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Let u and v be any two distinct nodes of an undirected
graph G, which is k -connected. A container C(u, v )
between u and v is a set of internally disjoint paths
{P1, P2, . . . , Pw } between u and v where 1 ≤ w ≤ k . The
width of C(u, v ) is w and the length of C(u, v ) {written
as l [C(u, v )]} is max{l (Pi ) | 1 ≤ i ≤ w }. A w -container
C(u, v ) is a container with width w . The w -wide distance
between u and v , dw (u, v ), is min{l (C(u, v )) | C(u, v )
is a w -container}. A w -container C(u, v ) of the graph G
is a w ∗-container if every node of G is incident with a
path in C(u, v ). That means that the w -container C(u, v )
spans the whole graph. Let Sn be the n-dimensional star
graph with n ≥ 5. It is known that Sn is bipartite. In
this article, we show that, for any pair of distinct nodes
u and v in different partite sets of Sn , there exists an
(n − 1)∗-container C(u, v ) and the (n − 1)-wide distance
d(n−1)(u, v ) is less than or equal to n!

n−2 + 1. In addition,
we also show the existence of a 2∗-container C(u, v ) and
the 2-wide distance d2(u, v ) is bounded above by n!

2 + 1.
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1. BASIC DEFINITIONS

An interconnection network connects the processors of
parallel computers. Its architecture can be represented as a
graph, in which the nodes correspond to processors and the
edges correspond to connections. Hence, we use graphs and
networks interchangeably. There are many mutually conflict-
ing requirements in designing the topology for computer
networks. The n-cube is one of the most popular topolo-
gies [17]. The n-dimensional star network Sn was proposed
in [1] as “an attractive alternative to the n-cube” topology for
interconnecting processors in parallel computers. Since its
introduction, the network Sn has received considerable atten-
tion. Akers and Krishnamurthy [1] showed that the star graphs
are node transitive and edge transitive. Jwo et al. [15] showed
that the star graphs are bipartite. Star graphs are able to embed
grids [15]: trees [3,5,8], and hypercubes [22]. Cycle embed-
dings and path embeddings are studied in [10–13,15,18,23].
The diameter and fault diameters of star graphs were com-
puted in [1,16,24]. Some interesting properties of star graphs
are studied in [7, 9, 19].

For graph definitions and notation we follow [4]. G =
(V , E) is a graph if V is a finite set and E is a subset of
{(u, v) | (u, v) is an unordered pair of V}. We say that V is
the node set and E is the edge set. A graph G is vertex tran-
sitive if there is an isomorphism f from G into itself such
that f (u) = v for any two nodes u and v of G. A graph G is
edge transitive if there is an isomorphism f from G into itself
such that f ((u, v)) = (x, y) for any two edges (u, v) and (x, y)
of G. For a node u in graph G, NG(u) denotes the neighbor-
hood of u, which is the set {v | (u, v) ∈ E}. For any node
u of V , we denote the degree of u by degG(u) = |NG(u)|.
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A graph G is k-regular if degG(u) = k for all nodes u in G.
Two nodes u and v are adjacent if (u, v) ∈ E. A path P is
a sequence of adjacent nodes, written as 〈v1, v2, . . . , vk〉, in
which the nodes v1, v2, . . . , vk are distinct except that possibly
v1 = vk . We use P−1 to denote the path 〈vk , vk−1, . . . , v2, v1〉.
Let I(P) = V(P) − {v1, vk} be the set of the internal nodes
of P. A set of paths {P1, P2, . . . , Pk} is internally node-
disjoint (abbreviated as disjoint) if I(Pi) ∩ I(Pj) = ∅ for
any i �= j. The length of a path Q, l(Q), is the number
of edges in Q. We also write the path 〈v1, v2, . . . , vk〉 as
〈v1, Q1, vi, vi+1, . . . , vj, Q2, vt , . . . , vk〉, where Q1 is the path
〈v1, v2, . . . , vi〉 and Q2 is the path 〈vj, vj+1, . . . , vt〉. Hence, it is
possible to write a path as 〈v1, Q, v1, v2, . . . , vk〉 if l(Q) = 0.
We use d(u, v) to denote the distance between u and v, that
is, the length of a shortest path joining u and v. The diameter
of a graph G, D(G), is defined as max{d(u, v) | u, v ∈ V}.
A path is a hamiltonian path if it contains all nodes of G.
A graph G is hamiltonian connected if for any two dis-
tinct nodes of G there is a hamiltonian path of G between
them. A cycle is a path with at least three nodes such that
the first node is the same as the last node. A hamilto-
nian cycle of G is a cycle that traverses every node of G
exactly once. A graph is hamiltonian if it has a hamiltonian
cycle.

The connectivity of G, κ(G), is the minimum number of
nodes whose removal leaves the remaining graph discon-
nected or trivial. It follows from Menger’s Theorem [21]
that there are k internally node-disjoint paths joining any
two distinct nodes u and v when k ≤ κ(G). A container
C(u, v) between two distinct nodes u and v in G is a set of
internally disjoint paths {P1, P2, . . . , Pr} between u and v.
The width of C(u, v) is r. A w-container is a container of
width w. The length of C(u, v) = {P1, . . . , Pr}, l(C(u, v)), is
max{l(Pi) | 1 ≤ i ≤ r}. The w-wide distance between u and
v, dw(u, v), is min{l(C(u, v)) | C(u, v) is a w-container}. The
w-diameter of G, Dw(G), is max{dw(u, v) | u, v ∈ V , u �= v}.
In particular, the wide diameter of G is Dκ(G)(G). The wide
diameter is used to measure the performance of multipath
communication in networks [14].

In this article, we are interested in a specific type of con-
tainer. We say that a w-container C(u, v) is a w∗-container if
every node of G is incident with a path in C(u, v). A graph G is
w∗-connected if there exists a w∗-container between any two
distinct nodes u and v. Obviously, a graph G is 1∗-connected if
and only if it is hamiltonian connected. Moreover, a graph G is
2∗-connected if it is hamiltonian. The study of w∗-connected
graphs is motivated by the globally 3∗-connected graphs pro-
posed by Albert et al. [2]. A globally 3∗-connected graph is
a 3-regular 3∗-connected graph. Assume that a graph G is
w∗-connected. Obviously, w ≤ κ(G). A graph G is super
spanning connected if G is w∗-connected for any w with
1 ≤ w ≤ κ(G). In [19,26], some families of graphs are proved
to be super spanning connected.

Graph containers do exist in engineering designed infor-
mation and telecommunication networks or in biological
and neural systems ([1, 14] and its references). The study
of w-container, w-wide distance, and their w∗-versions

plays a pivotal role in design and implementation of
parallel routing and efficient information transmission in
large-scale networking systems. In biological informat-
ics and neuroinformatics, the existence and structure of
a w∗-container signifies the cascade effect in the sig-
nal transduction system and the reaction in a metabolic
pathway.

A graph G is bipartite if its node set can be partitioned
into two subsets V1 and V2 such that every edge joins nodes
between V1 and V2. Let G be a bipartite graph with bipartition
V1 and V2 such that |V1| ≥ |V2|. Suppose that there exists
a w∗-container C(u, v) = {P1, P2, . . . , Pw} in G joining u to
v with u, v ∈ V1. Obviously, the number of nodes in Pi is
2ti + 1 for some integer ti. There are ti − 1 nodes of Pi in V1

other than u and v, and ti nodes of Pi in V2. As a consequence,
|V1| = ∑w

i=1(ti − 1) + 2 and |V2| = ∑w
i=1 ti. Therefore, any

bipartite graph G with κ(G) ≥ 3 is not w∗-connected for any
w, 3 ≤ w ≤ κ(G).

Let G be a w∗-laceable bipartite graph with bipartite node
sets V1 and V2 and |V1 ∪ V2| ≥ 2. From the above dis-
cussion, |V1| = |V2|. For this reason, a bipartite graph is
w∗-laceable if there exists a w∗-container between any two
nodes from different partite sets for some w, 1 ≤ w ≤ κ(G).
A 1∗-laceable graph is also known as a hamiltonian laceable
graph [25]. Moreover, a graph G is 2∗-laceable if and only
if it is hamiltonian. All 1∗-laceable graphs except K1 and K2

are 2∗-laceable. A bipartite graph G is super spanning lace-
able if G is i∗-laceable for all 1 ≤ i ≤ κ(G). Recently, Chang
et al. [6] proved that the n-dimensional hypercube Qn is super
spanning laceable for every positive integer n. It was proved
in [19] that the n-dimensional star graph Sn is super spanning
laceable if and only if n �= 3.

We also define the w∗-laceable distance between any
two nodes u and v from different partite sets, dsL

w (u, v), as
min{l(C(u, v)) | C(u, v) is a w∗-container}. The w∗L -diameter
of G, denoted by DsL

w (G), is defined as max{dsL
w (u, v) | u

and v are nodes from different partite sets}. In particular,
the spanning wide diameter of G is DsL

κ(G)(G). In this arti-
cle, we evaluate the spanning wide diameter of Sn and the
2∗L -diameter of Sn.

FIG. 1. The star graphs S2, S3, and S4.
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FIG. 2. Illustration for Lemma 3.

In Section 2, we give the definition of star graphs and
introduce some basic properties of star graphs. In Section 3,
we prove some hamiltonian path properties of star graphs.
Then we discuss the spanning wide diameter of Sn in
Section 4. In Section 5, we discuss the 2∗L -spanning diameter
of Sn.

2. STAR GRAPHS AND THEIR PROPERTIES

Assume that n ≥ 2. We use 〈n〉 to denote the set
{1, 2, . . . , n}, where n is a positive integer. A permuta-
tion on 〈n〉 is a sequence of n distinct elements ui ∈ 〈n〉,
u1u2 . . . ui . . . un. An inversion of u1u2 . . . ui . . . un is a pair
(i, j) such that ui < uj and i > j. An even permutation is a
permutation with an even number of inversions, and an odd
permutation is a permutation with an odd number of inver-
sions. The n-dimensional star network, denoted by Sn, is a
graph with the node set V(Sn) = {u1u2 . . . un | ui ∈ 〈n〉
and ui �= uj for i �= j}. The edges are specified as follows:
u1u2 . . . ui . . . un is adjacent to v1v2 . . . vi . . . vn by an edge in
dimension i with 2 ≤ i ≤ n if vj = uj for j /∈ {1, i}, v1 = ui

and vi = u1. By definition, Sn is an (n−1)-regular graph with
n! nodes. Moreover, it is node transitive and edge transitive
[1]. The star graphs S2, S3, and S4 are shown in Figure 1 for
an illustration.

