machine i of kth pbest solution, gbest; is the preference list of machine i of gbest solution, ¢; and ¢, are con-
stant between 0 and 1, and ¢; + ¢, < 1. The process is described as follows:

Step 1: Randomly choose a location / in x*.

Step 2: Denote the job on location / in x* by J;.

Step 3: Find out the location of J; in pbestf with probability ¢, or find out the location of J; in gbest; with
probability ¢,. Denote the location that has been found in pbestf,C or ghest; by I', and denote the job in
location /" in x¥ by J,.

Step 4: If J; has been denoted, vf, =0, and v, = 0, then swap J, and J; in x, and set v}, — 1.

Step 5: If all the locations in x¥ have been considered, then stop. Otherwise, if / < n, then set / — /+ 1, else
[+ 1, and go to Step 2, where n is the number of jobs.

For example, there is a five-job problem, and x¥, pbestﬁ‘ , gbest;, and vf are shown in Fig. 3(a). We set ¢; = 0.5
and ¢, = 0.3 in this instance.

In Step 1, we randomly choose a location /= 3. In Step 2, the job in the 3rd location in x! is job 4, i.e.
J1 =4. In Step 3, we generate a random variable rand between 0 and 1, and the generated random variable
rand is 0.6. Since ¢; <rand < ¢; + ¢,, we find out the location of J; in gbest;. The location /' =15, and the
job in the 5th location in x* is job 5, i.e., J, = 5. Steps 1-3 are shown in Fig. 3(b). In Step 4, since v}, =0
and vk = 0, swap jobs 4 and 5 in x* and set vf, < 1 are shown in Fig. 3(c). In Step 3, set / — 4, and go to Step
2. Repeat the procedure until all the locations in x* have been considered.

We also adopt a mutation operator in our algorithm. After a particle moves to a new position, we randomly
choose a machine and two jobs on the machine, and then swap these two jobs, disregarding v/,. The particle
movement pseudo code is given in Fig. 4.

3.4. The diversification strategy

If all the particles have the same pbest solutions, they will be trapped into local optima. To prevent such a
situation, we proposed a diversification strategy to keep the pbest solutions different (i.e., keeps the makespans

JSor each particle k and operation o; do
rand ~ U(0,1)
if (v,:’; =1) and (rand > w) then
v,.’; <0
end if
end for

Fig. 2. Pseudo code of updating velocities.

798 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

ayk={0 01 0 0

pestt | 4 | 3 | 1 | s | 2 |
gbest, ‘ 2 ‘ 1 | 5 | 3 | 4 ‘
ool 3 [a2] 5|
The xf, pbest’, ghest, and v}.
b
vi={0 0 1 0 0
phest! 4 ‘ 3 ‘ 1 ‘ 5 ‘ 2 ‘
gbest, | 2 | 1 ‘ 5 | 3 J 4 |
/
X | 3 [t [4 2] 5|
l=3,TJ,=4 I'=5,J,=5
Randomly choose / and denote J; and J5.
C

vi={0 0 1(1)0}
pestt | 4 | 3 | 1 | s | 2 |

ghest, [2 [1 [s [3 [4 |
a x>

R N

Swap job4 and job5 in x‘.k ; set Vﬁ‘ <1

Fig. 3. An instance of particle movement.

of pbest solutions different). In the diversification strategy, the pbest solution of each particle is not the best
solution found by the particle itself, but one of the best N solutions found by the swarm so far where N is the
size of the swarm. Once any particle generates a new solution, the pbest and gbest solutions will be updated in
these three situations:

1. If the particle’s fitness value is better than the fitness value of the gbest solution, set the worst pbest solution
equal to the current gbest solution, and set the gbest solution equal to the particle solution.

2. If the particle’s fitness value is worse than the gbest solution, but better then the worst pbest solution and
not equal to any gbest or pbest solution, set the worst pbest solution equal to the particle solution.

3. If the particle’s fitness value is equal to any pbest or gbest solution, replace the pbest or gbest solution
(whose fitness value is equal to the particle fitness value) with the particle solution.

The pseudo code for updating the pbest solution and gbest solution with diversification strategy is given in
Fig. 5.

