

Perturbed block circulant matrices and their application to the wavelet method of chaotic control

[Jonq Juang,](http://scitation.aip.org/search?value1=Jonq+Juang&option1=author) [Chin-Lung Li,](http://scitation.aip.org/search?value1=Chin-Lung+Li&option1=author) and [Jing-Wei Chang](http://scitation.aip.org/search?value1=Jing-Wei+Chang&option1=author)

Citation: [Journal of Mathematical Physics](http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov) **47**, 122702 (2006); doi: 10.1063/1.2400828 View online: <http://dx.doi.org/10.1063/1.2400828> View Table of Contents: <http://scitation.aip.org/content/aip/journal/jmp/47/12?ver=pdfcov> Published by the [AIP Publishing](http://scitation.aip.org/content/aip?ver=pdfcov)

Articles you may be interested in [Effective implementation of wavelet Galerkin method](http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4766773?ver=pdfcov) AIP Conf. Proc. **1497**, 107 (2012); 10.1063/1.4766773

[Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems](http://scitation.aip.org/content/aip/journal/chaos/21/4/10.1063/1.3650237?ver=pdfcov) Chaos **21**, 043107 (2011); 10.1063/1.3650237

[The theory of wavelet transform method on chaotic synchronization of coupled map lattices](http://scitation.aip.org/content/aip/journal/jmp/52/1/10.1063/1.3525802?ver=pdfcov) J. Math. Phys. **52**, 012701 (2011); 10.1063/1.3525802

[Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros](http://scitation.aip.org/content/aip/journal/chaos/19/1/10.1063/1.3072786?ver=pdfcov) Chaos **19**, 013125 (2009); 10.1063/1.3072786

[Eigenvalue problems and their application to the wavelet method of chaotic control](http://scitation.aip.org/content/aip/journal/jmp/47/7/10.1063/1.2218674?ver=pdfcov) J. Math. Phys. **47**, 072704 (2006); 10.1063/1.2218674

[Perturbed block circulant matrices and their application](http://dx.doi.org/10.1063/1.2400828) [to the wavelet method of chaotic control](http://dx.doi.org/10.1063/1.2400828)

Jonq Juang,^{a)} Chin-Lung Li,^{b)} and Jing-Wei Chang^{c)}

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China

Received 1 August 2006; accepted 23 October 2006; published online 26 December 2006-

Controlling chaos via wavelet transform was proposed by Wei et al. [Phys. Rev. Lett. **89**, 284103.1–284103.4 (2002)]. It was reported there that by modifying a tiny fraction of the wavelet subspace of a coupling matrix, the transverse stability of the synchronous manifold of a coupled chaotic system could be dramatically enhanced. The stability of chaotic synchronization is actually controlled by the second largest eigenvalue $\lambda_2(\alpha, \beta)$ of the (wavelet) transformed coupling matrix $C(\alpha, \beta)$ for each α and β . Here β is a mixed boundary constant and α is a scalar factor. In particular, $\beta = 1$ (0) gives the nearest neighbor coupling with periodic (Neumann) boundary conditions. In this paper, we obtain two main results. First, the reduced eigenvalue problem for $C(\alpha,0)$ is completely solved. Some partial results for the reduced eigenvalue problem of $C(\alpha, \beta)$ are also obtained. Second, we are then able to understand behavior of $\lambda_2(\alpha,0)$ and $\lambda_2(\alpha,1)$ for any wavelet dimension $j \in \mathbb{N}$ and block dimension $n \in \mathbb{N}$. Our results complete and strengthen the work of Shieh *et al*. [J. Math. Phys. 47, 082701.1–082701.10 (2006)] and Juang and Li ^{[J}. Math. Phys. 47, 072704.1-072704.16 (2006)]. © 2006 American Insti*tute of Physics.* [DOI: [10.1063/1.2400828](http://dx.doi.org/10.1063/1.2400828)]

I. INTRODUCTION

Of concern here is the eigencurve problem for a class of "perturbed" block circulant matrices.

$$
C(\alpha, \beta)\mathbf{b} = \lambda(\alpha, \beta)\mathbf{b}.
$$
 (1.1a)

Here $C(\alpha, \beta)$ is an $n \times n$ block matrix of the following form:

$$
C(\alpha, \beta) = \begin{pmatrix} C_1(\alpha, \beta) & C_2(\alpha, 1) & 0 & \cdots & 0 & C_2^T(\alpha, \beta) \\ C_2^T(\alpha, 1) & C_1(\alpha, 1) & C_2(\alpha, 1) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & C_2^T(\alpha, 1) & C_1(\alpha, 1) & C_2(\alpha, 1) \\ C_2(\alpha, \beta) & 0 & \cdots & 0 & C_2^T(\alpha, 1) & \hat{I}C_1(\alpha, \beta)\hat{I} \end{pmatrix}_{n \times n}
$$
 (1.1b)

Here

b)Electronic mail: presidentf.am92g@nctu.edu.tw

c)Electronic mail: jof12789@yahoo.com.tw

0022-2488/2006/47(12)/122702/11/\$23.00

47, 122702-1 © 2006 American Institute of Physics

a)Electronic mail: jjuang@math.nctu.edu.tw

 λ

122702-2 Juang, Li, and Chang **J. Math. Phys. 47, 122702 (2006)**

$$
C_1(\alpha, \beta) = \begin{pmatrix}\n-1-\beta & 1 & 0 & \cdots & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & -2 & 1 \\
0 & \cdots & \cdots & 0 & 1 & -2\n\end{pmatrix}_{2^j \times 2^j} - \frac{\alpha(1+\beta)}{2^{2j}} e e^T =: A_1(\beta, 2^j) - \frac{\alpha(1+\beta)}{2^{2j}} e e^T,
$$
\n(1.1c)

where $e = (1, 1, ..., 1)^T$, *j* is a positive integer, $\alpha > 0$ is a (wavelet) scalar factor, and $\beta \in \mathbb{R}$ represents a mixed boundary constant. Moreover,

$$
C_2(\alpha, \beta) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & & & 0 \\ \beta & 0 & \cdots & 0 \end{pmatrix} + \frac{\alpha \beta}{2^{2j}} e^T =: A_2(\beta, 2^j) + \frac{\alpha \beta}{2^{2j}} e^T,
$$
(1.1d)

$$
\hat{I} = \begin{pmatrix}\n0 & 0 & \cdots & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & \cdots & 0 & 0\n\end{pmatrix}.
$$
\n(1.1e)

The dimension of $C(\alpha, \beta)$ is $n2^{j} \times n2^{j}$. From here on, we shall call *n* and *j* the block and the wavelet dimensions of $C(\alpha, \beta)$, respectively. $C(\alpha, \beta)$ is a block circulant matrix (see, e.g., Ref. [1](#page-11-0)) only if $\beta = 1$. It is well known, see, e.g., Theorem 5.6.4 of Ref. [1,](#page-11-0) that for each α the eigenvalues of $C(\alpha, 1)$ consist of eigenvalues of a certain linear combinations of its block matrices. Such results are called the reduced eigenvalue problem for $C(\alpha, 1)$.

