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Perturbed block circulant matrices and their application
to the wavelet method of chaotic control

Jonq Juang,a� Chin-Lung Li,b� and Jing-Wei Changc�

Department of Applied Mathematics, National Chiao Tung University, Hsinchu,
Taiwan 300, Republic of China

�Received 1 August 2006; accepted 23 October 2006; published online 26 December 2006�

Controlling chaos via wavelet transform was proposed by Wei et al. �Phys. Rev.
Lett. 89, 284103.1–284103.4 �2002��. It was reported there that by modifying a
tiny fraction of the wavelet subspace of a coupling matrix, the transverse stability
of the synchronous manifold of a coupled chaotic system could be dramatically
enhanced. The stability of chaotic synchronization is actually controlled by the
second largest eigenvalue �2�� ,�� of the �wavelet� transformed coupling matrix
C�� ,�� for each � and �. Here � is a mixed boundary constant and � is a scalar
factor. In particular, �=1 �0� gives the nearest neighbor coupling with periodic
�Neumann� boundary conditions. In this paper, we obtain two main results. First,
the reduced eigenvalue problem for C�� ,0� is completely solved. Some partial
results for the reduced eigenvalue problem of C�� ,�� are also obtained. Second,
we are then able to understand behavior of �2�� ,0� and �2�� ,1� for any wavelet
dimension j�N and block dimension n�N. Our results complete and strengthen
the work of Shieh et al. �J. Math. Phys. 47, 082701.1–082701.10 �2006�� and Juang
and Li �J. Math. Phys. 47, 072704.1–072704.16 �2006��. © 2006 American Insti-
tute of Physics. �DOI: 10.1063/1.2400828�

I. INTRODUCTION

Of concern here is the eigencurve problem for a class of “perturbed” block circulant matrices.

C��,��b = ���,��b . �1.1a�

Here C�� ,�� is an n�n block matrix of the following form:

C��,�� =�
C1��,�� C2��,1� 0 ¯ 0 C2

T��,��
C2

T��,1� C1��,1� C2��,1� ¯ 0 0

� � � � �
� � � � �
0 0 ¯ C2

T��,1� C1��,1� C2��,1�

C2��,�� 0 ¯ 0 C2
T��,1� ÎC1��,��Î

�
n�n

. �1.1b�

Here

a�Electronic mail: jjuang@math.nctu.edu.tw
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C1��,�� =�
− 1 − � 1 0 ¯ ¯ 0

1 − 2 1 0 ¯ 0

0 1 − 2 1 ¯ 0

� � � � � �
0 ¯ 0 1 − 2 1

0 ¯ ¯ 0 1 − 2

�
2j�2j

−
��1 + ��

22j eeT
¬ A1��,2 j� −

��1 + ��
22j eeT,

�1.1c�

where e= �1,1 , . . . ,1�T, j is a positive integer, ��0 is a �wavelet� scalar factor, and ��R repre-
sents a mixed boundary constant. Moreover,

C2��,�� =�
0 0 ¯ 0

� �
0 0

� 0 ¯ 0
� +

��

22j eeT
¬ A2��,2 j� +

��

22j eeT, �1.1d�

Î =�
0 0 ¯ ¯ 0 1

0 0 ¯ 0 1 0

� · · · �
� · · · �
0 1 0 ¯ 0 0

1 0 ¯ ¯ 0 0

� . �1.1e�

The dimension of C�� ,�� is n2 j �n2 j. From here on, we shall call n and j the block and the
wavelet dimensions of C�� ,��, respectively. C�� ,�� is a block circulant matrix �see, e.g., Ref. 1�
only if �=1. It is well known, see, e.g., Theorem 5.6.4 of Ref. 1, that for each � the eigenvalues
of C�� ,1� consist of eigenvalues of a certain linear combinations of its block matrices. Such
results are called the reduced eigenvalue problem for C�� ,1�.