3.5. Local search

The tabu search is a metaheuristic approach and a strong local search mechanism. In the tabu search, the
algorithm starts from an initial solution and improves it iteratively to find a near-optimal solution. This
method was proposed and formalized primarily by Glover (1986, 1989, 1990). We applied the tabu search pro-
posed by Nowicki and Smutnicki (1996) but without back jump tracking. We briefly describe Nowicki and
Smutnicki’s method as follows:

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 799

for i<—1 to m do //for machine 1 to machine m
1 s < an integer random number between1to n
l<1,,
for j<—1 to n do //for all location
rand ~ U(0,1)
if (rand < c,) then
J, e xb
I" < the location of J, in pbest}
J, —xk
if (v, =0)and (vi; =0)and (J, #J,) then
xfj —J,; xfj, —J; v,'}l «—1
end if
end if
if (¢, <rand < c, +c,) then
J e xh
" « the location of J, in gbest,
J, x,'j,
if (v,’}l =0) and (vfj2 =0)and (J, #J,) then

x,.k, —J,; xf, «J; ":}, «—1
end if
end if
I, +]j
if (I >n)then
l«Il-n
end if
end for
end for

//mutation operator
M « randomly choose a machine between 1 to m

| « randomly choose a location between 1 to n
!’ < randomly choose a location between 1 to n
Jye=xby s T, e xh,

Xa oy Xy <,

V:/,Jl «1; vfMZ «—1

//mutation operator

Fig. 4. Pseudo code of particle movement.

3.5.1. The neighborhood structure

Nowicki and Smutnicki’s method randomly chooses a critical path in the current schedule, and then rep-
resents the critical path in terms of blocks. The neighborhood exchanges the first two and the last two oper-
ations in every block, but excludes the first and last operations in the critical path. The research of Jain,
Rangaswamy, and Meeran (2000) shows that the strategy used to generate the critical path does not materially
affect the final solution. Therefore, in this paper, we randomly choose one critical path if there is more than
one critical path. For example, there is a schedule for a four-job, three-machine problem, as shown in
Fig. 6(a). We can find that there are two critical paths: CP; = {031, 011, 013, 033} and CP, = {031, 033, 022,
021, 024, 014}, Where 0;; is the operation of job j that needs to be processed on machine i. If we randomly choose
CP», we can represent CP» in terms of blocks: {031, 032}, {022, 051, 024}, and {014}. The possible moves in this
schedule are exchanging {055, 021} or {0,1, 024} (see Fig. 6(b)).

800 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

N: the size of the swarm
S*: the schedule generated by particle &

worst

pbest™™": the worst solution of pbest solutions
C,oe (8%): the makespan of S*
// | _situation 1 as described in 3.4
if (C,..(S)< C,, (gbest)) then
phest™ ™" « gbest; ghest < S*
// ! _situation 1 as described in 3.4
else if (C__(S*)<C,, (pbest™™)) then
//'|_situation 3 as described in 3.4
the same =0
if (C (8*) = C,,, (gbest)) then
ghbest «— S*; the_same =1

max

max

else
Jor k' <1to N do
if (C (8")=C,. (pbest™)) then
phest” « S*; the_same =1
break
end if
end for
end if

// 1 situation 3 as described in 3.4
// | _situation 2 as described in 3.4
if (the same =0) then
pbestw”"‘” « st
end if
// 1 situation 2 as described in 3.4
end if

Fig. 5. Pseudo code of updating pbest solution and gbest solution with diversification strategy.

a
M, | o1l | 013 | o1 | |014 ‘
M, | 023 | | 022 | 021 | 024 |
M; |031 | 032 | 034 | 033
An instance of job shop schedule.
M, | o1 | o013 | 012 | |014 ‘
M, | 023 | | on C.,J:b 021 &5024 |
M; | 031 | 03 | 034 | 033

Neighborhood defined by Nowicki & Smutnicki (1996).

Fig. 6. An illustration of neighborhoods in tabu search.

3.5.2. Tabu list

The tabu list consists of maxt operation pairs that have been moved in the last maxt moves in the tabu
search. If a move {0, 0;y,} has been performed, this move replaces the oldest move in the tabu list, and mov-
ing these same two operations is not permitted while the move is recorded in the tabu list.