This problem arises in the wavelet method for a chaotic control.⁷ It is found there that the modification of a tiny fraction of wavelet subspaces of a coupling matrix could lead to a dramatic change in chaos synchronizing properties. We begin with describing their work. Let there be *N* nodes (oscillators). Assume \mathbf{u}_i is the *m*-dimensional vector of dynamical variables of the *i*th node. Let the isolated (uncoupling) dynamics be $\dot{\mathbf{u}}_i = f(\mathbf{u}_i)$ for each node. Used in the coupling, $h: \mathbb{R}^m$ \rightarrow R^{*m*} is an arbitrary function of each node's variables. Thus, the dynamics of the *i*th node is

$$
\dot{\mathbf{u}}_i = f(\mathbf{u}_i) + \epsilon \sum_{j=1}^{N} a_{ij} h(\mathbf{u}_j), \quad i = 1, 2, ..., N,
$$
 (1.2a)

where ϵ is a coupling strength. The sum $\sum_{j=1}^{N} a_{ij} = 0$. Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N)^T$, $F(\mathbf{u})$ $=(f(\mathbf{u}_1), f(\mathbf{u}_2), \dots, f(\mathbf{u}_N))^T$, $H(\mathbf{u}) = (h(\mathbf{u}_1), h(\mathbf{u}_2), \dots, h(\mathbf{u}_N))^T$, and $A = (a_{ij})$. We may write Eq. $(1.1a)$ $(1.1a)$ $(1.1a)$ as

$$
\dot{\mathbf{u}} = F(\mathbf{u}) + \epsilon A \times H(\mathbf{u}). \tag{1.2b}
$$

Here \times is the direct product of two matrices *B* and *C* defined as follows. Let $B = (b_{ij})_{k_1 \times k_2}$ be a $k_1 \times k_2$ matrix and $C = (C_{ij})_{k_2 \times k_3}$ be a $k_2 \times k_3$ block matrix. Then

122702-3 Perturbed block circulant matrices and their application

J. Math. Phys. 47, 122702 (2006)

$$
B \times C = \left(\sum_{l=1}^{k_2} b_{il} C_{lj}\right)_{k_1 \times k_3}.
$$

Many coupling schemes are covered by Eq. $(1.2b)$ $(1.2b)$ $(1.2b)$. For example, if the Lorenz system is used and the coupling is through its three components x , y , and z , then the function h is just the matrix

$$
I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} . \tag{1.3}
$$

The choice of *A* will provide the connectivity of nodes. For instance, the nearest neighbor coupling with periodic, Neumann boundary conditions and mixed boundary conditions are, respectively, given as $A = A_1(1, N) + A_2(1, N) + A_2^T(1, N) = A_p$, $A = A_1(0, N) + A_2(1, N)\hat{I} = A_N$ and $A = A_1(\beta, N)$ $+A_2(\beta, N) + A_2^T(\beta, N) + (1 - \beta)A_2(1, N)\hat{i} = A_M$, where those A_i 's, $i = 1, 2$, are defined in Eqs. ([1.1c](#page-2-0)) and $(1.1d)$ $(1.1d)$ $(1.1d)$.

Mathematically speaking,⁵ the second largest eigenvalue λ_2 of *A* is dominant in controlling the stability of chaotic synchronization, and the critical strength ϵ_c for synchronization can be determined in terms of λ_2 ,

$$
\epsilon_c = \frac{L_{\text{max}}}{-\lambda_2}.\tag{1.4}
$$

The eigenvalues of $A = A_p$ are given by $\lambda_i = -4 \sin^2[\pi(i-1)/N]$, $i = 1, 2, ..., N$. In general, a larger number of nodes give a smaller nonzero eigenvalue λ_2 in magnitude and, hence, a larger ϵ_c . In controlling a given system, it is desirable to reduce the critical coupling strength ϵ_c . The wavelet method in Ref. [7](#page-11-1) will, in essence, transform A into $C(\alpha, \beta)$. Consequently, it is of great interest to study the second eigencurve of $C(\alpha, \beta)$ for each β . By the second largest eigencurve $\lambda_2(\alpha, \beta)$ of $C(\alpha, \beta)$ for fixed β , we mean that for given $\alpha > 0$, $\lambda_2(\alpha, \beta)$ is the second largest eigenvalue of $C(\alpha, \beta)$. We remark that 0 is the largest eigenvalue of $C(\alpha, \beta)$ for any $\alpha > 0$ and $\beta \in \mathbb{R}$. This is to say that for fixed β , $\lambda_2(\alpha, \beta) = 0$ is the first eigencurve of $C(\alpha, \beta)$. A numerical simulation⁷ of a coupled system of $N=512$ Lorenz oscillators shows that with $h=I_3$ and $A=A_p$, the critical coupling strength ϵ_c decreases linearly with respect to the increase of α up to a critical value α_c . The smallest ϵ_c is about 6, which is about 10³ times smaller than the original critical coupling strength, indicating the efficiency of the proposed approach.

The mathematical verification of such phenomena is first achieved by Shieh *et al.*[6](#page-11-3) Specifically, they solved the second eigencurve problem of $C(\alpha, 1)$ with *n* being a multiple of 4 and *j* being any positive integer. Subsequently, in Ref. [4](#page-11-4) the second eigencurve problem for $C(\alpha,0)$ and $C(\alpha, 1)$ with *n* being any positive integer and *j*=1 are solved without touching on the reduced eigenvalue problem. In this paper, we obtain two main results. First, the reduced eigenvalue problem for $C(\alpha, 0)$ is completely solved. Some partial results for the reduced eigenvalue problem of $C(\alpha, \beta)$ are also obtained. Second, we are then able to understand the behavior of $\lambda_2(\alpha, 0)$ and $\lambda_2(\alpha, 1)$ for any *j* and $n \in \mathbb{N}$.

II. REDUCED EIGENVALUE PROBLEMS

Writing the eigenvalue problem $C(\alpha, \beta)$ **b**= λ **b**, where **b**= $(\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)^T$ and $\mathbf{b}_i \in \mathbb{C}^{2^j}$, in block component form, we get

$$
C_2^T(\alpha, 1)\mathbf{b}_{i-1} + C_1(\alpha, 1)\mathbf{b}_i + C_2(\alpha, 1)\mathbf{b}_{i+1} = \lambda \mathbf{b}_i, \quad 1 \le i \le n. \tag{2.1a}
$$

Mixed boundary conditions would yield that

$$
C_2^T(\alpha, 1)\mathbf{b}_0 + C_1(\alpha, 1)\mathbf{b}_1 + C_2(\alpha, 1)\mathbf{b}_2 = \lambda \mathbf{b}_1 = C_1(\alpha, \beta)\mathbf{b}_1 + C_2(\alpha, 1)\mathbf{b}_2 + C_2^T(\alpha, \beta)\mathbf{b}_n
$$

and

122702-4 Juang, Li, and Chang **J. Math. Phys. 47, 122702 (2006)**

$$
C_2^T(\alpha,1)\mathbf{b}_{n-1} + C_1(\alpha,1)\mathbf{b}_n + C_2(\alpha,1)\mathbf{b}_{n+1} = \lambda \mathbf{b}_n = C_2(\alpha,\beta)\mathbf{b}_1 + C_2^T(\alpha,1)\mathbf{b}_{n-1} + \hat{I}C_1(\alpha,\beta)\hat{I}\mathbf{b}_n,
$$

or, equivalently,

$$
C_2^T(\alpha,1)\mathbf{b}_0 = (C_1(\alpha,\beta) - C_1(\alpha,1))\mathbf{b}_1 + C_2^T(\alpha,\beta)\mathbf{b}_n
$$