We use boldface to denote nodes in Sn. Hence, u1, u2, . . . ,
un denotes a sequence of nodes in Sn. We use e to denote
the element 12 . . . n. It is known that Sn is a bipartite graph
with one partite set containing those nodes corresponding to
odd permutations and the other partite set containing those
nodes corresponding to even permutations. We will use white
nodes to represent those even permutation nodes and use
black nodes to represent those odd permutation nodes. Let
u = u1u2 . . . un be any node of the star graph Sn. We say that
ui is the i-th coordinate of u, denoted by (u)i, for 1 ≤ i ≤ n.
By the definition of Sn, there is exactly one neighbor v of u
such that u and v are adjacent through an i-dimensional edge
with 2 ≤ i ≤ n. For this reason, we use (u)i to denote the
unique i-neighbor of u. Obviously, ((u)i)i = u. For 1 ≤ i ≤ n,
let S{i}

n denote the subgraph of Sn induced by those nodes u
with (u)n = i. Obviously, Sn can be decomposed into n sub-
graphs S{i}

n , 1 ≤ i ≤ n, and each S{i}
n is isomorphic to Sn−1.

Thus, the star graph can be constructed recursively. Obvi-
ously, u ∈ S{(u)n}

n and (u)n ∈ S{(u)1}
n . Let I ⊆ 〈n〉. We use

SI
n to denote the subgraph of Sn induced by ∪i∈I V

(
S{i}

n

)
. For

1 ≤ i �= j ≤ n, we use Ei,j to denote the set of edges between
S{i}

n and S{j}
n . For 1 ≤ i �= j ≤ n, we use S{(i,j)}

n to denote the
subgraph of Sn induced by those nodes u with (u)n−1 = i and

(u)n = j. Obviously, S{(i,j)}
n �= S{(j,i)}

n and S{(i,j)}
n is isomorphic

to Sn−2.

Lemma 1 ([23]). Assume that n ≥ 4. |Ei,j| = (n − 2)! for
any 1 ≤ i �= j ≤ n. Moreover, there are (n−2)!

2 edges joining
black nodes of S{i}

n to white nodes of S{j}
n .

Lemma 2 ([1]). Let u and v be any two distinct nodes of
Sn with d(u, v) ≤ 2. Then (u)1 �= (v)1. Moreover, {((u)i)1 |
2 ≤ i ≤ n − 1} = 〈n〉 − {(u)1, (u)n} if n ≥ 3.

3. HAMILTONIAN PATHS OF STAR GRAPHS

Theorem 1 ([11]). Sn is hamiltonian laceable if and only
if n �= 3.

Theorem 2 ([18]). Suppose that w is any black node of Sn

with n ≥ 4. Then there is a hamiltonian path P of Sn − {w}
between any two distinct white nodes u and v.

Lemma 3. Let n ≥ 5 and I = {a1, a2, . . . , ar} be a subset
of 〈n〉 for some r ∈ 〈n〉. Assume that u is a white node in S{a1}

n

and v is a black node in S{ar}
n . Then there is a hamiltonian

path P of SI
n joining u to v.

Proof. Let x1 = u and yr = v. Obviously, S{ai}
n is

isomorphic to Sn−1 for every i ∈ 〈r〉. By Theorem 1, this
result holds on r = 1. Suppose that r ≥ 2. By Lemma 1,
there are (n − 2)!/2 ≥ 3 edges joining black nodes of S{ai}

n

to white nodes of S{ai+1}
n for every i ∈ 〈r − 1〉. For every

i ∈ 〈r −1〉, we can choose a black node yi ∈ S{ai}
n and a white

node xi+1 ∈ S{ai+1}
n such that (yi, xi+1) ∈ Eai ,ai+1 . By Theo-

rem 1, there is a hamiltonian path Hi of S{ai}
n joining xi to yi

for every i ∈ 〈r〉. Then 〈x1, H1, y1, x2, H2, y2, . . . , xr, Hr , yr〉
forms the desired hamiltonian path of SI

n joining u to v. See
Figure 2 for an illustration. ■

Lemma 4. Assume that r and s are any two adjacent nodes
of Sn with n ≥ 4. Then, for any white node u in Sn − {r, s}
and for any i ∈ 〈n〉, there exists a hamiltonian path P of
Sn − {r, s} joining u to some black node v of Sn − {r, s}
with (v)1 = i.

Proof. Because Sn is node transitive and edge transitive,
we assume that r = e and s = (e)2. Obviously, both e and
(e)2 are in S{n}

n . We prove this lemma by induction on n.
Suppose that n = 4. The required hamiltonian paths of S4 −
{1234, 2134} are listed below.
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〈1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 4312, 2314, 3214, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 1243〉
〈1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 4312, 2314, 3214, 4213, 1243, 3241, 4231, 2431, 3421, 1423, 2413〉
〈1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 3412, 2413, 1423, 3421〉
〈1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 2431, 3421, 1423, 2413, 3412, 4312, 2314, 3214, 4213, 1243, 3241, 4231〉
〈1423, 3421, 4321, 2341, 1342, 4312, 3412, 2413, 4213, 3214, 2314, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243〉
〈1423, 3421, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413〉
〈1423, 3421, 2431, 4231, 3241, 1243, 4213, 2413, 3412, 1432, 4132, 3142, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 4312, 2314, 3214〉
〈1423, 3421, 2431, 4231, 3241, 1243, 2143, 3142, 4132, 1432, 3412, 2413, 4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123〉
〈2143, 3142, 4132, 1432, 3412, 2413, 1423, 4123, 3124, 1324, 4321, 3421, 2431, 4231, 3241, 2341, 1342, 4312, 2314, 3214, 4213, 1243〉
〈2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 3124, 4123, 1423, 3421, 4321, 2341, 1342, 4312, 3412, 2413〉
〈2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 3124, 4123, 1423, 2413, 3412, 4312, 1342, 2341, 4321, 3421〉
〈2143, 3142, 4132, 1432, 2431, 3421, 4321, 2341, 1342, 4312, 3412, 2413, 1423, 4123, 3124, 1324, 2314, 3214, 4213, 1243, 3241, 4231〉
〈2314, 3214, 4213, 1243, 3241, 4231, 2431, 3421, 1423, 2413, 3412, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432〉
〈2314, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 4132, 3142, 2143, 4123, 3124, 1324, 4321, 3421, 1423, 2413, 3412, 4312, 1342, 2341〉
〈2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421, 2431, 4231, 3241, 1243, 4213, 3214〉
〈2314, 3214, 4213, 1243, 3241, 4231, 2431, 3421, 1423, 2413, 3412, 1432, 4132, 3142, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 4312〉
〈2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 4321, 3421, 1423, 2413, 3412, 1432, 4132, 3142, 2143, 4123, 3124, 1324〉
〈2431, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 4312, 1342, 2341, 4321, 3421, 1423, 2413〉
〈2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421〉
〈2431, 3421, 4321, 1324, 3124, 4123, 1423, 2413, 3412, 1432, 4132, 3142, 2143, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 3241, 4231〉
〈3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 2341, 1342, 4312, 3412, 2413, 1423, 3421, 4321, 1324, 2314, 3214, 4213, 1243〉
〈3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 4321, 3421, 1423, 2413, 3412, 4312, 1342, 2341〉
〈3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 4321, 2341, 1342, 4312, 3412, 2413, 1423, 3421〉
〈3124, 4123, 2143, 3142, 4132, 1432, 2431, 3421, 1423, 2413, 3412, 4312, 1342, 2341, 4321, 1324, 2314, 3214, 4213, 1243, 3241, 4231〉
〈3241, 4231, 2431, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 1423, 2413, 3412, 4312, 2314, 3214, 4213, 1243, 2143, 4123, 3124, 1324〉
〈3241, 4231, 2431, 1432, 4132, 3142, 2143, 1243, 4213, 3214, 2314, 1324, 3124, 4123, 1423, 3421, 4321, 2341, 1342, 4312, 3412, 2413〉
〈3241, 4231, 2431, 1432, 4132, 3142, 2143, 1243, 4213, 3214, 2314, 1324, 3124, 4123, 1423, 2413, 3412, 4312, 1342, 2341, 4321, 3421〉
〈3241, 1243, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314, 3214, 4213, 2413, 1423, 3421, 2431, 4231〉
〈3412, 2413, 1423, 3421, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432〉
〈3412, 2413, 1423, 3421, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341〉
〈3412, 2413, 1423, 3421, 4321, 1324, 3124, 4123, 2143, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 3241, 4231, 2431, 1432, 4132, 3142〉
〈3412, 2413, 1423, 3421, 2431, 1432, 4132, 3142, 1342, 4312, 2314, 3214, 4213, 1243, 2143, 4123, 3124, 1324, 4321, 2341, 3241, 4231〉
〈4132, 3142, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 4312, 2314, 3214, 4213, 1243, 3241, 4231, 2431, 3421, 1423, 2413, 3412, 1432〉
〈4132, 3142, 2143, 4123, 3124, 1324, 4321, 3421, 1423, 2413, 3412, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341〉
〈4132, 3142, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 4312, 2314, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 3412, 2413, 1423, 3421〉
〈4132, 3142, 2143, 4123, 3124, 1324, 2314, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 3412, 2413, 1423, 3421, 4321, 2341, 1342, 4312〉
〈4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421, 2431, 4231, 3241, 1243〉
〈4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 1423, 3421, 2431, 4231, 3241, 1243, 2143, 3142, 4132, 1432, 3412, 2413〉
〈4213, 3214, 2314, 4312, 1342, 2341, 4321, 1324, 3124, 4123, 2143, 1243, 3241, 4231, 2431, 3421, 1423, 2413, 3412, 1432, 4132, 3142〉
〈4213, 3214, 2314, 4312, 1342, 2341, 3241, 1243, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 4123, 3124, 1324, 4321, 3421, 2431, 4231〉
〈4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 1342, 4312, 2314, 3214, 4213, 1243〉
〈4321, 1324, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421, 2431, 4231, 3241, 1243, 4213, 3214, 2314, 4312, 1342, 2341〉
〈4321, 1324, 3124, 4123, 2143, 1243, 4213, 3214, 2314, 4312, 1342, 2341, 3241, 4231, 2431, 3421, 1423, 2413, 3412, 1432, 4132, 3142〉
〈4321, 1324, 3124, 4123, 2143, 1243, 3241, 2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314, 3214, 4213, 2413, 1423, 3421, 2431, 4231〉

Assume that this result holds in Sk for every 4 ≤ k ≤ n−1.
We have the following cases:

Case 1. u ∈ S{n}
n . By induction, there is a hamiltonian

path P of S{n}
n − {e, (e)2} joining u to a black node x with

(x)1 = n − 1. Note that (x)n is a white node of S{n−1}
n . We

choose a black node v in S〈n−2〉
n with (v)1 = i. By Lemma 3,

there is a hamiltonian path Q of S〈n−1〉
n joining (x)n to v.

Then 〈u, P, x, (x)n, Q, v〉 forms the desired hamiltonian path
of Sn −{e, (e)2} joining u to v with (v)1 = i. See Figure 3(a)
for an illustration.