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 801

Table 2
Computational result of FT and LA test problems
Problem Size Best Known Shifting bottleneck Tabu Search
(nxm) (S};)g;on SBI SBII SB-RGLS! SB-RGLS2 ACM TSAB TSSB
Adams et al. Balas and Vazacopoulos Sun et al. Nowicki and Pezzella
(1988) (1998) (1995) Smutnicki and Merelli
(1996) (2000)
FT06 6x6 55 55 55 - - - 55 55
FT10 10x10 930 1015 930 930 930 930 930 930
FT20 20x5 1165 1290 1178 - - - 1165 1165
LAO1 10x5 666 666 666 - - - 666 666
LAO2 10x5 655 720 669 655 655 - 655 655
LAO3 10x5 597 623 605 - - - 597 597
LA04 10x5 590 597 593 - - - 590 590
LAOS 10x5 593 593 593 - - - 593 593
LA06 I5x5 926 926 926 - - - 926 926
LAO7 15x5 890 890 890 - - - 890 890
LAO8 I5x5 863 868 863 - - - 863 863
LA09 15x5 951 951 951 — - - 951 951
LA10 15x5 958 959 959 - - - 958 958
LAll 20x5 1222 1222 1222 - - - 1222 1222
LAI12 20x5 1039 1039 1039 - - - 1039 1039
LA13 20x5 1150 1150 1150 - - - 1150 1150
LA14 20x5 1292 1292 1292 - - - 1292 1292
LA1S 20x5 1207 1207 1207 - - - 1207 1207
LAL6 10x10 945 1021 978 - - 975 945 945
LA17 10x10 784 796 787 - - 784 784 784
LA18 10x10 848 891 859 - - 848 848 848
LAI9 10x10 842 875 860 842 842 842 842 842
LA20 10x10 902 924 914 - - 902 902 902
LA21 15x 10 1046 1172 1084 1048 1046 1074 1047 1046
LA22 15x10 927 1040 944 - - 941 927 927
LA23 15x10 1032 1061 1032 - - 1032 1032 1032
LA24 15x10 935 1000 976 937 935 954 939 938
LA25 I5x10 977 1048 1017 977 977 1010 977 979
LA26 20x 10 1218 1304 1224 - - 1218 1218 1218
LA27 20x 10 1235 1325 1291 1235 1235 1277 1236 1235
LA28 20x 10 1216 1256 1250 - - 1245 1216 1216
LA29 20x 10 1157 1294 1239 1164 1164 1234 1160 1168
LA30 20x 10 1355 1403 1355 - - 1355 1355 1355
LA31 30x10 1784 1784 1784 - - 1784 1784 1784
LA32 30x10 1850 1850 1850 - - 1850 1850 1850
LA33 30x10 1719 1719 1719 - - 1719 1719 1719
LA34 30x10 1721 1721 1721 - - 1721 1721 1721
LA35 30x10 1888 1888 1888 - - 1888 1888 1888
LA36 15x15 1268 1351 1305 1268 1268 1303 1268 1268
LA37 I5x15 1397 1485 1423 1397 1397 1422 1407 1411
LA38 15x15 1196 1280 1255 1198 1196 1245 1196 1201
LA39 I15x15 1233 1321 1273 1233 1233 1269 1233 1240
LA40 15x15 1222 1326 1269 1226 1224 1255 1229 1233
Average gap 3.8796% 1.3838% 0.1157% 0.0591% 1.5184% 0.0501% 0.1015%
No. of instance 43 43 13 13 26 43 43
No. of BKS 16 20 8 11 13 37 36
obtained

(continued on next page)

802 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

Table 2 (continued)

Genetic algorithm Particle Swarm Optimization

GASA HGA-Param PSO-priority based PSO-permutation based HPSO

Wang and Gongalves et al. Best Average Best Average Best Average
Zheng (2001) (2005) solution solution solution