This problem arises in the wavelet method for a chaotic control.7 It is found there that the
modification of a tiny fraction of wavelet subspaces of a coupling matrix could lead to a dramatic
change in chaos synchronizing properties. We begin with describing their work. Let there be N
nodes �oscillators�. Assume ui is the m-dimensional vector of dynamical variables of the ith node.
Let the isolated �uncoupling� dynamics be u̇i= f�ui� for each node. Used in the coupling, h :Rm

→Rm is an arbitrary function of each node’s variables. Thus, the dynamics of the ith node is

u̇i = f�ui� + ��
j=1

N

aijh�u j�, i = 1,2, . . . ,N , �1.2a�

where � is a coupling strength. The sum � j=1
N aij =0. Let u= �u1 ,u2 , . . . ,uN�T, F�u�

= �f�u1� , f�u2� , . . . , f�uN��T, H�u�= �h�u1� ,h�u2� , . . . ,h�uN��T, and A= �aij�. We may write Eq.
�1.1a� as

u̇ = F�u� + �A � H�u� . �1.2b�

Here � is the direct product of two matrices B and C defined as follows. Let B= �bij�k1�k2
be a

k1�k2 matrix and C= �Cij�k2�k3
be a k2�k3 block matrix. Then

122702-2 Juang, Li, and Chang J. Math. Phys. 47, 122702 �2006�
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B � C = 	�
l=1

k2

bilClj

k1�k3

.

Many coupling schemes are covered by Eq. �1.2b�. For example, if the Lorenz system is used and
the coupling is through its three components x, y, and z, then the function h is just the matrix

I3 = �1 0 0

0 1 0

0 0 1
� . �1.3�

The choice of A will provide the connectivity of nodes. For instance, the nearest neighbor coupling
with periodic, Neumann boundary conditions and mixed boundary conditions are, respectively,

given as A=A1�1,N�+A2�1,N�+A2
T�1,N�¬AP, A=A1�0,N�+A2�1,N�Î¬AN and A=A1�� ,N�

+A2�� ,N�+A2
T�� ,N�+ �1−��A2�1,N�Î¬AM, where those Ai’s, i=1,2, are defined in Eqs. �1.1c�

and �1.1d�.
Mathematically speaking,5 the second largest eigenvalue �2 of A is dominant in controlling the

stability of chaotic synchronization, and the critical strength �c for synchronization can be deter-
mined in terms of �2,

�c =
Lmax

− �2
. �1.4�

The eigenvalues of A=AP are given by �i=−4 sin2���i−1� /N�, i=1,2 , . . . ,N. In general, a larger
number of nodes give a smaller nonzero eigenvalue �2 in magnitude and, hence, a larger �c. In
controlling a given system, it is desirable to reduce the critical coupling strength �c. The wavelet
method in Ref. 7 will, in essence, transform A into C�� ,��. Consequently, it is of great interest to
study the second eigencurve of C�� ,�� for each �. By the second largest eigencurve �2�� ,�� of
C�� ,�� for fixed �, we mean that for given ��0, �2�� ,�� is the second largest eigenvalue of
C�� ,��. We remark that 0 is the largest eigenvalue of C�� ,�� for any ��0 and ��R. This is to
say that for fixed �, �2�� ,��=0 is the first eigencurve of C�� ,��. A numerical simulation7 of a
coupled system of N=512 Lorenz oscillators shows that with h= I3 and A=AP, the critical cou-
pling strength �c decreases linearly with respect to the increase of � up to a critical value �c. The
smallest �c is about 6, which is about 103 times smaller than the original critical coupling strength,
indicating the efficiency of the proposed approach.

The mathematical verification of such phenomena is first achieved by Shieh et al.6 Specifi-
cally, they solved the second eigencurve problem of C�� ,1� with n being a multiple of 4 and j
being any positive integer. Subsequently, in Ref. 4 the second eigencurve problem for C�� ,0� and
C�� ,1� with n being any positive integer and j=1 are solved without touching on the reduced
eigenvalue problem. In this paper, we obtain two main results. First, the reduced eigenvalue
problem for C�� ,0� is completely solved. Some partial results for the reduced eigenvalue problem
of C�� ,�� are also obtained. Second, we are then able to understand the behavior of �2�� ,0� and
�2�� ,1� for any j and n�N.