Case 2. u ∈ S{k}
n for some k ∈ 〈n − 1〉. By Lemma 1, there

are (n − 2)!/2 ≥ 3 edges joining black nodes of S{k}
n to white

nodes of S{n}
n . We can choose a white node x ∈ S{n}

n −{e, (e)2}
with (x)1 = k. By Theorem 1, there is a hamiltonian path P

FIG. 3. Illustration for Lemma 4.
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FIG. 4. Illustration for Theorem 3.

of S{k}
n joining u to the black node (x)n. By induction, there

is a hamiltonian path Q of S{n}
n − {e, (e)2} joining x to a

black node y with (y)1 ∈ 〈n − 1〉 − {k}. We choose a black
node v in S〈n−1〉−{k,(y)1}

n with (v)1 = i. By Lemma 3, there
exists a hamiltonian path R of S〈n−1〉−{k}

n joining the white
node (y)n to v. Then 〈u, P, (x)n, x, Q, y, (y)n, R, v〉 forms the
desired hamiltonian path of Sn − {e, (e)2} joining u to v with
(v)1 = i. See Figure 3(b) for an illustration. ■

Theorem 3. Let n ≥ 5 and I = {a1, a2, . . . , ar} be a subset
of 〈n〉 for some r ∈ 〈n〉. Then SI

n is hamiltonian laceable.

Proof. Let u be a white node and v be a black node of SI
n.

By Lemma 3, this theorem holds on either r = 1 or r ≥ 2 and
(u)n �= (v)n. Thus, we assume that r ≥ 2 and (u)n = (v)n.
Without loss of generality, we assume that (u)n = (v)n = a1.

Case 1. (v)n ∈ SI
n. Without loss of generality, we assume

that (v)n ∈ S{ar}
n . By Theorem 2, there is a hamiltonian path

P of S{a1}
n − {v} joining u to a white node x with (x)1 =

a2. By Lemma 3, there is a hamiltonian path Q of SI−{a1}
n

joining the black node (x)n to the white node (v)n. Then
〈u, P, x, (x)n, Q, (v)n, v〉 forms the desired hamiltonian path
of SI

n joining u to v. See Figure 4(a) for an illustration.

Case 2. (u)n /∈ SI
n and (v)n /∈ SI

n. We can choose a white
node y with y being a neighbor of v in S{a1}

n and (y)1 = ar .
Obviously, y �= u. By Lemma 4, there is a hamiltonian path P
of S{a1}

n − {v, y} joining u to a black node x with (x)1 = a2.
By Lemma 3, there is a hamiltonian path Q of SI−{a1}

n

joining the white node (x)n to the black node (y)n. Then
〈u, P, x, (x)n, Q, (y)n, y, v〉 is the desired hamiltonian path of
SI

n joining u to v. See Figure 4(b) for an illustration. ■

Theorem 4. Assume that r and s are two adjacent nodes of
Sn with n ≥ 5. Then Sn − {r, s} is hamiltonian laceable.

Proof. Because Sn is node transitive and edge transitive,
we assume that r = e and s = (e)2. Obviously, both e and
(e)2 are in S{n}

n . Let u be a white node and v be a black
node of Sn − {e, (e)2}. We want to find a hamiltonian path of
Sn − {e, (e)2} joining u to v.

Case 1. u, v ∈ S{n}
n . By Lemma 4, there is a hamiltonian path

P of S{n}
n − {e, (e)2} joining u to a black node y with (y)1 = 1.

We write P as 〈u, Q1, x, v, Q2, y〉. (Note that l(Q1) = 0 if
u = x and l(Q2) = 0 if v = y.) By Theorem 3, there is a
hamiltonian path R of S〈n−1〉

n joining the black node (x)n to the
white node (y)n. Then 〈u, Q1, x, (x)n, R, (y)n, y, (Q2)

−1, v〉 is
the desired hamiltonian path of Sn − {e, (e)2} joining u to v.
See Figure 5(a) for an illustration.

Case 2. u, v ∈ S{k}
n for some k ∈ 〈n − 1〉. By Theo-

rem 1, there is a hamiltonian path P of S{k}
n joining u to v. By

Lemma 1, there are (n−2)!/2 ≥ 3 edges joining white nodes
of S{k}

n to black nodes of S{n}
n . We can choose a white node x

of S{k}
n , with (x)n being a black node of S{n}

n − {e, (e)2}. We
write P as 〈u, Q1, x, y, Q2, v〉. (Note that l(Q1) = 0 if u = x
and l(Q2) = 0 if v = y.) Because d(x, y) = 1, by Lemma 2,
(y)1 ∈ 〈n − 1〉 − {k}. By Lemma 4, there is a hamiltonian
path R of S{n}

n − {e, (e)2} joining (x)n to a white node z with
(z)1 ∈ 〈n − 1〉 − {k}. By Theorem 3, there is a hamiltonian
path T of S〈n−1〉−{k}

n joining the black node (z)n to the white
node (y)n. Then 〈u, Q1, x, (x)n, R, z, (z)n, T , (y)n, y, Q2, v〉 is
the desired hamiltonian path of Sn − {e, (e)2} joining u to v.
See Figure 5(b) for an illustration.

Case 3. u ∈ S{n}
n and v ∈ S{k}

n for some k ∈ 〈n − 1〉. By
Lemma 4, there is a hamiltonian path P of S{n}

n − {e, (e)2}
joining u to a black node x with (x)1 ∈ 〈n−1〉. By Theorem 3,
there is a hamiltonian path Q of S〈n−1〉

n joining the white node
(x)n to v. Then 〈u, P, x, (x)n, Q, v〉 is the desired hamiltonian
path of Sn − {e, (e)2} joining u to v. See Figure 5(c) for an
illustration.

Case 4. u ∈ S{k}
n and v ∈ S{l}

n with k, l, and n being distinct.
By Lemma 1, there are (n − 2)!/2 ≥ 3 edges joining black
nodes of S{k}

n to white nodes of S{n}
n . We choose a black node

x of S{k}
n with (x)n being a white node of S{n}

n − {e, (e)2}. By
Theorem 1, there is a hamiltonian path P of S{k}

n joining u to x.
By Lemma 4, there is a hamiltonian path Q of S{n}

n −{e, (e)2}
joining (x)n to a black node y with (y)1 ∈ 〈n − 1〉 − {k}. By
Theorem 3, there is a hamiltonian path R of S〈n−1〉−{k}

n joining

FIG. 5. Illustration for Theorem 4.
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the white node (y)n to v. Then 〈u, P, x, (x)n, Q, y, (y)n, R, v〉
is the desired hamiltonian path of Sn −{e, (e)2} joining u to v.
See Figure 5(d) for an illustration. ■

Lemma 5. Assume that n ≥ 5. Suppose that p and q are
two different white nodes of Sn, and r and s are two different
black nodes of Sn. Then there exist two disjoint paths P1 and
P2 such that (1) P1 joins p to r, (2) P2 joins q to s, and (3)
P1 ∪ P2 spans Sn.

Proof. Because Sn is edge transitive, we assume that
p ∈ S{n}

n and q ∈ S{n−1}
n . Suppose that r ∈ S{i}

n and s ∈ S{j}
n .

Case 1. i, j ∈ 〈n − 2〉 with i �= j. By Theorem 3, there is a
hamiltonian path P1 of S{i,n}

n joining p to r. Again, there is a
hamiltonian path P2 of S〈n−1〉−{i}

n joining q to s. Then P1 and
P2 are the desired paths.

Case 2. i, j ∈ 〈n−2〉 with i = j. We can choose a white node
x with x being a neighbor of s in S{i}

n and (x)1 ∈ 〈n − 1〉 − {i}.
By Lemma 4, there is a hamiltonian path Q of S{i}

n − {s, x}
joining r to a white node y with (y)1 = n. By Theorem 3, there
is a hamiltonian path P of S{n}

n joining p to the black node (y)n.
Moreover, there is a hamiltonian path R of S〈n−1〉−{i}

n joining
q to the black node (x)n. Then P1 = 〈p, P, (y)n, y, Q−1, r〉
and P2 = 〈q, R, (x)n, x, s〉 are the desired paths.

Case 3. Either (i = n and j ∈ 〈n−1〉), or (i ∈ 〈n〉−{n−1}
and j = n − 1). By symmetry, we assume that i = n and
j ∈ 〈n − 1〉. By Theorem 3, there is a hamiltonian path P1 of
S{n}

n joining p to r. Moreover, there is a hamiltonian path P2

of S〈n−1〉
n joining q to s. Then P1 and P2 are the desired paths.

Case 4. Either (i = n − 1 and j ∈ 〈n − 2〉), or (i ∈ 〈n −
2〉 and j = n). By symmetry, we assume that i = n − 1
and j ∈ 〈n − 2〉. By Lemma 1, there exist (n − 2)!/2 ≥ 3
edges joining white nodes of S{n−1}

n to black nodes of S{n}
n .

We can choose a white node x in S{n−1}
n − {q} with (x)1 =

n. By Theorem 3, there is a hamiltonian path R of S{n−1}
n

joining q to r. We write R as 〈q, R1, y, x, R2, r〉. By Theorem 3,

there is a hamiltonian path P of S{n}
n joining p to the black node

(x)n. Because d(x, y) = 1, by Lemma 2, (y)n ∈ S〈n−2〉
n . By

Theorem 3, there exists a hamiltonian path Q of S〈n−2〉
n joining

the white node (y)n to s. Then P1 = 〈p, P, (x)n, x, R2, r〉 and
P2 = 〈q, R1, y, (y)n, Q, s〉 are the desired paths.

Case 5. i = n−1 and j = n. By Theorem 3, there is a hamil-
tonian path Q of S{n}

n joining p to s. Again, there is a hamilto-
nian path R of S{n−1}

n joining q to r. We choose a white node
x ∈ S{n}

n with (x)1 = n − 1. We write Q as 〈p, Q1, x, y, Q2, s〉
and write R as 〈q, R1, w, (x)n, R2, r〉. Obviously, y is a
black node and w is a white node. Because d(x, y) = 1,
by Lemma 2, (y)1 ∈ 〈n − 2〉. Because d((x)n, w) = 1, by
Lemma 2, (w)1 ∈ 〈n − 2〉. By Theorem 3, there exists a
hamiltonian path W of S〈n−2〉

n joining the black node (w)n

to the white node (y)n. Then P1 = 〈p, Q1, x, (x)n, R2, r〉 and
P2 = 〈q, R1, w, (w)n, W , (y)n, y, Q2, s〉 are the desired paths.

Case 6. Either i = j = n or i = j = n − 1. By sym-
metry, we assume that i = j = n. By Theorem 3, there is
a hamiltonian path P of S{n}

n joining p to s. We can write
P as 〈p, R1, r, x, R2, s〉. By Theorem 3, there is a hamilto-
nian path Q of S〈n−1〉

n joining q to the black node (x)n. Then
P1 = 〈p, R1, r〉 and P2 = 〈q, Q, (x)n, x, R2, s〉 are the desired
paths. ■

4. THE (n − 1)∗L-DIAMETER OF Sn

Let u be a node of Sn with n ≥ 4 and let m be any integer
with 3 ≤ m ≤ n. We set Fm(u) = {(u)i | 3 ≤ i ≤ m} ∪
{((u)i)i−1 | 3 ≤ i ≤ m}.
Lemma 6. Assume that u is a white node of Sn and j ∈ 〈n〉
with n ≥ 4. Then there is a hamiltonian path P of Sn − Fn(u)

joining u to some black node v with (v)1 = j.