55 55 55 58.9 55 55.0 55 55.0
930 930 1007 1086.0 937 965.2 930 932.0
1165 1165 1242 1296.7 1165 1178.8 1165 1165.0
666 666 681 705.0 666 666.0 666 666.0
- 655 694 729.7 655 662.1 655 655.0
- 597 633 657.5 597 602.3 597 597.0
- 590 611 648.1 590 592.9 590 590.0
- 593 593 601.1 593 593.0 593 593.0
926 926 926 940.2 926 926.0 926 926.0
- 890 890 941.0 890 890.0 890 890.0
- 863 863 896.6 863 863.0 863 863.0
- 951 953 991.8 951 951.0 951 951.0
- 958 958 976.1 958 958.0 958 958.0
1222 1222 1222 1235.3 1222 1222.0 1222 1222.0
- 1039 1039 1058.4 1039 1039.0 1039 1039.0
- 1150 1150 1179.0 1150 1150.0 1150 1150.0
- 1292 1292 1292.2 1292 1292.0 1292 1292.0
- 1207 1232 1271.7 1207 1207.0 1207 1207.0
945 945 1006 1033.5 945 969.8 945 945.2
- 784 833 883.5 784 787.1 784 784.0
- 848 901 959.9 848 856.8 848 848.0
- 842 895 945.8 842 851.5 842 842.0
- 907 963 1014.0 907 913.3 902 902.3
1058 1046 1201 1247.5 1055 1085.5 1046 1049.8
- 935 1046 1142.5 935 950.5 927 927.0
- 1032 1146 1205.1 1032 1032.0 1032 1032.0
- 953 1082 1140.9 937 967.8 935 937.9
- 986 1107 1176.6 983 1005.9 977 978.2
1218 1218 1409 1468.0 1218 1219.7 1218 1218.0
- 1256 1437 1495.4 1252 1269.1 1235 1251.4
- 1232 1434 1487.4 1216 1241.7 1216 1216.0
- 1196 1359 1429.8 1179 1215.8 1163 1168.8
- 1355 1517 1557.0 1355 1355.0 1355 1355.0
1784 1784 1886 1942.5 1784 1784.0 1784 1784.0
- 1850 2000 2065.6 1850 1850.0 1850 1850.0
- 1719 1832 1896.8 1719 1719.0 1719 1719.0
- 1721 1876 1953.5 1721 1721.0 1721 1721.0
- 1888 2027 2074.5 1888 1888.0 1888 1888.0
1292 1279 1437 1541.0 1291 1317.5 1268 1271.3
- 1408 1539 1628.0 1442 1475.1 1397 1401.6
- 1219 1370 1445.1 1228 1251.1 1196 1200.5
- 1246 1436 1499.4 1233 1285.6 1233 1233.0
- 1241 1380 1457.4 1236 1258.0 1224 1226.2
0.2764% 0.3916% 7.4021% 12.0940% 0.3719% 1.3491% 0.0159% 0.1091%
11 43 43 43 43

9 31 10 31 41

3.5.3. Back jump tracking

When finding a new best solution, store the current state (the new best solution, set of moves, and tabu list)
in a list L. After the tabu search algorithm performs maxiter_tabu iterations, restart the tabu search algorithm
from the latest recorded state, and repeat it until the list L is empty. We did not implement the back jump
tracking in our algorithm to reduce computation time.

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 803

We implement a tabu search procedure after a particle generates a new solution for further improved solu-
tion quality. The tabu search will be stopped after 100 moves that do not improve the solution. The research of
Jain et al. (2000) shows that the solution quality of tabu search (Nowicki & Smutnicki, 1996) is mainly affected
by its initial solution. Therefore, in the hybrid PSO, the purpose of the PSO process is to provide good and
diverse initial solutions to the tabu search.

4. Computational results

There are three PSOs we tested: (1) priority-based PSO, of which the particle position is represented by the
priorities of operations, and implements the original PSO design as described in Section 2; (2) preference list-
based PSO, of which the particle position is represented by a preference list of machines; (3) hybrid PSO
(HPSO), which is the preference list-based PSO with a local search mechanism. The PSOs were tested on Fish-
er and Thompson (1963) (FT06, FT10, and FT20), Lawrence (1984) (LAOI to LA40) and Taillard (1993)
(TAO1 to TAB80) test problems. These problems are available on the OR-Library web site (Beasley, 1990)
(URL: http://people.brunel.ac.uk/~mastjjb/jeb/info.html) and Taillard’s web site (URL: http://ina2.eivd.ch/
Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html).