II. REDUCED EIGENVALUE PROBLEMS

Writing the eigenvalue problem C�� ,��b=�b, where b= �b1 ,b2 , . . . ,bn�T and bi�C2j
, in

block component form, we get

C2
T��,1�bi−1 + C1��,1�bi + C2��,1�bi+1 = �bi, 1 � i � n . �2.1a�

Mixed boundary conditions would yield that

C2
T��,1�b0 + C1��,1�b1 + C2��,1�b2 = �b1 = C1��,��b1 + C2��,1�b2 + C2

T��,��bn

and

122702-3 Perturbed block circulant matrices and their application J. Math. Phys. 47, 122702 �2006�
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C2
T��,1�bn−1 + C1��,1�bn + C2��,1�bn+1 = �bn = C2��,��b1 + C2

T��,1�bn−1 + ÎC1��,��Îbn,

or, equivalently,

C2
T��,1�b0 = �C1��,�� − C1��,1��b1 + C2

T��,��bn

= ��
1 − � 0 ¯ 0

0 0 ¯ 0

� � � �
0 0 ¯ 0

� +
��1 − ��

22j eeT�b1 + ��
0 ¯ 0 �

0 ¯ 0 0

� � � �
0 ¯ 0 0

� +
��

22j eeT�bn

= �1 − ��C2
T��,1�Îb1 + �C2��,1�bn �2.1b�

and

C2��,1�bn+1 = „ÎC1��,��Î − C1��,1�…bn + C2��,��b1 = �1 − ��C2
T��,1�Îbn + �C2��,1�b1.

�2.1c�

To study the block difference equation �Eq. �2.1��, we set

b j = 	 jv , �2.2�

where v�C2j
and 	�C.

Substituting Eq. �2.2� into Eq. �2.1a�, we have

�C2
T��,1� + 	„C1��,1� − �I… + 	2C2��,1��v = 0. �2.3�

To have a nontrivial solution v satisfying Eq. �2.3�, we need to have

det�C2
T��,1� + 	�C1��,1� − �I� + 	2C2��,1�� = 0. �2.4�

Definition 2.1: Equation �2.4� is to be called the characteristic equation of the block differ-
ence equation �Eq. �2.1a��. Let 	k=	k����0 and vk=vk����0 be complex numbers and vectors,
respectively, satisfying Eq. �2.3�. Here k=1,2 , . . . ,m and m�2 j. Assume that there exists a �
�C, such that b j =
k=1

m ck	k
j���vk���, j=0,1 , . . . ,n+1, satisfy Eqs. �2.1b� and �2.1c�, where ck

�C. If, in addition, b j, j=1,2 , . . . ,n, are not all zero vectors, then such 	k��� is called a charac-
teristic value of Eq. �2.1a�, �2.1b�, and �2.1c� or �1.1a� with respect to � and vk��� its correspond-
ing characteristic vector.

Remark 2.1: Clearly, for each � and �, � in Definition 2.1 is an eigenvalue of C�� ,��.
Should no ambiguity arises, we will write C2

T�� ,1�=C2
T, C1�� ,1�=C1, and C2�� ,1�=C2.

Likewise, we will write A2�� ,2 j�=A2��� and A1�� ,2 j�=A1���.
Proposition 2.1: Let ����= 	i��� :	i��� is a root of Eq. (2.4)�, and let �̄���= 1/	i��� :	i��� is

a root of Eq. (2.4)�. Then ����= �̄���. Let 	i and 	k be in ����. We further assume that 	i and
vi= �vi1 , . . . ,vi2j�T satisfy Eq. (2.3). Suppose 	i ·	k=1. Then 	k and vk

= �vi2j ,vi2j−1 , . . . ,vi2 ,vi1�T
¬vi

s also satisfy Eq. (2.3). Conversely, if 	i ·	k�1, then vk�vi
s.

Proof: To prove ����= �̄���, we see that

det�C2
T + 	�C1 − �I� + 	2C2� = 	2 det� 1

	2C2
T +

1

	
�C1 − �I� + C2�

= 	2 det � 1

	2C2
T +

1

	
�C1 − �I� + C2�T

= 	2 det�C2
T +

1

	
�C1 − �I� +

1

	2C2� .

122702-4 Juang, Li, and Chang J. Math. Phys. 47, 122702 �2006�
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Thus, if 	 is a root of Eq. �2.4�, then so is 1 /	. To see the last assertion of the proposition, we write
Eq. �2.3� with 	=	i and v=vi in component form.