Proof. We prove this lemma by induction on n. Because
Sn is node transitive, we assume that u = e. Suppose that
n = 4. The required hamiltonian paths of S4 − F4(e) are
listed below:

j = 1 〈1234, 2134, 3124, 4123, 1423, 3421, 2431, 1432, 4132, 3142, 2143, 1243, 4213, 2413, 3412, 4312, 1342, 2341, 4321, 1324〉
j = 2 〈1234, 2134, 4132, 3142, 1342, 4312, 3412, 1432, 2431, 3421, 1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 4321, 2341〉
j = 3 〈1234, 2134, 4132, 1432, 2431, 3421, 1423, 4123, 3124, 1324, 4321, 2341, 1342, 4312, 3412, 2413, 4213, 1243, 2143, 3142〉
j = 4 〈1234, 2134, 3124, 1324, 4321, 2341, 1342, 3142, 4132, 1432, 2431, 3421, 1423, 4123, 2143, 1243, 4213, 2413, 3412, 4312〉

Assume that this statement holds on any Sk for every
4 ≤ k ≤ n−1. We have Fn(e) = Fn−1(e)∪{(e)n, ((e)n)n−1}.
By induction, there is a hamiltonian path P of S{n}

n − Fn−1(e)
joining e to a black node x with (x)1 = 1. By Lemma 4,
there is a hamiltonian path Q of S{1}

n − {(e)n, ((e)n)n−1}
joining the white node (x)n to a black node y with
(y)1 = 2. We can choose a black node z of S〈n−1〉−{1}

n

with (z)1 = j. By Theorem 3, there exists a hamiltonian
path R of S〈n−1〉−{1}

n joining the white node (y)n to z.

Then 〈e, P, x, (x)n, Q, y, (y)n, R, z〉 is a desired hamiltonian
path. ■

Lemma 7. Let u = u1u2u3u4 be any white node of S4.
There exist three paths P1, P2, and P3 such that (1) P1 joins
u to the black node u2u4u1u3 with l(P1) = 7, (2) P2 joins u
to the white node u3u4u1u2 with l(P2) = 8, (3) P3 joins u to
the white node u4u1u3u2 with l(P3) = 8, and (4) P1 ∪P2 ∪P3

spans S4.
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Proof. Because S4 is node transitive, we assume that
u = 1234. Then we set

P1 = 〈1234, 3214, 4213, 1243, 2143, 4123, 1423, 2413〉,
P2 = 〈1234, 4231, 3241, 2341, 4321,

3421, 2431, 1432, 3412〉, and

P3 = 〈1234, 2134, 3124, 1324, 2314,

4312, 1342, 3142, 4132〉.

Obviously, P1, P2, and P3 are the desired paths. ■

Lemma 8. Let u = u1u2u3u4 be any white node of S4. Let
i1i2i3 be a permutation of u2, u3, and u4. There exist four

paths P1, P2, P3, and P4 of S4 such that (1) P1 joins u to a
white node w with (w)1 = i1 and l(P1) = 2, (2) P2 joins u to
a white node x with (x)1 = i2 and l(P2) = 2, (3) P3 joins u
to a black node y with (y)1 = i3 and l(P3) = 19, (4) P4 joins
u to a black node z with z �= y, (z)1 = i3, and l(P4) = 19,
(5) P1 ∪ P2 ∪ P3 spans S4, (6) P1 ∪ P2 ∪ P4 spans S4, (7)
V(P1) ∩ V(P2) ∩ V(P3) = {u}, and (8) V(P1) ∩ V(P2) ∩
V(P4) = {u}.

Proof. Because S4 is node transitive, we assume that
u = 1234. Because u = 1234, we have {i1, i2} ⊂ {2, 3, 4}
and i3 ∈ {2, 3, 4} − {i1, i2}. Without loss of generality, we
suppose that i1 < i2. The required four paths are listed
below.

i1 = 2 P1 = 〈1234, 4231, 2431〉
i2 = 3 P2 = 〈1234, 2134, 3124〉
i3 = 4 P3 = 〈1234, 3214, 2314, 1324, 4321, 3421, 1423, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 4213, 1243, 3241, 2341, 1342, 4312〉

P4 = 〈1234, 3214, 2314, 1324, 4321, 3421, 1423, 2413, 4213, 1243, 3241, 2341, 1342, 4312, 3412, 1432, 4132, 3142, 2143, 4123〉
i1 = 2 P1 = 〈1234, 4231, 2431〉
i2 = 4 P2 = 〈1234, 3214, 4213〉
i3 = 3 P3 = 〈1234, 2134, 3124, 4123, 2143, 1243, 3214, 2314, 1342, 4312, 2314, 1324, 4321, 3421, 1423, 2413, 3412, 1432, 4132, 3142〉

P4 = 〈1234, 2134, 3142, 1324, 2314, 4312, 1342, 3142, 4132, 1432, 3412, 2413, 1423, 4123, 2143, 1243, 3241, 2341, 4321, 3421〉
i1 = 3 P1 = 〈1234, 2134, 3124〉
i2 = 4 P2 = 〈1234, 3214, 4213〉
i3 = 2 P3 = 〈1234, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 3412, 4312, 2314, 1324, 4321, 3421, 2431, 1432, 4132, 3142, 1342, 2341〉

P4 = 〈1234, 4231, 3241, 1243, 2143, 4123, 1423, 3421, 2431, 1432, 4132, 3142, 1342, 2341, 4321, 1324, 2314, 4312, 3412, 2413〉

Thus, this statement is proved. ■

Lemma 9. Assume that n ≥ 5 and i1i2 . . . in−1 is an (n−1)-
permutation on 〈n〉. Let u be any white node of Sn. Then there
exist (n−1) paths P1, P2, . . . , Pn−1 of Sn such that (1) P1 joins
u to a black node y1 with (y1)1 = i1 and l(P1) = n(n−2)!−1,
(2) Pj joins u to a white node yj with (yj)1 = ij and l(Pj) =
n(n − 2)! for every 2 ≤ j ≤ n − 1, (3) ∪n−1

j=1 Pj spans Sn, and
(4) ∩n−1

j=1 V(Pj) = {u}.

Proof. The proof of this lemma is rather tedious. The
authors strongly suggest the reader skim over the proof first
and comprehend the details later.

Because Sn is node transitive, we assume that u = e.
Without loss of generality, we suppose that i2 < i3 < · · · <

in−1.

Case 1. n = 5. Hence, n(n −2)! = 30. We have i2 �= 4, i3 ≥
2, and i4 ≥ 3. We set x1 = (e)5 and xi = ((xi−1)

i)5 for
every 2 ≤ i ≤ 4, and x5 = ((x4)

3)5. Note that xi is a black
node in S{i}

n for every i ∈ 〈4〉 and x5 is a black node in S{1}
n .

Obviously, x1 �= x5. We set H = 〈e, x1, (x1)
2, x2, (x2)

3, x3,
(x3)

4, x4, (x4)
3, x5〉.

Case 1.1. i1 = 3. We have i2 �= 4, i3 �= 3, and i4 �= 1. Let
u1 = 24135, u2 = 41325, and u3 = 34125. We set

W1 = 〈e = 12345, 32145, 42135, 12435,

21435, 41235, 14235, 24135 = u1〉,
W2 = 〈e = 12345, 21345, 31245, 13245,

23145, 43125, 13425, 31425, 41325 = u2〉, and

W3 = 〈e = 12345, 42315, 32415, 23415,

43215, 34215, 24315, 14325, 34125 = u3〉.
Obviously, W1 ∪ W2 ∪ W3 spans S{5}

5 and V(Wi) ∩ V(Wj) =
{e} for every i, j ∈ 〈3〉 with i �= j. By Lemma 4,
there exists a hamiltonian path Q1 of S{2}

5 − {x2, (x2)
3}

joining the white node (u1)
5 to a black node y1 with

(y1)1 = i1. Again, there exists a hamiltonian path Q2 of
S{4}

5 − {x4, (x4)
3} joining the black node (u2)

5 to a white
node y2 with (y2)1 = i2. Moreover, there exists a hamil-
tonian path Q3 of S{3}

5 − {x3, (x3)
4} joining the black node

(u3)
5 to a white node y3 with (y3)1 = i3. Similarly, there

exists a hamiltonian path Q4 of S{1}
5 − {x1, (x1)

2} joining
the black node x5 to a white node y4 with (y4)1 = i4.
We set

P1 = 〈e, W1, u1, (u1)
5, Q1, y1〉,

P2 = 〈e, W2, u2, (u2)
5, Q2, y2〉,

P3 = 〈e, W3, u3, (u3)
5, Q3, y3〉, and

P4 = 〈e, H, x5, Q4, y4〉.
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FIG. 6. Illustration of case 1.

Obviously, l(P1) = 29 and l(Pi) = 30 for every 2 ≤ i ≤ 4.
Apparently, P1, P2, P3, and P4 are the desired paths. See
Figure 6(a) for an illustration.

Case 1.2. i1 �= 3. We have i2 �= 4, i3 �= 1, and i4 �= 2. Let
u1 = 31425, u2 = 42135, and u3 = 21435. We set

W1 = 〈e = 12345, 21345, 41325, 14325,

34125, 43125, 13425, 31425 = u1〉,
W2 = 〈e = 12345, 32145, 23145, 13245,

31245, 41235, 14235, 24135, 42135 = u2〉, and

W3 = 〈e = 12345, 42315, 24315, 34215,

43215, 23415, 32415, 12435, 21435 = u3〉.
Obviously, W1∪W2∪W3 spans S{5}

5 and V(Wi)∩V(Wj) = {e}
for every i, j ∈ 〈3〉 with i �= j. By Lemma 4, there exists a
hamiltonian path Q1 of S{3}

5 − {x3, (x3)
4} joining the white

node (u1)
5 to a black node y1 with (y1)1 = i1. Again,

there exists a hamiltonian path Q2 of S{4}
5 − {x4, (x4)

3}
joining the black node (u2)

5 to a white node y2 with
(y2)1 = i2. Moreover, there exists a hamiltonian path Q3 of
S{1}

5 − {x1, (x1)
2} joining the black node x5 to a white node y3

with (y3)1 = i3. Similarly, there exists a hamiltonian path Q4

of S{2}
5 − {x2, (x2)

3} joining the black node (u3)
5 to a white

node y4 with (y4)1 = i4. We set

P1 = 〈e, W1, u1, (u1)
5, Q1, y1〉,

P2 = 〈e, W2, u2, (u2)
5, Q2, y2〉,

P3 = 〈e, H, x5, Q3, y3〉, and

P4 = 〈e, W3, u3, (u3)
5, Q4, y4〉.

Obviously, l(P1) = 29 and l(Pi) = 30 for every 2 ≤ i ≤ 4.
Apparently, P1, P2, P3, and P4 are the desired paths. See
Figure 6(b) for an illustration.