\n
$$
= \begin{bmatrix} 1-\beta & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + \frac{\alpha(1-\beta)}{2^{2j}}ee^T \mathbf{b}_1 + \begin{bmatrix} 0 & \cdots & 0 & \beta \\ 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix} + \frac{\alpha\beta}{2^{2j}}ee^T \mathbf{b}_n
$$

\n
$$
= (1-\beta)C_2^T(\alpha,1)\hat{\mathbf{b}}_1 + \beta C_2(\alpha,1)\mathbf{b}_n
$$
 (2.1b)

and

$$
C_2(\alpha,1)\mathbf{b}_{n+1} = (\hat{I}C_1(\alpha,\beta)\hat{I} - C_1(\alpha,1))\mathbf{b}_n + C_2(\alpha,\beta)\mathbf{b}_1 = (1-\beta)C_2^T(\alpha,1)\hat{I}\mathbf{b}_n + \beta C_2(\alpha,1)\mathbf{b}_1.
$$
\n(2.1c)

To study the block difference equation $[Eq. (2.1)]$, we set

$$
\mathbf{b}_j = \delta v, \tag{2.2}
$$

where $\mathbf{v} \in \mathbb{C}^{2^j}$ and $\delta \in \mathbb{C}$.

Substituting Eq. (2.2) (2.2) (2.2) into Eq. $(2.1a)$ $(2.1a)$ $(2.1a)$, we have

$$
[C_2^T(\alpha,1) + \delta(C_1(\alpha,1) - \lambda I) + \delta^2 C_2(\alpha,1)]\mathbf{v} = 0.
$$
\n(2.3)

To have a nontrivial solution \boldsymbol{v} satisfying Eq. (2.3) (2.3) (2.3) , we need to have

$$
\det[C_2^T(\alpha, 1) + \delta(C_1(\alpha, 1) - \lambda I) + \delta^2 C_2(\alpha, 1)] = 0.
$$
\n(2.4)

Definition 2.1: Equation ([2.4](#page-4-2)) is to be called the characteristic equation of the block differ-ence equation [Eq. ([2.1a](#page-3-0))]. Let $\delta_k = \delta_k(\lambda) \neq 0$ and $v_k = v_k(\lambda) \neq 0$ be complex numbers and vectors, respectively, satisfying Eq. ([2.3](#page-4-1)). Here $k=1,2,\ldots,m$ and $m \leq 2^{j}$. Assume that there exists a λ $\epsilon \in \mathbb{C}$, such that $\mathbf{b}_j = \sum_{k=1}^m c_k \delta_k^j(\lambda) \mathbf{v}_k(\lambda)$, $j = 0, 1, ..., n+1$, satisfy Eqs. ([2.1b](#page-4-3)) and ([2.1c](#page-4-4)), where c_k \in C. If, in addition, \mathbf{b}_j , $j=1,2,\ldots,n$, are not all zero vectors, then such $\delta_k(\lambda)$ is called a charac-teristic value of Eq. ([2.1a](#page-3-0)), ([2.1b](#page-4-3)), and ([2.1c](#page-4-4)) or ([1.1a](#page-1-3)) with respect to λ and $v_k(\lambda)$ its corresponding characteristic vector.

Remark 2.1: Clearly, for each α and β , λ in Definition 2.1 is an eigenvalue of $C(\alpha, \beta)$.

Should no ambiguity arises, we will write $C_2^T(\alpha, 1) = C_2^T$, $C_1(\alpha, 1) = C_1$, and $C_2(\alpha, 1) = C_2$. Likewise, we will write $A_2(\beta, 2^j) = A_2(\beta)$ and $A_1(\beta, 2^j) = A_1(\beta)$.

Proposition 2.1: Let $\rho(\lambda) = \{\delta_i(\lambda) : \delta_i(\lambda) \text{ is a root of Eq. (2.4)}\}$ $\rho(\lambda) = \{\delta_i(\lambda) : \delta_i(\lambda) \text{ is a root of Eq. (2.4)}\}$ $\rho(\lambda) = \{\delta_i(\lambda) : \delta_i(\lambda) \text{ is a root of Eq. (2.4)}\}$, and let $\overline{\rho}(\lambda) = \{1/\delta_i(\lambda) : \delta_i(\lambda) \text{ is a root of } \overline{\rho}(\lambda)\}$ *a root of Eq.* [\(2.4\)](#page-4-2). *Then* $\rho(\lambda) = \overline{\rho(\lambda)}$. Let δ_i and δ_k be in $\rho(\lambda)$. We further assume that δ_i and $v_i = (v_{i1}, \ldots, v_{i2i})^T$ satisfy Eq. [\(2.3\).](#page-4-1) Suppose $\delta_i \cdot \delta_k = 1$. Then δ_k and v_k $=(v_{i2}, v_{i2i-1}, \ldots, v_{i2}, v_{i1})^T = v_i^s$ also satisfy Eq. [\(2.3\).](#page-4-1) Conversely, if $\delta_i \cdot \delta_k \neq 1$, then $v_k \neq v_i^s$. *Proof:* To prove $\rho(\lambda) = \overline{\rho}(\lambda)$, we see that

$$
\begin{split} \det[C_2^T + \delta(C_1 - \lambda I) + \delta^2 C_2] &= \delta^2 \det\left[\frac{1}{\delta^2} C_2^T + \frac{1}{\delta}(C_1 - \lambda I) + C_2\right] \\ &= \delta^2 \det\left[\frac{1}{\delta^2} C_2^T + \frac{1}{\delta}(C_1 - \lambda I) + C_2\right]^T \\ &= \delta^2 \det\left[C_2^T + \frac{1}{\delta}(C_1 - \lambda I) + \frac{1}{\delta^2} C_2\right]. \end{split}
$$

Thus, if δ is a root of Eq. ([2.4](#page-4-2)), then so is $1/\delta$. To see the last assertion of the proposition, we write Eq. ([2.3](#page-4-1)) with $\delta = \delta_i$ and $\mathbf{v} = \mathbf{v}_i$ in component form.

$$
\sum_{m=1}^{2^j} \left[(C_2^T)_{lm} v_{im} + \delta_i (\overline{C}_1)_{lm} v_{im} + \delta_i^2 (C_2)_{lm} v_{im} \right] = 0, \quad l = 1, 2, ..., 2^j.
$$
\n(2.5)