�
m=1

2j

��C2
T�lmvim + 	i�C̄1�lmvim + 	i

2�C2�lmvim� = 0, l = 1,2, . . . ,2 j . �2.5�

Here C̄1=C1−�I. Now the right hand side of Eq. �2.5� becomes

	 1

	k

2��

m=1

2j

��C2�l�2j+1−m�vi�2j+1−m� + 	k�C̄1�l�2j+1−m�vi�2j+1−m� + 	k
2�C2

T�l�2j+1−m�vi�2j+1−m���
= 	 1

	k

2��

m=1

2j

��C2
T��2j+1−l�mvi�2j+1−m� + 	k�C̄1��2j+1−l�mvi�2j+1−m� + 	k

2�C2��2j+1−l�m�vi�2j+1−m���,

l = 1,2, . . . ,2 j . �2.6�

We have used the fact that

�A��2j+1−l�m = �AT�l�2j+1−m�, �2.7�

where A=C2
T or C̄1 or C2 to justify the equality in Eq. �2.6�. However, Eq. �2.7� follows from Eqs.

�1.1c� and �1.1d�. Letting vi�2j+1−m�=vkm, we have that the pair �	k ,vk� satisfies Eq. �2.3�. Suppose
vk=vi

s, we see, similarly, that the pair �1/	i ,vk� also satisfies Eq. �2.3�. Thus 1/	i=	k. �

Remark 2.2: Equation �2.4� is a palindromic equation. That is, for each �, 	 and 	−1 are both
the roots of Eq. �2.4�. However, the eigenvalue problem discussed here is not a palindromic
eigenvalue problem.3

Definition 2.2: We shall call vs and −vs, the symmetric vector and antisymmetric vector of v,
respectively. A vector v is symmetric �antisymmetric� if v=vs �v=−vs�.

Theorem 2.1: Let 	k=e��k/n�i, k is an integer and i=�−1, then 	2k, k=0,1 , . . . ,n−1, are
characteristic values of Eq. �2.1a�, �2.1b�, and �2.1c� with �=1. For each �, if ��C satisfies

det�C2
T + 	2k�C1 − �I� + 	2k

2 C2� = 0,

for some k�Z, 0�k�n−1, then � is an eigenvalue of C�� ,1�.
Proof: Let � be as assumed. Then there exists a v�C2j

, v�0 such that

�C2
T + 	2k�C1 − �I� + 	2k

2 C2�v = 0 .

Let b j =	2k
j v, 0� j�n+1. Then such b j’s satisfy Eqs. �2.1a�, �2.1b�, and �2.1c�. We just proved the

assertion of the theorem. �

Corollary 2.1: Set

�k = C1 + 	2n−kC2
T + 	kC2. �2.8�

Then the eigenvalues of C�� ,1�, for each �, consist of eigenvalues of �k, k=0,2 ,4 , . . . ,2�n−1�.
That is, ��C�� ,1��=�k=0

n−1���2k�. Here ��A�= the spectrum of the matrix A.
Remark 2.3: C�� ,1� is a block circulant matrix. The assertion of Corollary 2.1 is not new

�see, e.g., Theorem 5.6.4 of Ref. 1�. Here we merely gave a different proof.
To study the eigenvalue of C�� ,0� for each �, we begin with considering the eigenvalues and

eigenvectors of C2
T+C1+C2 and C2

T−C1+C2.
Proposition 2.2: Let T1�C� �T2�C�� be the set of linearly independent eigenvectors of the

matrix C that are symmetric (antisymmetric). Then �T1�C2
T+C1+C2� � = �T2�C2

T+C1+C2� � = �T1�C2
T

−C1+C2� � = �T2�C2
T−C1+C2� � =2 j−1. Here �A� denote the cardinality of the set A.

Proof: We will only illustrate the case for C2
T−C1+C2= :C. We first observe that �T1�C�� is less

than or equal to 2 j−1. So is �T2�C��. We also remark that the cardinality of the set of all linearly

122702-5 Perturbed block circulant matrices and their application J. Math. Phys. 47, 122702 �2006�
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independent eigenvectors of C is 2 j. If 0 �T1�C� � 2 j−1, there must exist an eigenvector v for
which v�vs, v�−vs, and v�spanT1�C� ,T2�C��, the span of the vectors in T1�C� and T2�C�. It
then follows from Proposition 2.1 that v+vs, a symmetric vector, is in the spanT1�C��. Moreover,
v−vs is in spanT2�C��. Hence v�spanT1�C� ,T2�C��, a contradiction. Hence, �T1�C� � =2 j−1.
Similarly, we conclude that �T2�C� � =2 j−1. �

Theorem 2.2: Let 	k=e��k/n�i, where k is an integer and i=�−1. For each �, if ��C satisfies

det�C2
T + 	k�C1 − �I� + 	k

2C2� = 0,

for some k�Z, 1�k�n−1, then � is an eigenvalue of C�� ,0�. Let � be the eigenvalue of C2
T

+C1+C2 �−C2
T+C1−C2� for which its associated eigenvector v satisfies Îv=v �Îv=−v�, then � is

also an eigenvalue of C�� ,0�.
Proof: For any 1�k�n−1, let 	k be as assumed. Let �k and �k be a number and a nonzero

vector, respectively, satisfying

�C2
T + 	k�C1 − �kI� + 	k

2C2�vk = 0 . �2.9�

Using Proposition 2.1, we see that �k satisfies

det�C2
T + 	2n−k�C1 − �kI� + 	2n−k

2 C2� = 0. �2.10�

Let v2n−k be a nonzero vector satisfying �C2
T+	2n−k�C1−�kI�+	2n−k

2 C2�v2n−k=0. Letting

bi = 	k
i vk + 	k	2n−k

i v2n−k, i = 0,1, . . . ,n + 1,

we conclude, via Eqs. �2.9� and �2.10�, that bi satisfy Eq. �2.1a� with �=�k. Moreover,

Îb1 = 	kÎvk + Îv2n−k = 	kv2n−k + vk = b0.

We have used Proposition 2.1 to justify the second equality above. Similarly, bn+1= Îbn. To see
�=�k, 1�k�n−1, is indeed an eigenvalue of C�� ,0� for each �, it remains to show that bi

�0 for some i. Using Proposition 2.1, we have that there exists an m, 1�m�2 j such that vkm

=v�2n−k��2j−m+1��0. We first show that b0�0. Let m be the index for which vkm�0. Suppose b0

=0. Then

vkm + 	kv�2n−k�m = 0

and

vk�2j−m+1� + 	kv�2n−k��2j−m+1� = v�2n−k�m + 	kvkm = 0.

And so, vkm=	k
2vkm, a contradiction. Let � and v be as assumed in the last assertion of theorem.

Letting bi=v (bi= �−1�iv), we conclude that � is an eigenvalue of C�� ,0� with corresponding
eigenvector �b1 ,b2 , . . . ,bn�T. Thus, �k is an eigenvalue of C�� ,0� for each �. �

Corollary 2.2: Let 	k=e��k/n�i, where k is an integer and i=�−1. Then, for each �,
�(C�� ,0�)=�k=1

n−1���k���S��0���AS��n�, where �S�A� (�AS�A�) the set of eigenvalues of A for
which their corresponding eigenvectors are symmetric (antisymmetric).

We next consider the eigenvalues of C�� ,��.
Theorem 2.3: Let 	k=e��k/n�i, where k is an integer and i=�−1. Then, for each �,

�„C��,��… � � �
k=1

�n/2�

���2k� � �S��0� , n is odd

�
k=1

�n/2�−1

���2k� � �S��0� � �AS��n� , n is even.�
Here �n /2� is the greatest integer that is less than or equal to n /2.
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Proof: We illustrate only the case that n is even. Assume that k is such that 1�k�n /2−1. Let
bi=	2k

i v2k+	2k	2n−2k
i v2n−2k, we see clearly that such bi, i=0,1 ,n ,n+1, satisfy both Neumann and

periodic boundary conditions, respectively. And so

b0 = �1 − ��b0 + �b0 = �1 − ��Îb1 + �bn

and

bn+1 = �1 − ��bn+1 + �bn+1 = �1 − ��Îbn + �b1.

Here, 	2k, 1�k� �n /2�−1, are characteristic values of Eq. �2.1a�, �2.1b�, and �2.1c�. Thus, if �
����2k�, then � is an eigenvalue of C�� ,��. The assertions for �0 and �n can be done similarly.�

Remark 2.4: If n is an even number, for each � and �, half of the eigenvalues of C�� ,�� are
independent of the choice of �. The other characteristic values of Eq. �2.1� seem to depend on �.
It is of interest to find them.