Case 2. n ≥ 6. Because n − 1 ≥ 5, we have ik �= k + 2
for every 2 ≤ k ≤ n − 4, in−3 �= 1, in−2 �= 2, and

in−1 �= 3. We set uj = (e)j+2 and vj = ((e)j+2)j+1 for every
j ∈ 〈n − 4〉. Thus, uj is a black node in S{(n−1,n)}

n and vj is
a white node in S{(n−1,n)}

n for every j ∈ 〈n − 4〉. Note that
Fn−2(e) = {uj | j ∈ 〈n − 4〉} ∪ {vj | j ∈ 〈n − 4〉}.

By Lemma 6, there is a hamiltonian path P of S{(n−1,n)}
n −

Fn−2(e) joining e to a black node x1 with (x1)1 = 2. We
recursively set xj as the unique neighbor of (xj−1)

n−1 in
S{(j,n)}

n with (xj)1 = j + 1 for every 2 ≤ j ≤ n − 4, and
we set xn−3 as the unique neighbor of (xn−4)

n−1 in S{(n−3,n)}
n

with (xn−3)1 = n − 1. It is easy to see that xj is a black
node for 1 ≤ j ≤ n − 3 and {(xj)

n−1, xj+1} ⊂ S{(j+1,n)}
n for

1 ≤ j ≤ n − 4. We construct Pj for every 1 ≤ j ≤ n − 1 as
follows:

1. j ∈ 〈n − 4〉 − {1}. By Lemma 4, there is a hamiltonian
path Tj of S{(j+1,n)}

n − {(xj)
n−1, xj+1} joining the black

node (vj)
n−1 to a white node zj with (zj)1 = j + 2.

Again, there is a hamiltonian path T ′
j of S{j+2}

n joining
the black node (zj)

n to a white node yj with (yj)1 = ij .
Then we set Pj as 〈e, uj, vj, (vj)

n−1, Tj , zj, (zj)
n, T ′

j , yj〉.
Obviously, l(Pj) = n(n − 2)!.

2. j = n − 3. We choose a white node yn−3 in S{1}
n

with (yn−3)1 = in−3. Note that there are ((n − 3)!/2)

edges joining some black nodes of S{(n−2,n)}
n to some

white nodes of S{1}
n and there are ((n − 3)!/2) edges

joining some white nodes of S{(n−2,n)}
n to some black

nodes of S{1}
n . We choose a white node r in S{1}

n with
(r)n being a black node in S{(n−2,n)}

n and choose a black
node s in S{1}

n with (s)n being a white node in S{(n−2,n)}
n .

By Lemma 5, there exist two disjoint paths H1 and
H2 of S{1}

n such that (1) H1 joins (e)n to r, (2) H2

joins s to yn−3, and (3) H1 ∪ H2 spans S{1}
n . By The-

orem 3, there is a hamiltonian path H of S{(n−2,n)}
n

joining the black node (r)n to the white node (s)n.
We set Pn−3 as 〈e, (e)n, H1, r, (r)n, H, (s)n, s, H2, yn−3〉.
Obviously, l(Pn−3) = n(n − 2)!.

3. j = n − 1. By Lemma 4, there is a hamiltonian path Q1

of S{(2,n)}
n − {(x1)

n−1, x2} joining the black node (v1)
n−1

to a white node q with (q)1 = 3. Again, there is a hamil-
tonian path Q2 of S{3}

n joining the black node (q)n to
a white node yn−1 with (yn−1)1 = in−1. We set Pn−1

as 〈e, u1, v1, (v1)
n−1, Q1, q, (q)n, Q2, yn−1〉. Obviously,

l(Pn−1) = n(n − 2)!.
4. We construct P1 and Pn−2 dependent on whether i1 =

n − 1 or not. We set L as 〈x1, (x1)
n−1, x2, (x2)

n−1, . . . ,
xn−4, (xn−4)

n−1, xn−3, (xn−3)
n〉. By Theorem 1, there is

a hamiltonian path W of S{(1,n)}
n joining the black node

(e)n−1 to a white node p with (p)1 = 2.

Suppose that i1 �= n − 1. By Theorem 1, there is a
hamiltonian path R of S{n−1}

n joining the white node
(xn−3)

n to a black node y1 with (y1)1 = i1. Again, there
exists a hamiltonian path Z of S{2}

n−1 joining the black
node (p)n to a white node yn−2 with (yn−2)1 = in−2.
We set P1 as 〈e, P, x1, L, (xn−3)

n, R, y1〉 and Pn−2 as
〈e, (e)n−1, W , p, (p)n, Z , yn−2〉. Obviously, l(P1) = n(n −
2)!−1 and l(Pn−2) = n(n−2)!. Apparently, P1, P2, . . . , Pn−1

are the desired paths. See Figure 7(a) for an illustration for
the case n = 7.
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FIG. 7. Illustration of case 3 with n = 7.

Suppose that i1 = n − 1. Note that in−2 �= n − 1.
Because (xn−3)

n is a white node in S{n−1}
n with ((xn−3)

n)1 =
n and ((xn−3)

n)n = n − 1, there is a black node z
in S{n−1}

n such that z is the unique neighbor of (xn−3)
n

with (z)1 = 2. Because ((xn−3)
n)n−1 = n − 3, we have

(z)n−1 = n − 3. Note that (z)n is a white node in S{2}
n

with ((z)n)n−1 = n − 3. Because (p)n is a black node
in S{2}

n with ((p)n)1 = n and ((p)n)n = 2, there is a
white node t in S{2}

n such that t is the unique neighbor
of (p)n with (t)1 = n − 1. Because (p)n−1 = 1 and
(p)n = n, we have ((p)n)n−1 = 1 and ((p)n)1 = n. Because

((p)n)n−1 = 1, we have (t)n−1 = 1. Because ((z)n)n−1 = n −
3 and (t)n−1 = 1, we have (z)n �= t. By Theorem 4,
there is a hamiltonian path W1 of S{2}

n − {(p)n, t} join-
ing (z)n to a black node y1

n with (y1)1 = i1. Again,
there is a hamiltonian path W2 of S{n−1}

n − {(xn−3)
n, z}

joining (t)n to a white node yn−2 with (yn−2)1 = in−2.
We set P1 as 〈e, P, x1, L, (xn−3)

n, z, (z)n, W1, y1〉 and
Pn−2 as 〈e, (e)n−1, W , p, (p)n, t, (t)n, W2, yn−2〉. Obviously,
l(P1) = n(n − 2)! − 1 and l(Pn−2) = n(n − 2)!. Apparently,
P1, P2, . . . , Pn−1 are the desired paths. See Figure 7(b) for an
illustration for the case n = 7. ■

TABLE 1. All Hamiltonian Cycles in S4.

〈1234, 4231, 3241, 1243, 4213, 3214, 2314, 1324, 4321, 2341, 1342, 4312, 3412, 2413, 1423, 3421, 2431, 1432, 4132, 3142, 2143, 4123, 3124, 2134, 1234〉
〈1234, 4231, 3241, 1243, 4213, 2413, 3412, 1432, 2431, 3421, 1423, 4123, 2143, 3142, 4132, 2134, 3124, 1324, 4321, 2341, 1342, 4312, 2314, 3214, 1234〉
〈1234, 4231, 3241, 1243, 2143, 4123, 3124, 2134, 4132, 3142, 1342, 2341, 4321, 1324, 2314, 4312, 3412, 1432, 2431, 3421, 1423, 2413, 4213, 3214, 1234〉
〈1234, 4231, 3241, 2341, 1342, 4312, 2314, 1324, 4321, 3421, 2431, 1432, 3412, 2413, 1423, 4123, 3124, 2134, 4132, 3142, 2143, 1243, 4213, 3214, 1234〉
〈1234, 4231, 3241, 2341, 1342, 3142, 2143, 1243, 4213, 3214, 2314, 4312, 3412, 2413, 1423, 4123, 3124, 1324, 4321, 3421, 2431, 1432, 4132, 2134, 1234〉
〈1234, 4231, 3241, 2341, 4321, 3421, 2431, 1432, 4132, 3142, 1342, 4312, 3412, 2413, 1423, 4123, 2143, 1243, 4213, 3214, 2314, 1324, 3124, 2134, 1234〉
〈1234, 4231, 2431, 1432, 3412, 4312, 2314, 3214, 4213, 2413, 1423, 3421, 4321, 1324, 3124, 4123, 2143, 1243, 3241, 2341, 1342, 3142, 4132, 2134, 1234〉
〈1234, 4231, 2431, 1432, 4132, 2134, 3124, 1324, 4321, 3421, 1423, 4123, 2143, 3142, 1342, 2341, 3241, 1243, 4213, 2413, 3412, 4312, 2314, 3214, 1234〉
〈1234, 4231, 2431, 1432, 4132, 3142, 2143, 1243, 3241, 2341, 1342, 4312, 3412, 2413, 4213, 3214, 2314, 1324, 4321, 3421, 1423, 4123, 3124, 2134, 1234〉
〈1234, 4231, 2431, 3421, 1423, 2413, 3412, 1432, 4132, 2134, 3124, 4123, 2143, 3142, 1342, 4312, 2314, 1324, 4321, 2341, 3241, 1243, 4213, 3214, 1234〉
〈1234, 4231, 2431, 3421, 1423, 4123, 3124, 1324, 4321, 2341, 3241, 1243, 2143, 3142, 1342, 4312, 2314, 3214, 4213, 2413, 3412, 1432, 4132, 2134, 1234〉
〈1234, 4231, 2431, 3421, 4321, 2341, 3241, 1243, 4213, 2413, 1423, 4123, 2143, 3142, 1342, 4312, 3412, 1432, 4132, 2134, 3124, 1324, 2314, 3214, 1234〉
〈1234, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 3412, 2413, 1423, 3421, 4321, 2341, 1342, 4312, 2314, 1324, 3124, 4123, 2143, 3142, 4132, 2134, 1234〉
〈1234, 3214, 4213, 2413, 3412, 4312, 2314, 1324, 3124, 4123, 1423, 3421, 4321, 2341, 1342, 3142, 2143, 1243, 3241, 4231, 2431, 1432, 4132, 2134, 1234〉
〈1234, 3214, 4213, 2413, 1423, 4123, 2143, 1243, 3241, 4231, 2431, 3421, 4321, 2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 2134, 1234〉
〈1234, 3214, 2314, 4312, 1342, 3142, 4132, 1432, 3412, 2413, 4213, 1243, 2143, 4123, 1423, 3421, 2431, 4231, 3241, 2341, 4321, 1324, 3124, 2134, 1234〉
〈1234, 3214, 2314, 1324, 4321, 3421, 2431, 4231, 3241, 2341, 1342, 4312, 3412, 1432, 4132, 3142, 2143, 1243, 4213, 2413, 1423, 4123, 3124, 2134, 1234〉
〈1234, 3214, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132, 2134, 1234〉
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Using depth first search, we list all hamiltonian cycles in
S4 in Table 1.

Lemma 10. DsL

3 (S4) = 15.