Here $\overline{C}_1 = C_1 - \lambda I$. Now the right hand side of Eq. ([2.5](#page-5-0)) becomes

$$
\left(\frac{1}{\delta_k}\right)^2 \left\{ \sum_{m=1}^{2^j} \left[(C_2)_{l(2^j+1-m)} v_{i(2^j+1-m)} + \delta_k(\overline{C}_1)_{l(2^j+1-m)} v_{i(2^j+1-m)} + \delta_k^2(C_2^T)_{l(2^j+1-m)} v_{i(2^j+1-m)} \right] \right\}
$$
\n
$$
= \left(\frac{1}{\delta_k}\right)^2 \left\{ \sum_{m=1}^{2^j} \left[(C_2^T)_{(2^j+1-l)m} v_{i(2^j+1-m)} + \delta_k(\overline{C}_1)_{(2^j+1-l)m} v_{i(2^j+1-m)} + \delta_k^2(C_2)_{(2^j+1-l)m} v_{i(2^j+1-m)} \right] \right\},
$$
\n
$$
l = 1, 2, ..., 2^j.
$$
\n(2.6)

We have used the fact that

$$
(A)_{(2i+1-l)m} = (A^T)_{l(2i+1-m)},
$$
\n(2.7)

where $A = C_2^T$ or \overline{C}_1 or C_2 to justify the equality in Eq. ([2.6](#page-5-1)). However, Eq. ([2.7](#page-5-2)) follows from Eqs. $(1.1c)$ $(1.1c)$ $(1.1c)$ and $(1.1d)$ $(1.1d)$ $(1.1d)$. Letting $v_{i(2^j+1-m)} = v_{km}$, we have that the pair (δ_k, v_k) satisfies Eq. ([2.3](#page-4-1)). Suppose $v_k = v_i^s$, we see, similarly, that the pair $(1/\delta_i, v_k)$ also satisfies Eq. ([2.3](#page-4-1)). Thus $1/\delta_i = \delta_k$.

Remark 2.2: Equation ([2.4](#page-4-2)) is a palindromic equation. That is, for each λ , δ and δ^{-1} are both the roots of Eq. (2.4) (2.4) (2.4) . However, the eigenvalue problem discussed here is not a palindromic eigenvalue problem.³

Definition 2.2: We shall call v^s and $-v^s$, the symmetric vector and antisymmetric vector of v , respectively. A vector *v* is symmetric (antisymmetric) if $v = v^s$ $(v = -v^s)$.

Theorem 2.1: Let $\delta_k = e^{(\pi k/n)i}$, *k* is an integer and $i = \sqrt{-1}$, then δ_{2k} , $k = 0, 1, ..., n-1$, are *characteristic values of Eq.* ([2.1a](#page-3-0)), ([2.1b](#page-4-3)), and ([2.1c](#page-4-4)) with β =1. *For each* α , *if* $\lambda \in \mathbb{C}$ *satisfies*

$$
\det[C_2^T + \delta_{2k}(C_1 - \lambda I) + \delta_{2k}^2 C_2] = 0,
$$

for some $k \in \mathbb{Z}$, $0 \leq k \leq n-1$, *then* λ *is an eigenvalue of* $C(\alpha, 1)$ *.*

Proof: Let λ be as assumed. Then there exists a $v \in \mathbb{C}^{2^j}$, $v \neq 0$ such that

$$
[C_2^T + \delta_{2k}(C_1 - \lambda I) + \delta_{2k}^2 C_2] \mathbf{v} = \mathbf{0}.
$$

Let $\mathbf{b}_j = \delta_{2k}^j \mathbf{v}$, $0 \le j \le n+1$. Then such \mathbf{b}_j 's satisfy Eqs. ([2.1a](#page-3-0)), ([2.1b](#page-4-3)), and ([2.1c](#page-4-4)). We just proved the assertion of the theorem.

Corollary 2.1: *Set*

$$
\Gamma_k = C_1 + \delta_{2n-k} C_2^T + \delta_k C_2.
$$
 (2.8)

Then the eigenvalues of $C(\alpha, 1)$, for each α , consist of eigenvalues of Γ_k , $k=0, 2, 4, ..., 2(n-1)$. *That is,* $\rho(C(\alpha, 1)) = \bigcup_{k=0}^{n-1} \rho(\Gamma_{2k})$. Here $\rho(A) =$ the spectrum of the matrix A.

Remark 2.3: $C(\alpha, 1)$ is a block circulant matrix. The assertion of Corollary 2.1 is not new (see, e.g., Theorem $5.6.4$ of Ref. [1](#page-11-0)). Here we merely gave a different proof.

To study the eigenvalue of $C(\alpha, 0)$ for each α , we begin with considering the eigenvalues and eigenvectors of C_2^T + C_1 + C_2 and C_2^T – C_1 + C_2 .

Proposition 2.2: Let $T_1(C)$ $(T_2(C))$ be the set of linearly independent eigenvectors of the *matrix C that are symmetric (antisymmetric). Then* $|T_1(C_2^T + C_1 + C_2)| = |T_2(C_2^T + C_1 + C_2)| = |T_1(C_2^T + C_1 + C_2)|$ $-C_1 + C_2$) $= |T_2(C_2^T - C_1 + C_2)| = 2^{j-1}$. *Here* |A| *denote the cardinality of the set A.*

Proof: We will only illustrate the case for $C_2^T - C_1 + C_2 = :C$. We first observe that $|T_1(C)|$ is less than or equal to 2^{j-1} . So is $|T_2(C)|$. We also remark that the cardinality of the set of all linearly 122702-6 Juang, Li, and Chang **J. Math. Phys. 47, 122702 (2006)**

independent eigenvectors of *C* is 2^{*j*}. If $0 < |T_1(C)| < 2^{j-1}$, there must exist an eigenvector *v* for which $v \neq v^s$, $v \neq -v^s$, and $v \notin \text{span}\{T_1(C), T_2(C)\}$, the span of the vectors in $T_1(C)$ and $T_2(C)$. It then follows from Proposition 2.1 that $v + v^s$, a symmetric vector, is in the span $\{T_1(C)\}\$. Moreover, $\mathbf{v}-\mathbf{v}^s$ is in span $\{T_2(C)\}$. Hence $\mathbf{v} \in \text{span}\{T_1(C), T_2(C)\}$, a contradiction. Hence, $|T_1(C)|=2^{j-1}$. Similarly, we conclude that $|T_2(C)| = 2^{j-1}$.

Theorem 2.2: Let $\delta_k = e^{(\pi k/n)i}$, where k is an integer and $i = \sqrt{-1}$. For each α , if $\lambda \in \mathbb{C}$ satisfies

$$
\det[C_2^T + \delta_k(C_1 - \lambda I) + \delta_k^2 C_2] = 0,
$$

for some $k \in \mathbb{Z}$, $1 \leq k \leq n-1$, *then* λ *is an eigenvalue of* $C(\alpha, 0)$. Let λ *be the eigenvalue of* C_2^T $+C_1+C_2$ $(-C_2^T+C_1-C_2)$ for which its associated eigenvector **v** satisfies $\hat{i}v=v$ $(\hat{i}v=-v)$, then λ is also an eigenvalue of $C(\alpha,0)$.