In the preliminary experiment, four swarm sizes N (10, 20, 30, 50) were tested, where N = 30 was superior
and used for all further studies. The other parameters of the priority-based PSO were set to the same common
settings as most of the previous research: ¢; = 2.0, ¢, = 2.0, the inertia weight w is decreased linearly from 0.9
to 0.4 during a run, and the maximum value of |x;| and |v;], Xmax and Viax are equal to the number of jobs n
and n/5, respectively.

The parameters of the preference list-based PSO are determined experimentally. The parameters ¢; and ¢,
were tested between 0.1 and 0.5 in increments of 0.1, and the parameter w was tested between 0 and 0.9 in
increments of 0.1. The settings ¢; = 0.5, ¢, = 0.3 and w = 0.5 were superior. The length of the tabu list maxt
was set to 8 where the value is derived from Nowicki and Smutnicki (1996). The tabu search will be stopped
after 100 moves that do not improve the solution. The priority-based PSO and the preference list-based PSO
will be terminated after 10° iterations, and HPSO will be terminated after 10° iterations. The number of iter-
ations is determined by the computation time compared with Pezzella and Merelli (2000) and Gongalves et al.
(2005).

The program was coded in Visual C++, optimized by speed, and run on an AMD Athlon 1700+ PC 20
times for each of the 123 problems. The proposed algorithm is compared with Shifting Bottleneck (Adams,

Table 3
Computation time of FT and LA test problems (in CPU seconds)
Problem Size HGA-Param Particle swarm optimization®
(nxm) Gongalves et al. (2005)* PSO-priority based PSO-permutation HPSO
based

Best solution Total Best solution Total Best solution Total

time time time time time time
FTO06 6%x6 13 0.0 34 0.0 32 0.0 28
FT10 10x 10 292 1.0 112 21.7 91 4.1 157
FT20 20%x 5 204 3.0 180 19.2 138 19.8 219
LA01-05 10x5 40 0.4 60 5.3 50 0.5 38
LA06-10 15%x5 94 1.0 114 0.1 92 0.1 61
LA11-15 20x5 192 35 177 0.5 143 0.1 100
LA16-20 10x 10 227 0.6 109 15.5 90 19.9 139
LA21-25 15x10 602 4.8 208 37.2 164 59.6 295
LA26-30 20 % 10 1303 12.6 325 103.1 259 90.5 579
LA31-35 30x 10 3691 46.9 652 31.4 520 3.0 1462
LA36-40 15x15 1920 7.4 331 68.4 254 105.2 471

% Run on an AMD Thunderbird 1.333 GHz PC.
® Run on an AMD Athlon 1700+ PC.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html
http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/ordonnancement.html

804

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

Table 4
Computational result of TA test problems
Problem Size Optimal TSAB TSSB HPSO
(nxm) solution Nowicki and Pezzella and Best solution Average
(or upper bound) Smutnicki Merelli
(1996) (2000)
TAO1 15x15 1231 1241 1231 1236
TA02 15%x15 1244 1244 1244 1244 1245
TAO03 15x15 1218 1222 1222 1218 1224
TA04 15%x15 1175 1175 1175 1180
TAO05 15x15 1224 1233 1229 1224 1233
TA06 15%x15 1238 1245 1238 1248
TAO07 15x15 1227 1228 1228 1229
TAO8 15x15 1217 1220 1220 1217 1220
TA09 15x15 1274 1282 1291 1274 1283
TA10 15%x15 1241 1259 1250 1249 1264
TAll 20% 15 (1359) 1371 1366 1386
TA12 20x 15 (1367) 1377 1379 1370 1380
TAI13 20% 15 (1342) 1362 1350 1364
TAl4 20x 15 1345 1345 1345 1345 1350
TALS 20% 15 (1339) 1360 1350 1364
TAl6 20x 15 (1360) 1370 1368 1377
TA17 20x 15 1462 1481 1473 1480
TAI18 20x 15 (1396) 1413 1426 1407 1425
TAI19 20% 15 (1335) 1352 1351 1335 1353
TA20 20x 15 (1348) 1362 1366 1358 1373
TA21 20 x 20 (1644) 1659 1658 1679
TA22 20 % 20 (1600) 1623 1614 1625
TA23 20 x 20 (1557) 1573 1559 1578
TA24 20 %20 (1646) 1659 1654 1664
TA25 20 x 20 (1595) 1606 1616 1632
TA26 20 %20 (1645) 1657 1666 1662 1679
TA27 20 x 20 (1680) 1697 1690 1712
TA28 20 %20 (1603) 1622 1617 1627
TA29 20 x 20 (1625) 1629 1635 1634 1645
TA30 20 %20 (1584) 1614 1589 1613
TA31 30x15 1764 1766 1771 1766 1772
TA32 30x15 (1795) 1841 1840 1823 1848
TA33 30x15 (1791) 1832 1833 1818 1834
TA34 30x15 (1829) 1846 1844 1879
TA35 30x 15 2007 2007 2007 2010
TA36 30x15 1819 1825 1825 1843
TA37 30x15 1771 1815 1813 1795 1808
TA38 30x15 1673 1700 1697 1681 1701
TA39 30x15 1795 1811 1815 1796 1810
TA40 30x15 (1674) 1720 1725 1698 1714
TA41 30 %20 (2018) 2045 2047 2071
TA42 30 x 20 (1949) 1979 1970 1984
TA43 30 %20 (1858) 1898 1899 1928
TA44 30 %20 (1983) 2036 2019 2039
TA45 30 %20 (2000) 2021 2010 2032
TA46 30 %20 (2015) 2047 2041 2070
TA47 30 %20 (1903) 1938 1935 1958
TA48 30 %20 (1949) 2001 1996 1994 2022
TA49 30 %20 (1967) 2013 1992 2015
TAS0 30 %20 (1926) 1975 1975 1998
TAS1 50 % 15 2760 2760 2760 2760