Proof. Let u be any white node in S4, and let v be any
black node in S4. Because S4 is node transitive, we assume
that u = 1234. Suppose that d(u, v) = 1. Because S4 is

edge transitive, we assume that v = 2134. Let {P1, P2, P3} be
a 3∗-container joining u to v. Because S4 is 3-regular, one of
three paths, say P3, is 〈u, v〉. Thus, P1 ∪ P−1

2 forms a hamil-
tonian cycle of S4 not using the edge (u, v). From Table 1,
we obtain dsL

3 (u, v) = 15. Thus, DsL

3 (S4) ≥ 15. Suppose that
d(u, v) �= 1. Then v ∈ {1324, 1243, 1432, 2413, 2341, 3142,
4123, 4312, 3421}. We find the following set of 3∗-containers
of S4 between u = 1234 and v:

P1 = 〈1234, 4231, 3241, 1243, 2143, 4123, 3124, 1324〉
C〈1234, 1324〉 P2 = 〈1234, 2134, 4132, 3142, 1342, 2341, 4321, 1324〉

P3 = 〈1234, 3214, 4213, 2413, 1423, 3421, 2431, 1432, 3412, 4312, 2314, 1324〉
P1 = 〈1234, 2134, 4132, 1432, 3412, 2413, 4213, 1243〉

C(1234, 1243) P2 = 〈1234, 3214, 2314, 4312, 1342, 3142, 2143, 1243〉
P3 = 〈1234, 4231, 2431, 3421, 1423, 4123, 3124, 1324, 4321, 2341, 3241, 1243〉
P1 = 〈1234, 3214, 2314, 1324, 4321, 3421, 2431, 1432〉

C(1234, 1432) P2 = 〈1234, 4231, 3241, 2341, 1342, 4312, 3412, 1432〉
P3 = 〈1234, 2134, 3124, 4123, 1423, 2413, 4213, 1243, 2143, 3142, 4132, 1432〉
P1 = 〈1234, 3214, 4213, 2413〉

C(1234, 2413) P2 = 〈1234, 4231, 2431, 3421, 4321, 2341, 3241, 1243, 2143, 4123, 1423, 2413〉
P3 = 〈1234, 2134, 3124, 1324, 2314, 4312, 1342, 3142, 4132, 1432, 3412, 2413〉
P1 = 〈1234, 4231, 3241, 2341〉

C(1234, 2341) P2 = 〈1234, 3214, 2314, 4312, 3412, 2413, 4213, 1243, 2143, 3142, 1342, 2341〉
P3 = 〈1234, 2134, 4132, 1432, 2431, 3421, 1423, 4123, 3124, 1324, 4321, 2341〉
P1 = 〈1234, 2134, 4132, 3142〉

C(1234, 3142) P2 = 〈1234, 4231, 3241, 2341, 4321, 3421, 2431, 1432, 3412, 4312, 1342, 3142〉
P3 = 〈1234, 3241, 2341, 4321, 3421, 1423, 4123, 2143, 1243, 4213, 2413, 3412〉
P1 = 〈1234, 2134, 3124, 4123〉

C(1234, 4123) P2 = 〈1234, 3214, 4213, 2413, 3412, 4312, 2314, 1324, 4321, 3421, 1423, 4123〉
P3 = 〈1234, 4231, 2431, 1432, 4132, 3142, 1342, 2341, 3241, 1243, 2143, 4213〉
P1 = 〈1234, 3214, 2314, 4312〉

C(1234, 4312) P2 = 〈1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 4321, 2341, 1342, 4312〉
P3 = 〈1234, 4231, 3241, 1243, 4213, 2413, 1423, 3421, 2431, 1432, 3412, 4312〉
P1 = 〈1234, 4231, 2431, 3421〉

C(1234, 3421) P2 = 〈1234, 2134, 3124, 4123, 2143, 3142, 4132, 1432, 3412, 2413, 1423, 3421〉
P3 = 〈1234, 3214, 4213, 1243, 3241, 2341, 1342, 4312, 2314, 1324, 4321, 3421〉

From this table, dsL

3 (u, v) ≤ 15 if d(u, v) �= 1. Hence,
DsL

3 (S4) = 15. ■

Lemma 11. DsL

n−1(Sn) ≥ n!
n−2 +1 = (n −1)!+2(n −2)!+

2(n − 3)! + 1 if n ≥ 5.

Proof. Let u and v be two adjacent nodes of Sn.
Obviously, u and v are in different partite sets. Let
{P1, P2, . . . , Pn−1} be any (n − 1)∗-container of Sn joining u
to v. Obviously, one of these paths is 〈u, v〉. Thus, max{l(Pi) |
1 ≤ i ≤ n−1} ≥ � n!−2

n−2 �+1 = � n!
n−2 − 2

n−2�+1 = n!
n−2 +1.

Hence, dsL

n−1(u, v) ≥ n!
n−2 + 1 and DsL

n−1(Sn) ≥ n!
n−2 + 1. ■

Lemma 12. DsL

4 (S5) ≤ 41.

Proof. Let u be any white node and v be any black node
of S5. Obviously, d(u, v) is odd.

Case 1. d(u, v) = 1. Because S5 is node transitive and
edge transitive, we may assume that u = e = 12345
and v = (e)5 = 52341. By Lemma 7, there exist three paths
P1, P2, and P3 of S{5}

5 such that (1) P1 joins 12345 to the
black node 24135 with l(P1) = 7, (2) P2 joins 12345 to
the white node 34125 with l(P2) = 8, (3) P3 joins 12345 to
the white node 41325 with l(P3) = 8, and (4) P1 ∪ P2 ∪ P3

spans S{5}
5 . Similarly, there exist three paths Q1, Q2, and Q3

of S{1}
5 such that (1) Q1 joins 52341 to the white node

24531 with l(Q1) = 7, (2) Q2 joins 52341 to the black
node 34521 with l(Q2) = 8, (3) Q3 joins 52341 to the black
node 45321 with l(Q3) = 8, and (4) Q1 ∪ Q2 ∪ Q3 spans
S{1}

5 . By Theorem 1, there is a hamiltonian path R1 of S{2}
5
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joining the white node 54132 to the black node 14532, there
is a hamiltonian path R2 of S{3}

5 joining the black node 54123
to the white node 14523, and there is a hamiltonian path R3

of S{4}
5 joining the black node 51324 to the white node 15324.

Then we set

T1 = 〈e = 12345, P1, 24135, 54132, R1, 14532, 24531,

(Q1)
−1, 52341 = (e)5〉,

T2 = 〈e = 12345, P2, 34125, 54123, R2, 14523, 34521,

(Q2)
−1, 52341 = (e)5〉,

T3 = 〈e = 12345, P3, 41325, 51324, R3, 15324, 45321,

(Q3)
−1, 52341 = (e)5〉, and

T4 = 〈e = 12345, 52341 = (e)5〉.
Obviously, {T1, T2, T3, T4} is a 4∗-container of S5 between e
and (e)5. Moreover, l(T1) = 39, l(T2) = l(T3) = 41, and
l(T4) = 1. Thus, dsL

4 (e, (e)5) ≤ 41.

Case 2. d(u, v) ≥ 3. Because d(u, v) ≥ 3, there is i ∈ {2, 3,
4, 5} such that (u)i �= (v)i and {(u)i, (v)i}∩{(u)1, (v)1} = ∅.
Without loss of generality, we assume that (u)5 �= (v)5 and
{(u)5, (v)5} ∩ {(u)1, (v)1} = ∅. Moreover, we assume that
(u)5 = 5, (v)5 = 4, (u)1 = 1, and (v)1 �= 5. Because (u)1 =
1 and (u)5 = 5, we have {(u)2, (u)3, (u)4} = {2, 3, 4}.

Subcase 2.1. (v)1 = 1. We have {(v)2, (v)3, (v)4} =
{2, 3, 5}. By Lemma 8, there exist four paths P1, P2, P3,
and P4 of S{5}

5 such that (1) P1 joins u to a white node
w with (w)1 = 2 and l(P1) = 2, (2) P2 joins u to a
white node x with (x)1 = 3 and l(P1) = 2, (3) P3 joins
u to a black node y with (y)1 = 4 and l(P3) = 19, (4)
P4 joins u to a black node z �= y with (z)1 = 4 and
l(P4) = 19, (5) P1 ∪ P2 ∪ P3 spans S{5}

5 , (6) P1 ∪ P2 ∪ P4

spans S{5}
5 , (7) V(P1) ∩ V(P2) ∩ V(P3) = {u}, and (8)

V(P1) ∩ V(P2) ∩ V(P4) = {u}.
Similarly, there exist four paths Q1, Q2, Q3, and Q4 of S{4}

5
such that (1) Q1 joins v to a black node p with (p)1 = 2 and
l(Q1) = 2, (2) Q2 joins v to a black node q with (q)1 = 3
and l(Q2) = 2, (3) Q3 joins v to a white node r with (r)1 = 5
and l(Q3) = 19, (4) Q4 joins v to a white node s �= r with
(s)1 = 5 and l(Q4) = 19, (5) Q1 ∪ Q2 ∪ Q3 spans S{4}

5 ,
(6) Q1∪Q2∪Q4 spans S{4}

5 , (7) V(Q1)∩V(Q2)∩V(Q3) = {v},
and (8) V(Q1) ∩ V(Q2) ∩ V(Q4) = {v}.

By Lemma 1, there are exactly three edges joining some
black nodes of S{5}

5 to some white nodes of S{4}
5 . By the

pigeon-hole principle, at least one node in {y, z} is adjacent to
a node in {r, s}. Without loss of generality, we assume that y
is adjacent to r. Let T1 be the hamiltonian path of S{1}

5 joining
the black node (u)5 to the white node (v)5, T2 be the hamil-
tonian path of S{2}

5 joining the black node (w)5 to the white
node (p)5, and T3 be the hamiltonian path of S{3}

5 joining the
black node (x)5 to the white node (q)5. We set

H1 = 〈u, (u)5, T1, (v)5, v〉,

H2 = 〈u, P1, w, (w)5, T2, (p)5, p, Q−1
1 , v〉,

H3 = 〈u, P2, x, (x)5, T3, (q)5, q, Q−1
2 , v〉, and

H4 = 〈u, P3, y, r, Q−1
3 , v〉.

Obviously, {H1, H2, H3, H4} is a 4∗-container of S5

between u and v. Moreover, l(H1) = 25, l(H2) = l(H3) =
29, and l(H4) = 39. Thus, dsL

4 (u, v) ≤ 41.

Subcase 2.2. (v)1 = a ∈ {2, 3}. We have {(v)2, (v)3, (v)4}
= {1, 2, 3, 5} − {a}. Let b be the only element in {2, 3} − {a}.
By Lemma 8, there exist four paths P1, P2, P3, and P4 of S{5}

5
such that (1) P1 joins u to a white node w with (w)1 = a and
l(P1) = 2, (2) P2 joins u to a white node x with (x)1 = b
and l(P2) = 2, (3) P3 joins u to a black node y with (y)1 = 4
and l(P3) = 19, (4) P4 joins u to a black node z �= y with
(z)1 = 4 and l(P4) = 19, (5) P1 ∪ P2 ∪ P3 spans S{5}

5 ,
(6) P1∪P2∪P4 spans S{5}

5 , (7) V(P1)∩V(P2)∩V(P3) = {u},
and (8) V(P1) ∩ V(P2) ∩ V(P4) = {u}.