Proof: For any $1 \le k \le n-1$, let δ_k be as assumed. Let λ_k and ν_k be a number and a nonzero vector, respectively, satisfying

$$
\left[C_2^T + \delta_k(C_1 - \lambda_k I) + \delta_k^2 C_2\right] \mathbf{v}_k = \mathbf{0}.\tag{2.9}
$$

Using Proposition 2.1, we see that λ_k satisfies

$$
\det[C_2^T + \delta_{2n-k}(C_1 - \lambda_k I) + \delta_{2n-k}^2 C_2] = 0.
$$
 (2.10)

Let v_{2n-k} be a nonzero vector satisfying $[C_2^T + \delta_{2n-k}(C_1 - \lambda_k I) + \delta_{2n-k}^2 C_2]v_{2n-k} = 0$. Letting

$$
\mathbf{b}_i = \delta^i_k \mathbf{v}_k + \delta_k \delta^i_{2n-k} \mathbf{v}_{2n-k}, \quad i = 0, 1, \dots, n+1,
$$

we conclude, via Eqs. ([2.9](#page-6-0)) and ([2.10](#page-6-1)), that \mathbf{b}_i satisfy Eq. ([2.1a](#page-3-0)) with $\lambda = \lambda_k$. Moreover,

$$
\hat{I}\mathbf{b}_1 = \delta_k \hat{I} \mathbf{v}_k + \hat{I} \mathbf{v}_{2n-k} = \delta_k \mathbf{v}_{2n-k} + \mathbf{v}_k = \mathbf{b}_0.
$$

We have used Proposition 2.1 to justify the second equality above. Similarly, $\mathbf{b}_{n+1} = \hat{\boldsymbol{\mu}}_n$. To see $\lambda = \lambda_k$, 1 $\le k \le n-1$, is indeed an eigenvalue of *C*(α ,0) for each α , it remains to show that **b**_{*i*} \neq **0** for some *i*. Using Proposition 2.1, we have that there exists an *m*, $1 \le m \le 2^j$ such that v_{km} $= v_{(2n-k)(2^j-m+1)} \neq 0$. We first show that **b**₀ ≠ **0**. Let *m* be the index for which $v_{km} \neq 0$. Suppose **b**₀ =**0**. Then

$$
v_{km} + \delta_k v_{(2n-k)m} = 0
$$

and

$$
v_{k(2^j-m+1)} + \delta_k v_{(2n-k)(2^j-m+1)} = v_{(2n-k)m} + \delta_k v_{km} = 0.
$$

And so, $v_{km} = \delta_k^2 v_{km}$, a contradiction. Let λ and v be as assumed in the last assertion of theorem. Letting $\mathbf{b}_i = \mathbf{v}$ ($\mathbf{b}_i = (-1)^i \mathbf{v}$), we conclude that λ is an eigenvalue of $C(\alpha, 0)$ with corresponding eigenvector $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)^T$. Thus, λ_k is an eigenvalue of $C(\alpha, 0)$ for each α .

Corollary 2.2: Let $\delta_k = e^{(\pi k/n)i}$, where k is an integer and $i = \sqrt{-1}$. Then, for each α , $\rho(C(\alpha,0)) = \bigcup_{k=1}^{n-1} \rho(\Gamma_k) \cup \rho^S(\Gamma_0) \cup \rho^{AS}(\Gamma_n)$, where $\rho^S(A)$ ($\rho^{AS}(A)$) the set of eigenvalues of A for *which their corresponding eigenvectors are symmetric (antisymmetric)*.

We next consider the eigenvalues of $C(\alpha, \beta)$.

Theorem 2.3: Let $\delta_k = e^{(\pi k/n)i}$, where k is an integer and $i = \sqrt{-1}$. Then, for each α ,

$$
\rho(C(\alpha,\beta)) \supset \begin{cases} \sum\limits_{k=1}^{[n/2]} \bigcup\limits_{k=1}^{\infty} \rho(\Gamma_{2k}) \cup \rho^S(\Gamma_0), & n \ is \ odd \\ \bigcup\limits_{k=1}^{(n/2)-1} \rho(\Gamma_{2k}) \cup \rho^S(\Gamma_0) \cup \rho^{AS}(\Gamma_n), & n \ is \ even. \end{cases}
$$

Here $[n/2]$ *is the greatest integer that is less than or equal to n/2.*

122702-7 Perturbed block circulant matrices and their application

J. Math. Phys. 47, 122702 (2006)

Proof: We illustrate only the case that *n* is even. Assume that *k* is such that $1 \le k \le n/2-1$. Let $\mathbf{b}_i = \delta_{2k}^i \mathbf{v}_{2k} + \delta_{2k} \delta_{2n-2k}^i \mathbf{v}_{2n-2k}$, we see clearly that such \mathbf{b}_i , $i = 0, 1, n, n+1$, satisfy both Neumann and periodic boundary conditions, respectively. And so

$$
\mathbf{b}_0 = (1 - \beta)\mathbf{b}_0 + \beta \mathbf{b}_0 = (1 - \beta)\hat{\boldsymbol{\Lambda}}\mathbf{b}_1 + \beta \mathbf{b}_n
$$

and

$$
\mathbf{b}_{n+1} = (1 - \beta)\mathbf{b}_{n+1} + \beta \mathbf{b}_{n+1} = (1 - \beta)\hat{I}\mathbf{b}_n + \beta \mathbf{b}_1.
$$

Here, δ_{2k} , $1 \le k \le (n/2)-1$, are characteristic values of Eq. ([2.1a](#page-3-0)), ([2.1b](#page-4-3)), and ([2.1c](#page-4-4)). Thus, if λ $\epsilon \rho(\Gamma_{2k})$, then λ is an eigenvalue of $C(\alpha, \beta)$. The assertions for Γ_0 and Γ_n can be done similarly.

Remark 2.4: If *n* is an even number, for each α and β , half of the eigenvalues of $C(\alpha, \beta)$ are independent of the choice of β . The other characteristic values of Eq. (2.1) seem to depend on β . It is of interest to find them.

III. THE SECOND EIGENCURVE OF $C(\alpha, 0)$ **AND** $C(\alpha, 1)$

We begin with considering the eigencurves of Γ_k , as given in Eq. ([2.8](#page-5-3)). Clearly,

$$
\Gamma_{k} = \begin{pmatrix}\n-2 & 1 & 0 & \cdots & \cdots & \delta_{2n-k} \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & -2 & 1 \\
\delta_{k} & \cdots & \cdots & 0 & 1 & -2\n\end{pmatrix}_{m \times m} - \frac{\alpha(2 - 2\cos(\pi k/n))}{m} e e^{T} =: D_{1}(k) - \alpha(k) e e^{T},
$$
\n(3.1)

where $m=2^j$. We next find a unitary matrix to diagonalize $D_1(k)$.

Remark 3.1: Let $(\lambda(k), \mathbf{v}(k))$ be the eigenpair of $D_1(k)$. If $e^T \mathbf{v}(k) = 0$, then $\lambda(k)$ is also an eigenvalue of Γ_k .