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 805

Table 4 (continued)

Problem Size Optimal TSAB TSSB HPSO
(nxm) solution Nowicki and Pezzella and Best solution Average
(or upper bound) Smutnicki Merelli
(1996) (2000)
TAS52 5015 2756 2756 2756 2758
TAS53 50% 15 2717 2717 2717 2717
TA54 50x 15 2839 2839 2839 2840
TASS 5015 2679 2679 2684 2679 2694
TAS56 50 % 15 2781 2781 2781 2785
TA57 50% 15 2943 2943 2943 2943
TASS8 5015 2885 2885 2885 2885
TAS9 5015 2655 2655 2655 2666
TA60 50 % 15 2723 2723 2723 2732
TA61 50 x 20 2868 2868 2868 2868 2896
TA62 50 x 20 2869 2902 2942 2930 2958
TA63 50 x 20 2755 2755 2755 2755 2774
TA64 50 x 20 2702 2702 2702 2702 2718
TA65 50 x 20 2725 2725 2725 2735 2759
TA66 50 x 20 2845 2845 2845 2848 2869
TA67 50 x 20 2825 2841 2865 2840 2861
TA68 50 x 20 2784 2784 2784 2784 2802
TA69 50 % 20 3071 3071 3071 3071 3096
TA70 50 x 20 2995 2995 2995 3005 3041
TA71 100 x 20 5464 5464 5519 5595
TA72 100 x 20 5181 5181 5211 5305
TA73 100 x 20 5568 5568 5581 5655
TAT74 100 x 20 5339 5339 5355 5412
TA75 100 x 20 5392 5392 5466 5563
TA76 100 x 20 5342 5342 5396 5504
TA77 100 x 20 5436 5436 5444 5493
TA78 100 x 20 5394 5394 5394 5476
TA79 100 x 20 5358 5358 5363 5434
TAS80 100 x 20 5183 5183 5183 5209 5364
Average Gap 0.7792% 0.8122% 0.5659% 1.4651%
of instance 33 80 80
of BKS obtained 12 31 27

Balas, & Zawack, 1988; Balas & Vazacopoulos, 1998), Tabu Search (Nowicki & Smutnicki, 1996; Pezzella &
Merelli, 2000; Sun et al., 1995), and Genetic Algorithm (Gongalves et al., 2005; Wang & Zheng, 2001).

The computational results of FT and LA test problems are shown in Table 2. The results show that the
preference list-based PSO we proposed is much better than the original design, the priority-based PSO. Since
the number of instances tested by each method is different, we cannot compare the result by average gap
directly. Nevertheless, the result obtained by HPSO is better then other algorithms that tested all of the 43
instances, and the HPSO obtained the best-known solution for 41 of the 43 instances.