Again, there exist four paths Q1, Q2, Q3, and Q4 of S{4}
5

such that (1) Q1 joins v to a black node p with (p)1 = 1 and
l(Q1) = 2, (2) Q2 joins v to a black node q with (q)1 = b
and l(Q2) = 2, (3) Q3 joins v to a white node r with (r)1 = 5
and l(Q3) = 19, (4) Q4 joins v to a white node s �= r with
(s)1 = 5 and l(Q4) = 19, (5) Q1 ∪ Q2 ∪ Q3 spans S{4}

5 , (6)
Q1 ∪ Q2 ∪ Q4 spans S{4}

5 , (7) V(Q1)∩ V(Q2)∩ V(Q3) = {v},
and (8) V(Q1) ∩ V(Q2) ∩ V(Q4) = {v}.

By Lemma 1, there are exactly three edges joining some
black nodes of S{5}

5 to some white nodes of S{4}
5 . By the

pigeon-hole principle, at least one node in {y, z} is adjacent to
a node in {r, s}. Without loss of generality, we assume that y
is adjacent to r. Let T1 be the hamiltonian path of S{1}

5 joining
the black node (u)5 to the white node (p)5, T2 be the hamil-
tonian path of S{a}

5 joining the black node (w)5 to the white
node (v)5, and T3 be the hamiltonian path of S{b}

5 joining the
black node (x)5 to the white node (q)5. We set

H1 = 〈u, (u)5, T1, (p)5, p, Q−1
1 , v〉,

H2 = 〈u, P1, w, (w)5, T2, (v)5, v〉,
H3 = 〈u, P2, x, (x)5, T3, (q)5, q, Q−1

2 , v〉, and

H4 = 〈u, P3, y, r, Q−1
3 , v〉.

Obviously, {H1, H2, H3, H4} is a 4∗-container of S5

between u and v. Moreover, l(H1) = l(H2) = 27, l(H3) =
29, and l(H4) = 39. Thus, dsL

4 (u, v) ≤ 41. ■

Lemma 13. dsL

n−1(u, v) ≤ (n − 1)! + 2(n − 2)! + 2(n −
3)! + 1 = n!

n−2 + 1 for every n ≥ 6.

Proof. Let u be any white node and v be any black node
of Sn. Obviously, d(u, v) is odd.

Case 1. d(u, v) = 1. Because the star graph is node tran-
sitive and edge transitive, we may assume that u = e and
v = (e)n.
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By Lemma 9, there exist (n−2) paths P1, P2, . . . , Pn−2 of
S{n}

n such that (1) P1 joins e to a black node x1 with (x1)1 = 2
and l(P1) = (n−1)(n−3)!−1, (2) Pi joins e to a white node
xi with (xi)1 = i + 1 and l(Pi) = (n − 1)(n − 3)! for 2 ≤
i ≤ n − 2, (3) ∪n−2

i=1 Pi spans S{n}
n , and (4) ∩n−2

i=1 V(Pi) = {e}.
Again, there exist n − 2 paths Q1, Q2, . . . , Qn−2 of S{1}

n such
that (1) Q1 joins (e)n to a white node y1 with (y1)1 = 2 and
l(Q1) = (n −1)(n −3)!−1, (2) Qi joins (e)n to a black node
yi with (yi)1 = i + 1 and l(Qi) = (n − 1)(n − 3)! for 2 ≤
i ≤ n − 2, (3) ∪n−2

i=1 Qi spans S{1}
n , and (4) ∩n−2

i=1 V(Qi) = {v}.
By Theorem 1, there is a hamiltonian path R1 of S{2}

n join-
ing the white node (x1)

n to the black node (y1)
n. Again, there

is a hamiltonian path Ri of S{i+1}
n joining the black node (xi)

n

to the black node (yi)
n for every 2 ≤ i ≤ n − 2.

We set Hi = 〈e, Pi, xi, (xi)
n, Ri, (yi)

n, yi, Q−1
i , (e)n〉 for

every 1 ≤ i ≤ n − 2 and Hn−1 = 〈e, (e)n〉. Then {H1, H2, . . . ,
Hn−1} is an (n−1)∗-container between e and (e)n. Obviously,
l(H1) = (n−1)!+2(n−2)!+2(n−3)!−1, l(Hi) = (n−1)!+
2(n−2)!+2(n−3)!+1 for 2 ≤ i ≤ n−2, and l(Hn−1) = 1.
Hence, dsL

n−1(e, (e)n) ≤ (n − 1)! + 2(n − 2)! + 2(n − 3)! + 1.

Case 2. d(u, v) ≥ 3. Because d(u, v) ≥ 3, there is i ∈ 〈n〉−
{1} such that (u)i �= (v)i and {(u)i, (v)i} ∩ {(u)1, (v)1} = ∅.
Without loss of generality, we assume that (u)n �= (v)n and
{(u)n, (v)n} ∩ {(u)1, (v)1} = ∅. Moreover, we assume that
(u)n = n, (v)n = n − 1, (u)1 = 1, and (v)1 �= 5.

Subcase 2.1. (v)1 = 1. By Lemma 9, there are (n − 2)

paths P1, P2, . . . , Pn−2 of S{n}
n such that (1) P1 joins u to a

black node x1 with (x1)1 = 1 and l(P1) = (n−1)(n−3)!−1,
(2) Pi joins u to a white node xi with (xi)1 = i and l(Pi) =
(n − 1)(n − 3)! for 2 ≤ i ≤ n − 2, (3) ∪n−2

i=1 Pi spans S{n}
n ,

and (4) ∩n−2
i=1 V(Pi) = {u}. Again, there are (n − 2) paths

Q1, Q2, . . . , Qn−2 of S{n−1}
n such that (1) Q1 joins v to a white

node y1 with (y1)1 = 1 and l(Q1) = (n − 1)(n − 3)! − 1,
(2) Qi joins v to a black node yi with (yi)1 = i and l(Qi) =
(n − 1)(n − 3)! for 2 ≤ i ≤ n − 2, (3) ∪n−2

i=1 Qi spans S{n−1}
n ,

and (4) ∩n−2
i=1 V(Qi) = {v}.

By Lemma 5, there are two disjoint paths H1 and H2 of
S{1}

n such that (1) H1 joins the white node (x1)
n to the black

node (y1)
n, (2) H2 joins the black node (u)n to the white node

(v)n, and (3) H1 ∪ H2 spans S{1}
n . By Theorem 1, there is a

hamiltonian path Ri of S{i}
n joining the black node (xi)

n to the
white node (yi)

n for every 2 ≤ i ≤ n − 2. We set

T1 = 〈u, P1, x1, (x1)
n, H1, (y1)

n, y1, Q−1
1 , v〉,

Ti = 〈u, Pi, xi, (xi)
n, Ri, (yi)

n, yi, Q−1
i , v〉

for 2 ≤ i ≤ n − 2, and

Tn−1 = 〈u, (u)n, H2, (v)n, v〉.
Obviously, {T1, T2, . . . , Tn−1} is an (n − 1)∗-container of

Sn between u and v. Moreover, l(Ti) ≤ (n−1)!+2(n−2)!+
2(n − 3)! + 1. Thus, dsL

n−1(u, v) ≤ (n − 1)! + 2(n − 2)! +
2(n − 3)! + 1.

Subcase 2.2. (v)1 = t ∈ 〈n − 2〉 − {1}. By Lemma 9,
there are (n − 2) paths P1, P2, . . . , Pn−2 of S{n}

n such that (1)

P1 joins u to a black node x1 with (x1)1 = 1 and l(P1) =
(n − 1)(n − 3)! − 1, (2) Pi joins u to a white node xi with
(xi)1 = i and l(Pi) = (n − 1)(n − 3)! for 2 ≤ i ≤ n − 2, (3)
∪n−2

i=1 Pi spans S{n}
n , and (4) ∩n−2

i=1 V(Pi) = {u}. Again, there
are (n − 2) paths Q1, Q2, . . . , Qn−2 of S{n−1}

n such that (1)
Q1 joins v to a white node y1 with (y1)1 = 1 and l(Q1) =
(n − 1)(n − 3)! − 1, (2) Qi joins v to a black node yi with
(yi)1 = i and l(Qi) = (n − 1)(n − 3)! for 2 ≤ i ≤ n − 2, (3)
∪n−2

i=1 Qi spans S{n−1}
n , and (4) ∩n−2

i=1 V(Qi) = {v}.
Because (v)n is a white node in S{t}

n with ((v)n)1 = (v)n =
n − 1 and ((v)n)n = (v)1 = t �= 1, we can choose a black
node w in NS{t}

n
((v)n) with (w)1 = 1. By Lemma 5, there exist

two disjoint paths H1 and H2 of S{1}
n such that (1) H1 joins

the white node (x1)
n to the black node (y1)

n, (2) H2 joins
the black node (u)n to the white node (w)n, and (3) H1 ∪ H2

spans S{1}
n .

By Theorem 4, there exists a hamiltonian path Rt of
S{t}

n − {(v)n, w} joining the black node (xt)
n to the white node

(yt)
n. By Theorem 1, there exists a hamiltonian path Ri of S{i}

n

joining the black node (xi)
n to the white node (yi)

n for every
2 ≤ i ≤ n − 2 with i �= t. We set

T1 = 〈u, P1, x1, (x1)
n, H1, (y1)

n, y1, Q−1
1 , v〉,

Ti = 〈u, Pi, xi, (xi)
n, Ri, (yi)

n, yi, Q−1
i , v〉

for 2 ≤ i ≤ n − 2, and

Tn−1 = 〈u, (u)n, H2, (w)n, w, (v)n, v〉.
Obviously, {T1, T2, . . . , Tn−1} is an (n − 1)∗-container of

Sn between u and v. Moreover, l(Ti) ≤ (n−1)!+2(n−2)!+
2(n − 3)! + 1. Thus, dsL

n−1(u, v) ≤ (n − 1)! + 2(n − 2)! +
2(n − 3)! + 1. ■

Theorem 5.

DsL

n−1(Sn) =




1 if n = 2,

5 if n = 3,

15 if n = 4, and

(n − 1)! + 2(n − 2)!
+2(n − 3)! + 1 if n ≥ 5.

Proof. It is easy to check that DsL

1 (S2) = 1 and DsL

2 (S3) =
5. By Lemma 10, DsL

3 (S4) = 15. By Lemmas 11, 12, and 13,
we have DsL

n−1(Sn) = (n − 1)! + 2(n − 2)! + 2(n − 3)! + 1 if
n ≥ 5. Hence, this statement is proved. ■

5. THE 2∗L-DIAMETER Sn

Lemma 14. DsL

2 (S4) = 15.