Proposition 3.1: *Let*

$$
\theta_{l,k} = \frac{2l\pi}{m} + \frac{k\pi}{nm}, \quad l = 0, 1, \dots, m - 1,
$$
\n(3.2a)

$$
\boldsymbol{p}_l(k) = (e^{i\theta_{l,k}}, e^{i2\theta_{l,k}}, \cdots, e^{im\theta_{l,k}})^T, \tag{3.2b}
$$

and

$$
P(k) = \left(\frac{p_0(k)}{\sqrt{m}}, \dots, \frac{p_{m-1}(k)}{\sqrt{m}}\right).
$$
\n(3.2c)

(i) Then $P(k)$ is a unitary matrix and $P^H(k)D_1(k)P(k) = \text{diag}(\lambda_{0,k} \cdots \lambda_{m-1,k})$, where P^H is the con*jugate transpose of P*, *and*

$$
\lambda_{l,k} = 2 \cos \theta_{l,k} - 2, \quad l = 0, 1, \dots, m - . \tag{3.2d}
$$

(ii) Moreover, for $0 \le k \le 2n$, the eigenvalues of $D_1(k)$ are distinct if and only if $k \ne 0$, *n*, or $2n$.

Proof: Let $\mathbf{b} = (b_1, \ldots, b_m)^T$. Writing the eigenvalue problem $D_1(k)\mathbf{b} = \lambda \mathbf{b}$ in component form, we get

$$
b_{j-1} - (2 + \lambda)b_j + b_{j+1} = 0, \quad j = 2, 3, \dots, m - 1,
$$
\n(3.3a)

$$
-(2+\lambda)b_1 + b_2 + \delta_{2n-k}b_m = 0, \tag{3.3b}
$$

122702-8 Juang, Li, and Chang **J. Math. Phys. 47, 122702 (2006)**

$$
\delta_k b_1 + b_{m-1} - (2 + \lambda)b_m = 0.
$$
\n(3.3c)

Set $b_j = \delta^j$, where δ satisfies the characteristic equation $1 - (2 + \lambda)\delta + \delta^2 = 0$ of the system $D_1(k)$ **b**= λ **b**. Then the boundary conditions ([3.3b](#page-7-0)) and ([3.3c](#page-8-0)) are reduced to

$$
\delta^n = \delta_k. \tag{3.4}
$$

Thus, the solutions $e^{i\theta_{l,k}}$, $l=0,1,\ldots,m-1$, of Eq. ([3.4](#page-8-1)) are the candidates for the characteristic values of Eq. ([3.3](#page-7-1)). Substituting $e^{i\theta_{l,k}}$ into Eq. ([3.3a](#page-7-1)) and solving for λ , we see that $\lambda = \lambda_{l,k}$ are the candidates for the eigenvalues of $D_1(k)$. Clearly, $(\lambda, \mathbf{b}) = (\lambda_{l,k}, p_l(k))$ satisfies $D_1(k)\mathbf{b} = \lambda \mathbf{b}$ and \mathbf{b} $=p_l(k) \neq 0$. Thus, $\lambda = \lambda_{l,k}$ are, indeed, the eigenvalues of $D_1(k)$. To complete the proof of the proposition, it suffices to show that $P(k)$ is unitary. To this end, we need to compute $p_l^H(k) \cdot p_{l'}(k)$. Clearly, $p_l^H(k) \cdot p_l(k) = m$. Now, let $l \neq l'$, we have that

$$
\boldsymbol{p}_l^H(k) \cdot \boldsymbol{p}_{l'}(k) = \sum_{j=1}^m e^{ij(\theta_{l,k} - \theta_{l',k})} = \sum_{j=1}^m e^{ij([2(l-l')/m]\pi)} = \frac{r(1 - r^m)}{1 - r} = 0,
$$

where $r = e^{i([2(l-l')/m]\pi)}$. Hence, $P(k)$ is unitary. The last assertion of the proposition is obvious. □

To prove the main results in this section, we also need the following proposition. Some assertions of the proposition are from Theorem 8.6.2 of Ref. [2.](#page-11-6)

Proposition 3.2: *Suppose* $D = diag(d_1, ..., d_m) \in \mathbb{R}^{m \times m}$ *and that the diagonal entries satisfy* d_1 $> \cdots$ $> d_m$. Let $\gamma \neq 0$ and $z = (z_1, \ldots, z_m)^T \in \mathbb{R}^n$. Assume that $(\lambda_i(\gamma), \mathbf{v}_i(\gamma))$ are the eigenpairs of $D + \gamma z z^T$ *with* $\lambda_1(\gamma) \ge \lambda(\gamma) \ge \cdots \ge \lambda_m(\gamma)$. *(i)* Let $A = \{k : 1 \le k \le m, z_k = 0\}$, $A^c = \{1, \ldots, m\} - A$. If k A , *then* $d_k = \lambda_k$. *(ii)* Assume $\alpha > 0$. Then the following interlacing relations hold $\lambda_1(\gamma) \ge d_1$ $\geq \lambda_2(\gamma) \geq d_2 \geq \cdots \geq \lambda_m(\gamma) \geq d_m$. Moreover, the strict inequality holds for these indices $i \in A^c$. *(iii) Let* $i \in A^c$, $\lambda_i(\gamma)$ are strictly increasing in γ and $\lim_{\alpha \to \infty} \lambda_i(\gamma) = \overline{\lambda}_i$ for all *i*, where $\overline{\lambda}_i$ are the roots \int *of* $g(\lambda) = \sum_{k \in A^c} z_i^2 / (d_k - \lambda)$ with $\overline{\lambda}_i \in (d_i, d_{i-1})$. In the case that $1 \in A^c$, $d_0 = \infty$.

Proof: The proof of interlacing relations in *(ii)* and the assertion in *(i)* can be found in Theorem 8.6.2 of Ref. [2.](#page-11-6) We only prove the remaining assertions of the proposition. Rearranging *z* so that $z^T = (0, 0, \ldots, 0, z_{i_1}, \ldots, z_{i_k}) := (0, \ldots, 0, z^T)$, where $i_1 < i_2 < \cdots < i_k$ and $i_j \in A^c$, *j* $=1,\ldots,k$. The diagonal matrix *D* is rearranged accordingly. Let $D = diag(D_1, D_2)$, where D_2 $=$ diag $(d_{i_1},...,d_{i_k})$. Following Theorem 8.6.2 of Ref. [2,](#page-11-6) we see that $\lambda_{i_j}(\gamma)$ are the roots of the scalar equation $f_{\gamma}(\lambda)$, where

$$
f_{\gamma}(\lambda_{i_j}(\gamma)) = 1 + \gamma \sum_{j=1}^k \frac{z_j^2}{d_{i_j} - \lambda_{i_j}(\gamma)} = 0.
$$
 (3.5)

Differentiating the equation above with respect to γ , we get

$$
\sum_{j=1}^k \frac{z_{i_j}^2}{d_{i_j} - \lambda_{i_j}(\gamma)} + \left(\gamma \sum_{j=1}^k \frac{z_{i_j}^2}{(d_{i_j} - \lambda_{i_k}(\gamma))^2}\right) \frac{d\lambda_{i_j}(\gamma)}{d\gamma} = 0.
$$