Table 3 shows the average computation time on FT and LA test problems in CPU seconds. The ‘best-so-
lution time’ is the average time that the algorithm takes to first reach the final best solution, and the ‘total time’
is the average total computation time that the algorithm takes during a run. In HPSO, there is about 99%
computation time spent on local search process. As mentioned in Section 3.5, the solution quality of tabu
search (Nowicki & Smutnicki, 1996) is mainly affected by its initial solution, and the main purpose of the
PSO process is to provide good and diverse initial solutions to tabu search. Therefore, the computational
results show that the hybrid method, HPSO, performs better than both TSAB and PSO, and its average
gap is 0.356% less than PSO.

806 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

Table 5
Comparison with TSSB (Pezzella & Merelli, 2000) on TA test problems
Problem Size (n x m) TSSB? HPSOP

Average gap (%) Total time Average gap (%) Time to get best solution Total time
TAO01-10 15x15 0.4502 2175 0.0726 99 514
TA11-20 20x 15 1.1537 2526 0.5023 345 855
TA21-30 20 %20 1.0840 34910 0.7029 401 1238
TA31-40 30x 15 1.4475 14133 0.7654 1185 2026
TA41-50 30 %20 1.9474 11512 1.6133 1734 2769
TAS51-60 50x 15 0.0187 421 0.0000 565 2909°
TA61-70 50 %20 0.3960 6342 0.3463 2322 2862°
TA71-80 100 x 20 0.0000 231 0.5244 2797 3137°
Total average gap 0.8122 0.5659

% Run on a Pentium 133 MHz PC.
® Run on an AMD Athlon 1700 + PC.
¢ Decreasing the percentage to perform local search procedure reduces the computation time.

We further tested HPSO on TA test problems (Taillard, 1993). The computational results are shown in
Table 4, and we particularly compared HPSO with TSSB (Pezzella & Merelli, 2000) in Table 5. Since the max-
imum computation time of TSSB is about 3 x 10* s and our machine is about ten times faster then TSSB (Pezz-
ella & Merelli, 2000), we limited the maximum computation time of HPSO in 3 x 10® s. As mentioned above,
99% of the computation time is spent on the local search process in HPSO. Therefore, we do not reduce the
computation time by decreasing the number of iterations, but decreasing the percentage of particles that per-
form a local search procedure. The HPSO will also be terminated after 10° iterations, but there are only 34.6%
of particles randomly chosen to perform the local search procedure in each iteration on TAS51 to TA60 test
problems, 26.6% on TA61 to TA70 test problems, and 6.4% on TA71 to TA80 test problems.

Table 5 shows the comparison with TSSB (Pezzella & Merelli, 2000). The HPSO performs better than TSSB
on 7 of 8 problem sizes, and only worse than TSSB on the 100 x 20 problem size. In the 100 x 20 problem sizes,
the final best solutions are obtained after 890 iterations of the average (so the best-solution time is very close to
the total time). Since the HPSO only performs 10? iterations for each run, it shows that the particles of HPSO
did not converge in 10? iterations, and can further improve the solutions by increasing the maximum iteration.
However, since we want to compare HPSO with TSSB, we do not consider increasing the maximum iteration
because it takes too much computation time.

5. Conclusions

We have presented a hybrid particle swarm optimization (HPSO) for job shop scheduling problems in this
paper. We modified the representation of particle position, particle movement, and particle velocity to better
suit it for JSP. We also applied Tabu Search to improve solution quality. The computational results show that
HPSO can obtain better solutions than other methods.

For further research, if the HPSO we proposed is implemented to other sequential ordering problems, there
are two aspects for discussion: (1) Modify particle position representation for better suitability to the problem.
In the original PSO design, the particles search solutions in a continuous solution space. Although most
sequential ordering problems can be represented by the priority-based representation, it may not suit the
sequential ordering problems that we illustrated in Section 3.1.1. Preference list-based representation or other
representations will better suit the algorithm for sequential ordering problems. (2) Design other particle move-
ment methods and particle velocity for the modified particle position representation. Besides, which particle
movement method or particle velocity is better could be a further research topic.