Proof. Let u and v be any two distinct nodes of S4.
Because S4 is node transitive, we assume that u = 1234.
Let {P1, P2} be a 2∗-container joining u to v. Thus, P1 ∪
P−1

2 is a hamiltonian cycle of S4. In Table 1, we list all
the possible hamiltonian cycles of S4. From Table 1, we
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know dsL

2 (1234, v) = 13 if v ∈ {1423, 3142, 2413, 1243,
3421, 1432, 2341, 4123, 4312} and dsL

2 (1234, v) = 15 if v ∈
{2134, 3214, 4231}. Hence, DsL

2 (S4) = 15. ■

Lemma 15. Assume that a and b are any two distinct ele-
ments of 〈4〉 and u is any white node of S4. There exist two
paths P1 and P2 of S4 such that (1) P1 joins u to a black

node x with (x)1 = a and l(P1) = 5, (2) P2 joins u to a
white node y with (y)1 = b and l(P2) = 18, and (3) P1 ∪ P2

spans S4.

Proof. Because S4 is node transitive, we may
assume that u = 1234. The required two paths are listed
below.

P1 = 〈1234, 3214, 4213, 2413, 3412, 1432〉
P2 = 〈1234, 4231, 2431, 3421, 1423, 4123, 3124, 2134, 4132, 3142, 1342, 4312, 2314, 1324, 4321, 2341, 3241, 1243, 2143〉
P1 = 〈1234, 3214, 4213, 2413, 3412, 1432〉
P2 = 〈1234, 4231, 2431, 3421, 1423, 4123, 2143, 1243, 3241, 2341, 4321, 1324, 2314, 4312, 1342, 3142, 4132, 2134, 3124〉
P1 = 〈1234, 3214, 4213, 2413, 3412, 1432〉
P2 = 〈1234, 4231, 2431, 3421, 1423, 4123, 3124, 2134, 4132, 3142, 2143, 1243, 3241, 2341, 1342, 4312, 2314, 1324, 4321〉
P1 = 〈1234, 3214, 2314, 4312, 1342, 2341〉
P2 = 〈1234, 2134, 3124, 1324, 4321, 3421, 2431, 4231, 3241, 1243, 4213, 2413, 3412, 1432, 4132, 3142, 2143, 4123, 1423〉
P1 = 〈1234, 2134, 4132, 3142, 1342, 2341〉
P2 = 〈1234, 3214, 4213, 2413, 1423, 3421, 4321, 1324, 2314, 4312, 3412, 1432, 2431, 4231, 3241, 1243, 2143, 4123, 3124〉
P1 = 〈1234, 3214, 2314, 4312, 1342, 2341〉
P2 = 〈1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 4321, 3421, 1423, 2413, 3412, 1432, 2431, 4231, 3241, 1243, 4213〉
P1 = 〈1234, 2134, 3124, 1324, 2314, 3214〉
P2 = 〈1234, 4231, 3241, 2341, 4321, 3421, 2431, 1432, 4132, 3142, 1342, 4312, 3412, 2413, 4213, 1243, 2143, 4123, 1423〉
P1 = 〈1234, 3214, 4213, 2413, 1423, 3421〉
P2 = 〈1234, 4231, 3241, 1243, 2143, 4123, 3124, 2134, 4132, 3142, 1342, 2341, 4321, 1324, 2314, 4312, 3412, 1432, 2431〉
P1 = 〈1234, 3214, 4213, 2413, 1423, 3421〉
P2 = 〈1234, 2134, 3124, 4123, 2143, 1243, 3241, 4231, 2431, 1432, 3412, 4312, 2314, 1324, 4321, 2341, 1342, 3142, 4132〉
P1 = 〈1234, 3214, 4213, 1243, 3241, 4231〉
P2 = 〈1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 2314, 4312, 1342, 2341, 4321, 3421, 2431, 1432, 3412, 2413, 1423〉
P1 = 〈1234, 3214, 4213, 1243, 3241, 4231〉
P2 = 〈1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 2314, 4312, 1342, 2341, 4321, 3421, 1423, 2413, 3412, 1432, 2431〉
P1 = 〈1234, 3214, 4213, 1243, 3241, 4231〉
P2 = 〈1234, 2134, 4132, 3142, 2143, 4123, 1423, 2413, 3412, 1432, 2431, 3421, 4321, 2341, 1342, 4312, 2314, 1324, 3124〉

Hence, this statement is proved. ■

Theorem 6.

DsL

2 (Sn) =




5 if n = 3,

15 if n = 4, and
n!
2 + 1 if n ≥ 5.

Proof. It is easy to check that DsL

2 (S3) = 5. By
Lemma 14, we have that DsL

2 (S4) = 15. Thus, we assume
that n ≥ 5. Let u be a white node and v be a black node of Sn.
Let P1 and P2 be any 2∗-container of Sn joining u to v. Obvi-
ously, max{l(P1), l(P2)} ≥ n!

2 +1. Hence, dsL

2 (u, v) ≥ n!
2 +1

and DsL

2 (Sn) ≥ n!
2 + 1. Hence, we only need to show that

dsL

2 (u, v) ≤ n!
2 + 1. Because Sn is edge transitive, we assume

that u ∈ S{n}
n and v ∈ S{n−1}

n .

Case 1. n = 5. By Lemma 15, there exist two paths H1

and H2 of S{5}
5 such that (1) H1 joins u to a black node x with

(x)1 = 1 and l(H1) = 5, (2) H2 joins u to a white node y
with (y)1 = 3 and l(H2) = 18, and (3) H1 ∪ H2 spans S{5}

5 .
Again, there exist two paths T1 and T2 of S{4}

5 such that (1) T1

joins v to a white node p with (p)1 = 2 and l(T1) = 5, (2) T2

joins v to a black node q with (q)1 = 3 and l(T2) = 18, and

(3) T1 ∪ T2 spans S{4}
5 . By Lemma 3, there is a hamiltonian

path R of S{1,2}
5 joining the white node (x)5 to the black node

(p)5. Again, there is a hamiltonian path Z of S{3}
5 joining the

black node (y)5 to the white node (q)5. We set

L1 = 〈u, H1, x, (x)5, R, (p)5, p, T−1
1 , v〉 and

L2 = 〈u, H2, y, (y)5, Z , (q)5, q, T−1
2 , v〉.

Obviously, {L1, L2} is a 2∗-container. Moreover, l(L1) = 59
and l(L2) = 61. Hence, dsL

2 (u, v) ≤ n!
2 + 1. See Figure 8(a)

for an illustration.

Case 2. n ≥ 6 is even. Let x be a neighbor of u in S{n}
n with

(x)1 ∈ 〈n − 2〉. Let y be a neighbor of v in S{n−1}
n . Let z be a

neighbor of y in S{n−1}
n with (z)1 ∈ 〈n−2〉−{(v)1, (y)1, (x)1}.

Let a1a2 . . . an−2 be a permutation of 〈n − 2〉 such that
a1 = (x)1 and an−2 = (z)1. Let H = {a1, a2, . . . , a n−2

2
}. By

Theorem 2, there is a hamiltonian path P of S{n}
n − {x} joining

u to a white node p with (p)1 = an−2. By Theorem 4, there is
a hamiltonian path Q of S{n−1}

n − {y, z} joining a white node
q with (q)1 = a1 to v. By Theorem 3, there is a hamilto-
nian path R of SH

n joining the white node (x)n to the black
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FIG. 8. Illustration for Theorem 6.

node (q)n. Again, there is a hamiltonian path W of S〈n−2〉−H
n

joining the black node (p)n to the white node (z)n. We set

L1 = 〈u, x, (x)n, R, (q)n, q, Q, v〉 and

L2 = 〈u, P, p, (p)n, W , (z)n, z, y, v〉.

Obviously, {L1, L2} is a 2∗-container of Sn between u
and v. Because l(L1) = n!

2 − 1 and l(L2) = n!
2 + 1, we have

dsL

2 (u, v) ≤ n!
2 + 1. See Figure 8(b) for an illustration.

Case 3. n ≥ 7 is odd. Let x be a neighbor of u in S{n}
n with

(x)1 ∈ 〈n − 2〉. Let y be a neighbor of v in S{n−1}
n . Let z be a

neighbor of y in S{n−1}
n with (z)1 ∈ 〈n−2〉−{(v)1, (y)1, (x)1}.

Let a1a2 . . . an−2 be a permutation of 〈n − 2〉 such that
a1 = (x)1 and an−3 = (z)1. Let H = {a1, a2, . . . , a n−3

2
} and

T = {a n−3
2 +1, a n−3

2 +2, . . . , an−3}. We set A = {(i, an−2) | i ∈
H ∪{n − 1}} and B = {(i, an−2) | i ∈ T ∪{n}}. Let SA

n denote
the subgraph of Sn induced by ∪i∈H∪{n−1}S{(i,an−2)}

n , and let SB
n

denote the subgraph of Sn induced by ∪i∈T∪{n}S{(i,an−2)}
n . By

Theorem 2, there is a hamiltonian path P of S{n}
n − {x} joining

u to a white node p with (p)1 = an−2 and (p)n−2 = an−3. By
Theorem 4, there is a hamiltonian path Q of S{n−1}

n − {y, z}
joining a white node q with (q)1 = an−2 and (q)n−1 = a1

to v. By Theorem 3, there is a hamiltonian path L of SA
n join-

ing a white node s with (s)1 = a1 to the black node (q)n.
Again, there is a hamiltonian path M of SB

n joining the black
node (p)n to a white node t with (t)1 = an−3. By Lemma 3,
there is a hamiltonian path R of SH

n joining the white node
(x)n to the black node (s)n. Again, there is a hamiltonian path
W of ST

n joining the black node (t)n to the white node (z)n.
We set

L1 = 〈u, x, (x)n, R, (s)n, s, L, (q)n, q, Q, v〉 and

L2 = 〈u, P, p, (p)n, M, t, (t)n, W , (z)n, z, y, v〉.

Obviously, {L1, L2} is a 2∗-container of Sn between u
and v. Because l(L1) = n!

2 − 1 and l(L2) = n!
2 + 1, we have

dsL

2 (u, v) ≤ n!
2 + 1. See Figure 8(c) for an illustration.

■

6. CONCLUSION

In this study, we prove that DsL

n−1(Sn) = (n − 1)! + 2(n −
2)! + 2(n − 3)! + 1 = n!

n−2 + 1 and DsL

2 (Sn) = n!
2 + 1 for

n ≥ 5. Actually, we prove that dsL

2 (u, v) = n!
2 + 1 for any

two vertices u and v from different bipartite sets of Sn.
Recently, we have proved that Sn is super laceable [19].

Hence, we can study DsL

k (Sn) for 1 ≤ k ≤ n − 1. We con-
jecture that DsL

k (Sn) = n!
k + 1 for n ≥ 5 and 3 ≤ k ≤ n − 2.

Furthermore, we believe that dsL

k (u, v) = n!
k + 1 for any two

nodes u and v from different bipartite sets of Sn for n ≥ 5
and 3 ≤ k ≤ n − 2.
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