Thus,

$$
\frac{\mathrm{d}\lambda_{i_j}(\gamma)}{\mathrm{d}\gamma} = \frac{1}{\gamma^2} \sum_{j=1}^k \frac{z_{i_j}^2}{(d_{i_j} - \lambda_{i_j}(\gamma))^2} > 0.
$$

Clearly, for each *i_j*, the limit of $\lambda_{i_j}(\gamma)$ as $\gamma \to \infty$ exists, say, $\overline{\lambda}_{i_j}$. Since, for $d_{i_j} < \lambda < d_{i_j-1}$,

$$
\sum_{j=1}^{k} \frac{z_{i_j}^2}{d_{i_j} - \lambda_{i_j}(\gamma)} = \frac{1}{\gamma}.
$$

Taking the limit as $\alpha \rightarrow \infty$ on both sides of the equation above, we get

. (3.10) We shall prove that $h(2^j, n, k) < 0$ by the induction on *j*. For $j = 1$, $h(2, n, k) = \frac{1}{2}[[1/\cos^2(k\pi/2n)$ −1]] <0, *k*=1,2,...,*n*−1. Assume *h*(2*^j*,*n*,*k*) <0. Here, *n* ∈ N and *k*=1,2,...,*n*−1. We first note that This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 140.113.38.11 On: Thu, 01 May 2014 01:41:44

122702-9 Perturbed block circulant matrices and their application J. Math. Phys. 47, 122702 (2006)

$$
\sum_{j=1}^{k} \frac{z_{i_j}^2}{d_{i_j} - \overline{\lambda}_{i_j}} = 0.
$$
\n(3.6)

as desired. \Box

We are now in the position to state the following theorems.

Theorem 3.1: *Let n and* $m=2^j$ *be given positive integers. For each k, k*=1,2,...,*n*−1, *and* α , *we denote by* $\lambda_{l,k}(\alpha)$, $l=0,1,\ldots,2^j-1$, the eigenvalues of Γ_k . For $k=1,2,\ldots,n-1$, we let $(\lambda_{l,k}, u_{l,k})$, *l* = 0, 1, ..., 2^{*j*} − 1, *be the eigenpairs of* $D_1(k)$, *as defined in* Eq. ([3.1](#page-7-2)). *Then the following hold true*.

(i) $\lambda_{l,k}(\alpha)$ *is strictly decreasing in* α , *l*=0,1,...,2*j*-1 *and k*=1,2,...,*n*-1*.*

(ii) There exist $\lambda_{l,k}^*$ such that $\lim_{\alpha \to \infty} \lambda_{l,k}(\alpha) = \lambda_{l,k}^*$ Moreover, $g_k(\lambda_{l,k}^*) = 0$, where

$$
g_k(\lambda) = \sum_{l=1}^{m} \frac{1}{(\lambda_{l-1,k})(\lambda_{l-1,k} + \lambda)}.
$$
 (3.7)

Proof: The first assertion of the theorem follows from Proposition 3.2 (iii). Let *k* be as assumed. Set, for *l*=0,1,...,*m*−1,

$$
z_{l+1} = p_l^H(k)e = \sum_{j=1}^m e^{ij\theta_{l,k}} = \frac{e^{-\theta_{l,k}}(1 - e^{-im\theta_{l,k}})}{1 - e^{-\theta_{l,k}}} = \frac{e^{-\theta_{l,k}}(1 - e^{-ik(\pi/n)})}{1 - e^{-\theta_{l,k}}}.
$$

Then

$$
\overline{z}_{l+1}z_{l+1} = \frac{2 - 2\cos m\theta_{l,k}}{2 - 2\cos\theta_{l,k}} = \frac{2\cos(k\pi/n) - 2}{\lambda_{l,k}} \neq 0.
$$
 (3.8)

Let $P(k)$ be as given in Eq. $(3.2c)$ $(3.2c)$ $(3.2c)$. Then

$$
-P^{H}(k)\cdot\Gamma_{k}\cdot P(k)=\mathrm{diag}(-\lambda_{0,k},\ldots,-\lambda_{m-1,k})+\alpha(k)P^{H}_{l}(k)e(P^{H}_{l}(k)e)^{H}.
$$

Note that if *k* is as assumed, it follows from Proposition 3.1(ii) that $\lambda_{l,k}$, *l*=0,...,*m*−1, are distinct. Thus, we are in the position to apply Proposition 3.2. Specifically, by noting $A^c = \phi$, we see that $\lambda_{0,k}^*$ satisfies $g(\lambda)=0$, where

$$
g(\lambda) = \sum_{l=1}^m \frac{1}{(\lambda_{l-1,k})(\lambda_{l-1,k} + \lambda)}.
$$

We have used Eqs. $(3.2d)$ $(3.2d)$ $(3.2d)$, (3.6) (3.6) (3.6) , and (3.8) (3.8) (3.8) , to find $g(\lambda)$

We next give an upper bound for $\lambda_{0,k}^*$, $k=1,2,\ldots,n-1$.

Theorem 3.2: *The following inequalities hold true:*

$$
\lambda_{0,k}^* < \lambda_{0,n}, \quad k = 1, 2, \dots, n - 1. \tag{3.9}
$$

Proof: To complete the proof of Eq. ([3.9](#page-9-2)), it suffices to show that $g_k(-\lambda_{0,n})$ < 0. Now,

$$
g_k(-\lambda_{0,n})
$$

=
$$
\sum_{l=1}^{m} \frac{1}{[2\cos([2(l-1)\pi/m] + (k\pi/nm)) - 2][2\cos([2(l-1)\pi/m] + (k\pi/nm)) - 2\cos(\pi/m)]}
$$

=: $h(m,n,k) = h(2^j,n,k).$ (3.10)

$$
\qquad \qquad \Box
$$

122702-10 Juang, Li, and Chang

J. Math. Phys. 47, 122702 (2006)

$$
\cos\left(\frac{2(2^j+i-1)\pi}{2^{j+1}}+\frac{k\pi}{2^{j+1}n}\right)=-\cos\left(\frac{2(i-1)\pi}{2^{j+1}}+\frac{k\pi}{2^{j+1}n}\right)=:-\cos\theta_{i-1,k,j+1}, \quad i=1,2,\ldots,2^j.
$$
\n(3.11)

Moreover, upon using Eq. (3.11) (3.11) (3.11) , we get that

$$
\frac{1}{(\cos \theta_{i-1,k,j+1}-1)(\cos \theta_{i-1,k,j+1}-\cos \theta_{0,n,j+1})} + \frac{1}{(\cos \theta_{2^{j}+i-1,k,j+1}-1)(\cos \theta_{2^{j}+i-1,k,j+1}-\cos \theta_{0,n,j+1})}
$$
\n
$$
= \frac{1}{(\cos \theta_{i-1,k,j+1}-1)(\cos \theta_{i-1,k,j+1}-\cos \theta_{0,n,j+1})} + \frac{1}{(\cos \theta_{i-1,k,j+1}+1)(\cos \theta_{i-1,k,j+1}+\cos \theta_{0,n,j+1})}
$$
\n
$$
= \frac{2 \cos^2 \theta_{i-1,k,j+1} + 2 \cos \theta_{0,n,j+1}}{(\cos^2 \theta_{i-1,k,j+1}-1)(\cos^2 \theta_{i-1,k,j+1}-\cos^2 \theta_{0,n,j+1})}
$$
\n
$$
= \frac{8(\cos^2 \theta_{i-1,k,j+1} + \cos \theta_{0,n,j+1})}{(\cos 2\theta_{i-1,k,j+1}-1)(\cos 2\theta_{i-1,k,j+1}-\cos 2\theta_{0,n,j+1})} = \frac{2(\cos^2 \theta_{i-1,k,j+1} + \cos \theta_{0,n,j+1})}{(\cos \theta_{i-1,k,j}-1)(\cos \theta_{i-1,k,j}-\cos \theta_{0,n,j})}.
$$
\n(3.12)