III. THE SECOND EIGENCURVE OF C„� ,0… AND C„� ,1…

We begin with considering the eigencurves of �k, as given in Eq. �2.8�. Clearly,

�k =�
− 2 1 0 ¯ ¯ 	2n−k

1 − 2 1 0 ¯ 0

0 1 − 2 1 ¯ 0

] � � � � ]

0 ¯ 0 1 − 2 1

	k ¯ ¯ 0 1 − 2

�
m�m

−
��2 − 2 cos��k/n��

m
eeT

¬ D1�k� − ��k�eeT,

�3.1�

where m=2 j. We next find a unitary matrix to diagonalize D1�k�.
Remark 3.1: Let ���k� ,v�k�� be the eigenpair of D1�k�. If eTv�k�=0, then ��k� is also an

eigenvalue of �k.
Proposition 3.1: Let

�l,k =
2l�

m
+

k�

nm
, l = 0,1, . . . ,m − 1, �3.2a�

pl�k� = �ei�l,k,ei2�l,k, ¯ ,eim�l,k�T, �3.2b�

and

P�k� = 	 p0�k�
�m

, . . . ,
pm−1�k�

�m

 . �3.2c�

�i� Then P�k� is a unitary matrix and PH�k�D1�k�P�k�=diag��0,k¯�m−1,k�, where PH is the con-
jugate transpose of P, and

�l,k = 2 cos �l,k − 2, l = 0,1, . . . ,m − . �3.2d�

�ii� Moreover, for 0�k�2n, the eigenvalues of D1�k� are distinct if and only if k�0, n, or 2n.
Proof: Let b= �b1 , . . . ,bm�T. Writing the eigenvalue problem D1�k�b=�b in component form,

we get

bj−1 − �2 + ��bj + bj+1 = 0, j = 2,3, . . . ,m − 1, �3.3a�

− �2 + ��b1 + b2 + 	2n−kbm = 0, �3.3b�
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	kb1 + bm−1 − �2 + ��bm = 0. �3.3c�

Set bj =	 j, where 	 satisfies the characteristic equation 1− �2+��	+	2=0 of the system
D1�k�b=�b. Then the boundary conditions �3.3b� and �3.3c� are reduced to

	m = 	k. �3.4�

Thus, the solutions ei�l,k, l=0,1 , . . . ,m−1, of Eq. �3.4� are the candidates for the characteristic
values of Eq. �3.3�. Substituting ei�l,k into Eq. �3.3a� and solving for �, we see that �=�l,k are the
candidates for the eigenvalues of D1�k�. Clearly, �� ,b�= ��l,k ,pl�k�� satisfies D1�k�b=�b and b
=pl�k��0. Thus, �=�l,k are, indeed, the eigenvalues of D1�k�. To complete the proof of the
proposition, it suffices to show that P�k� is unitary. To this end, we need to compute pl

H�k� ·pl��k�.
Clearly, pl

H�k� ·pl�k�=m. Now, let l� l�, we have that

pl
H�k� · pl��k� = �

j=1

m

eij��l,k−�l�,k� = �
j=1

m

eij��2�l−l��/m��� =
r�1 − rm�

1 − r
= 0,

where r=ei��2�l−l��/m���. Hence, P�k� is unitary. The last assertion of the proposition is obvious. �

To prove the main results in this section, we also need the following proposition. Some
assertions of the proposition are from Theorem 8.6.2 of Ref. 2.

Proposition 3.2: Suppose D=diag�d1 , . . . ,dm��Rm�m and that the diagonal entries satisfy
d1� ¯ �dm. Let ��0 and z= �z1 , . . . ,zm�T�Rn. Assume that (�i��� ,vi���) are the eigenpairs of
D+�zzT with �1��������� ¯ ��m���. (i) Let A= k :1�k�m ,zk=0�, Ac= 1, . . . ,m�−A. If k
�A, then dk=�k. (ii) Assume ��0. Then the following interlacing relations hold �1����d1

��2����d2� ¯ ��m����dm. Moreover, the strict inequality holds for these indices i�Ac. (iii)

Let i�Ac, �i��� are strictly increasing in � and lim�→��i���= �̄i for all i, where �̄i are the roots

of g���=�k�Aczi
2 / �dk−�� with �̄i� �di ,di−1�. In the case that 1�Ac, d0=�.