Appendix A

A pseudo code of the HPSO for JSP is given below:

D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808 807

initialize a population of particles with random positions.
for each particle k do
apply G&T algorithm to decode X* (the position of particle k) into a schedule S*.
set the kth pbest solution (pbesty) equal to S*, pbest* — S*.
end for
set gbest solution equal to the best pbest*.
repeat
update velocities according to Fig. 2.
for each particle k do
move particle k according to Fig. 4.
apply G&T algorithm to decode x* into S*.
update pbest solutions and gbest solution according to Fig. 5.
apply tabu search on S .
update pbest solutions and gbest solution according to Fig. 5.
end for
until maximum iterations is attained.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34(3),
391-401.

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling. Management Science, 44(2),
262-275.

Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization. Operations Research Society of America (ORSA)
Journal on Computing, 6, 154-160.

Beasley, J. E. (1990). OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 14,
1069-1072.

Davis, L. (1985). Job shop scheduling with genetic algorithm. In J. J. Grefenstette (Ed.), Proceedings of the first international conference on
genetic algorithms (pp. 140-163). Hillsdale, NJ: Lawrence Erlbaum Associates.

Fisher, H., & Thompson, G. L. (1963). Industrial scheduling. Englewood Cliffs, NJ: Prentice-Hall.

French, S. (1982). Sequencing and scheduling: An introduction to the mathematics of the job-shop. UK: Horwood.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations
Research, 1, 117-129.

Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.

Giffler, J., & Thompson, G. L. (1960). Algorithms for solving production scheduling problems. Operations Research, 8, 487-503.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13, 533-549.

Glover, F. (1989). Tabu search: Part I. ORSA Journal on Computing, 1, 190-206.

Glover, F. (1990). Tabu search: Part II. ORSA Journal on Computing, 2, 4-32.

Gongalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European
Journal of Operational Research, 167(1), 77-95.

Jain, A. S., Rangaswamy, B., & Meeran, S. (2000). New and “‘stronger” job-shop neighbourhoods: A focus on the method of Nowicki and
Smutnicki (1996). Journal of Heuristics, 6, 457-480.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the 1995 IEEE international conference on neural
networks (Vol. 4, pp. 1942-1948). Piscataway, NJ: IEEE Press.

Kobayashi, S., Ono, 1., & Yamamura, M. (1995). An efficient genetic algorithm for job shop scheduling problems. In L. J. Eshelman (Ed.),
Proceedings of the sixth international conference on genetic algorithms (pp. 506-511). San Francisco, CA: Morgan Kaufman Publishers.

Lawrence, S., (1984). Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques. Graduate
School of Industrial Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA.

Lourengo, H. R. (1995). Local optimization and the job-shop scheduling problem. European Journal of Operational Research, 83,
347-364.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6), 797-813.

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck for the job shop scheduling problem. European
Journal of Operational Research, 120(2), 297-310.

Shi, Y., & Eberhart, R. C. (1998a). Parameter selection in particle swarm optimization. In V. W. Porto, N. Saravanan, D. Waagen, & A.
E. Eiben (Eds.), Proceedings of the 7th international conference on evolutionary programming (pp. 591-600). New York: Springer.
Shi, Y., & Eberhart, R. C. (1998b). A modified particle swarm optimizer. In D. Fogel (Ed.), Proceedings of the 1998 IEEE international

conference on evolutionary computation (pp. 69-73). Piscataway, NJ: IEEE Press.

808 D.Y. Sha, C.-Y. Hsu | Computers & Industrial Engineering 51 (2006) 791-808

Sun, D., Batta, R., & Lin, L. (1995). Effective job shop scheduling through active chain manipulation. Computers & Operations Research,
22(2), 159-172.

Taillard, E. D. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64, 278-285.

Wang, L., & Zheng, D. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations
Research, 28, 585-596.

Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-constrained project scheduling.
Automation in Construction, 14, 393-404.

	A hybrid particle swarm optimization for job shop scheduling problem
	Introduction
	The background of particle swarm optimization
	A hybrid particle swarm optimization
	Position representation
	Priority-based representation
	Preference list-based representation

	Modified particle velocity
	Modified particle movement
	The diversification strategy
	Local search
	The neighborhood structure
	Tabu list
	Back jump tracking

	Computational results
	Conclusions
	Appendix A
	References