We are now in a position to compute $h(2^{j+1}, n, k)$. Using Eq. ([3.12](#page-10-1)), we get that

$$
h(2^{j+1}, n, k) = \sum_{l=1}^{2^{j+1}} \frac{1}{4(\cos \theta_{l-1, k, j+1} - 1)(\cos \theta_{l-1, k, j+1} - \cos \theta_{0, n, j+1})}
$$

=
$$
\sum_{l=1}^{2^{j}} \frac{2(\cos^{2} \theta_{l-1, k, j+1} + \cos \theta_{0, n, j+1})}{(\cos \theta_{l-1, k, j} - 1)(\cos \theta_{l-1, k, j} - \cos \theta_{0, n, j})} \le 8(\cos^{2} \theta_{0, k, j+1} + \cos \theta_{0, n, j+1})h(2^{j}, n, k). \tag{3.13}
$$

We have used the facts that $\cos^2 \theta_{0,k,j+1} > \cos^2 \theta_{i-1,k,j+1}$, $i=2,\ldots,2^j$, and that the first term $(i=1)$ of the summation in Eq. (3.13) (3.13) (3.13) is negative while all the others are positive to justify the inequality in Eq. ([3.13](#page-10-2)). It then follows from Eq. (3.13) that $h(2^{j+1}, n, k)$ < 0. We just complete the proof of the theorem. \Box

Theorem 3.3: Let *n* and *j* be the block and wavelet dimensions of $C(\alpha, 1)$, respectively. Assume n and j are any positive integers. Let $\lambda_2(\alpha)$ be the second eigencurve of $C(\alpha,1)$. Then the *following hold*.

- (i) $\lambda_2(\alpha)$ is a nonincreasing function of α .
- (ii) *If n is an even number, then* $\lambda_2(\alpha) = \lambda_{0,n}$ *whenever* $\alpha \ge \alpha^*$ *for some* $\alpha^* > 0$ *.*
- (iii) *If n is an odd number, then* $\lambda_2(\alpha) < \lambda_{0,n}$ *whenever* $\alpha \geq \overline{\alpha}$ for some $\overline{\alpha} > 0$.

Proof: We first remark that in the case of $\beta = 1$, the set of the indices k's in Eq. ([3.1](#page-7-2)) is $\{0, 2, 4, \ldots, 2(n-1)\}$ = I_n . Suppose *n* is an even number. Then $n \in I_n$. Thus, $\delta_n = -1$, $\theta_{0,n} = \pi/m$, and $p_0(n) = (e^{i(\pi/m)}, e^{i(2\pi/m)}, \dots, e^{i\pi})^T$. Applying Proposition 3.1, we see that $p_0(n) - p_0^s(n)$, an antisymmetric vector, is also an eigenvector of $D_1(n)$. And so $e^T(\mathbf{p}_0(n) - \mathbf{p}_0^s(n)) = 0$. It then follows from Remark 3.1 that $\lambda_{0,n}$ is an eigenvalue of $\Gamma_n = D_1(n) - \rho(n)e^{T}$ for all α . The first and second assertions of the theorem now follow from Theorems 3.1 and 3.2. Let *n* be an odd number. Then $\delta_i \cdot \delta_i \neq 1$ for any *i* ∈ *I_n*. Thus, if the pair (δ_i, v_i) satisfy Eq. ([2.3](#page-4-1)), then $v_i \neq -v_i^s$. Otherwise, the pair $(\delta_i, \mathbf{v}_i - (-\mathbf{v}_i)^s) = (\delta_i, \mathbf{v}_i + \mathbf{v}_i^s)$ also satisfy Eq. ([2.3](#page-4-1)). This is a contradiction to the last assertion in Proposition 2.1. Thus, $v_i^H \cdot e \neq 0$ for any $i \in I_n$. We then conclude, via Proposition 3.2 (iii) and Theorem 3.2, that the last assertion of the theorem holds. \square

Remark 3.2: (i) Let the number of uncoupled (chaotic) oscillators be $N=2^jn$. If *n* is an odd number, then the wavelet method for controlling the coupling chaotic oscillators work even better in the sense that the critical coupling strength ϵ can be made even smaller. (ii) For *n* being a

122702-11 Perturbed block circulant matrices and their application

multiple of 4 and $j \in \mathbb{N}$, the assertions in Theorem 3.3 were first proved in Ref. [6](#page-11-3) by a different method.

Theorem 3.4: Let n and j be the block and wavelet dimensions of $C(\alpha,0)$, respectively. Assume n and j are any positive integers. Let $\lambda_2(\alpha)$ be the second eigencurve of $C(\alpha,0)$. Then for any *n*, there exists a $\tilde{\alpha}$ such that $\lambda_2(\alpha) = \lambda_{0,n}$ whenever $\alpha \geq \tilde{\alpha}$.

Remark 3.3: For $n \in \mathbb{N}$ and $j=1$, the explicit formulas for the eigenvalues of $C(\alpha,0)$ were obtained in. Ref. [4](#page-11-4) Such results are possible due to the fact that the dimension of the matrices in Eq. (2.4) (2.4) (2.4) is 2×2 .

Davis, P. J., *Circulant Matrices* (Wiley, New York, 1979).

Golub, G. H. and Van Loan, C. F., Matrix Computation (The Hjons Hopkins University Press, Baltimore, 1989).

Juang, J. and Li, C.-L., "Eigenvalue problem and their application to the wavelet method of chaotic control," J. Math. Phys. **47**, 072704.1–072704.16 (2006).

Pecora, L. M. and Carroll, T. L., "Master stability functions for synchronized coupled systems," Phys. Rev. Lett. **80**, 2109–2112 (1998).

Shieh, S. F., Wang, Y. Q., Wei, G. W., and Lai, C.-H., "Mathematical analysis of the wavelet method of chaos control," J. Math. Phys. 47, 082701.1-082701.10 (2006).

Wei, G. W., Zhan, M., and Lai, C.-H., "Tailoring wavelets for chaos control," Phys. Rev. Lett. **89**, 284103.1–284103.4 $(2002).$

Hilliges, A., Mehl, C., and Mehrmann, V., Proceedings of the Fourth European Congress on Computational Methods in Applied Sciences and Engineering (EC-COMAS), Jyväskylä, Finland, 2004, pp. 24.7-28.7.