Proof: The proof of interlacing relations in �ii� and the assertion in �i� can be found in
Theorem 8.6.2 of Ref. 2. We only prove the remaining assertions of the proposition. Rearranging
z so that zT= �0,0 , . . . ,0 ,zi1

, . . . ,zik
�ª �0, . . . ,0 ,z�T�, where i1 i2 ¯  ik and ij �Ac, j

=1, . . . ,k. The diagonal matrix D is rearranged accordingly. Let D=diag�D1 ,D2�, where D2

=diag�di1
, . . . ,dik

�. Following Theorem 8.6.2 of Ref. 2, we see that �ij
��� are the roots of the scalar

equation f����, where

f���ij
���� = 1 + ��

j=1

k
zj

2

dij
− �ij

���
= 0. �3.5�

Differentiating the equation above with respect to �, we get

�
j=1

k zij

2

dij
− �ij

���
+ 	��

j=1

k zij

2

�dij
− �ik

����2
d�ij
���

d�
= 0.

Thus,

d�ij
���

d�
=

1

�2�
j=1

k zij

2

�dij
− �ij

����2 � 0.

Clearly, for each ij, the limit of �ij
��� as �→� exists, say, �̄ij

. Since, for dij
�dij−1,

�
j=1

k zij

2

dij
− �ij

���
=

1

�
.

Taking the limit as �→� on both sides of the equation above, we get

122702-8 Juang, Li, and Chang J. Math. Phys. 47, 122702 �2006�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Thu, 01 May 2014 01:41:44



�
j=1

k zij

2

dij
− �̄ij

= 0. �3.6�

as desired. �

We are now in the position to state the following theorems.
Theorem 3.1: Let n and m=2 j be given positive integers. For each k, k=1,2 , . . . ,n−1, and �,

we denote by �l,k���, l=0,1 , . . . ,2 j −1, the eigenvalues of �k. For k=1,2 , . . . ,n−1, we let
��l,k ,ul,k�, l=0,1 , . . . ,2 j −1, be the eigenpairs of D1�k�, as defined in Eq. �3.1�. Then the following
hold true.

(i) �l,k��� is strictly decreasing in �, l=0,1 , . . . ,2 j −1 and k=1,2 , . . . ,n−1.
(ii) There exist �l,k

* such that lim�→��l,k���=�l,k
* . Moreover, gk��l,k

* �=0, where

gk��� = �
l=1

m
1

��l−1,k���l−1,k + ��
. �3.7�

Proof: The first assertion of the theorem follows from Proposition 3.2 �iii�. Let k be as
assumed. Set, for l=0,1 , . . . ,m−1,

zl+1 = pl
H�k�e = �

j=1

m

eij�l,k =
e−�l,k�1 − e−im�l,k�

1 − e−�l,k
=

e−�l,k�1 − e−ik��/n��
1 − e−�l,k

.

Then

z̄l+1zl+1 =
2 − 2 cos m�l,k

2 − 2 cos �l,k
=

2 cos�k�/n� − 2

�l,k
� 0. �3.8�

Let P�k� be as given in Eq. �3.2c�. Then

− PH�k� · �k · P�k� = diag�− �0,k, . . . ,− �m−1,k� + ��k�Pl
H�k�e�Pl

H�k�e�H.

Note that if k is as assumed, it follows from Proposition 3.1�ii� that �l,k, l=0, . . . ,m−1, are
distinct. Thus, we are in the position to apply Proposition 3.2. Specifically, by noting Ac=�, we
see that �0,k

* satisfies g���=0, where

g��� = �
l=1

m
1

��l−1,k���l−1,k + ��
.

We have used Eqs. �3.2d�, �3.6�, and �3.8�, to find g���. �

We next give an upper bound for �0,k
* , k=1,2 , . . . ,n−1.

Theorem 3.2: The following inequalities hold true:

�0,k
*  �0,n, k = 1,2, . . . ,n − 1. �3.9�

Proof: To complete the proof of Eq. �3.9�, it suffices to show that gk�−�0,n�0. Now,

gk�− �0,n�

= �
l=1

m
1

�2 cos��2�l − 1��/m� + �k�/nm�� − 2��2 cos„�2�l − 1��/m� + �k�/nm�… − 2 cos��/m��

¬ h�m,n,k� = h�2 j,n,k� . �3.10�

We shall prove that h�2 j ,n ,k�0 by the induction on j. For j=1, h�2,n ,k�= 1
2 ��1/cos2�k� /2n�

−1��0, k=1,2 , . . . ,n−1. Assume h�2 j ,n ,k�0. Here, n�N and k=1,2 , . . . ,n−1. We first note
that
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cos	2�2 j + i − 1��
2 j+1 +

k�

2 j+1n

 = − cos	2�i − 1��

2 j+1 +
k�

2 j+1n

¬ − cos �i−1,k,j+1, i = 1,2, . . . ,2 j .

�3.11�

Moreover, upon using Eq. �3.11�, we get that

1

�cos �i−1,k,j+1 − 1��cos �i−1,k,j+1 − cos �0,n,j+1�
+

1

�cos �2j+i−1,k,j+1 − 1��cos �2j+i−1,k,j+1 − cos �0,n,j+1�

=
1

�cos �i−1,k,j+1 − 1��cos �i−1,k,j+1 − cos �0,n,j+1�
+

1

�cos �i−1,k,j+1 + 1��cos �i−1,k,j+1 + cos �0,n,j+1�

=
2 cos2 �i−1,k,j+1 + 2 cos �0,n,j+1

�cos2 �i−1,k,j+1 − 1��cos2 �i−1,k,j+1 − cos2 �0,n,j+1�

=
8�cos2 �i−1,k,j+1 + cos �0,n,j+1�

�cos 2�i−1,k,j+1 − 1��cos 2�i−1,k,j+1 − cos 2�0,n,j+1�
=

2�cos2 �i−1,k,j+1 + cos �0,n,j+1�
�cos �i−1,k,j − 1��cos �i−1,k,j − cos �0,n,j�

.

�3.12�

We are now in a position to compute h�2 j+1 ,n ,k�. Using Eq. �3.12�, we get that

h�2 j+1,n,k� = �
l=1

2j+1

1

4�cos �l−1,k,j+1 − 1��cos �l−1,k,j+1 − cos �0,n,j+1�

= �
l=1

2j

2�cos2 �l−1,k,j+1 + cos �0,n,j+1�
�cos �l−1,k,j − 1��cos �i−1,k,j − cos �0,n,j�

� 8�cos2 �0,k,j+1 + cos �0,n,j+1�h�2 j,n,k� .

�3.13�

We have used the facts that cos2 �0,k,j+1�cos2 �i−1,k,j+1, i=2, . . . ,2 j, and that the first term �i=1� of
the summation in Eq. �3.13� is negative while all the others are positive to justify the inequality in
Eq. �3.13�. It then follows from Eq. �3.13� that h�2 j+1 ,n ,k�0. We just complete the proof of the
theorem. �

Theorem 3.3: Let n and j be the block and wavelet dimensions of C�� ,1�, respectively.
Assume n and j are any positive integers. Let �2��� be the second eigencurve of C�� ,1�. Then the
following hold.

�i� �2��� is a nonincreasing function of �.
�ii� If n is an even number, then �2���=�0,n whenever ���* for some �*�0.
�iii� If n is an odd number, then �2����0,n whenever ���̄ for some �̄�0.

Proof: We first remark that in the case of �=1, the set of the indices k’s in Eq. �3.1� is
0,2 ,4 , . . . ,2�n−1��ª In. Suppose n is an even number. Then n� In. Thus, 	n=−1, �0,n=� /m, and
p0�n�= �ei��/m� , ei�2�/m� , . . . , ei��T. Applying Proposition 3.1, we see that p0�n�−p0

s�n�, an antisym-
metric vector, is also an eigenvector of D1�n�. And so eT(p0�n�−p0

s�n�)=0. It then follows from
Remark 3.1 that �0,n is an eigenvalue of �n=D1�n�−��n�eeT for all �. The first and second
assertions of the theorem now follow from Theorems 3.1 and 3.2. Let n be an odd number. Then
	i ·	i�1 for any i� In. Thus, if the pair �	i ,vi� satisfy Eq. �2.3�, then vi�−vi

s. Otherwise, the pair
�	i ,vi− �−vi�s�= �	i ,vi+vi

s� also satisfy Eq. �2.3�. This is a contradiction to the last assertion in
Proposition 2.1. Thus, vi

H ·e�0 for any i� In. We then conclude, via Proposition 3.2 �iii� and
Theorem 3.2, that the last assertion of the theorem holds. �

Remark 3.2: �i� Let the number of uncoupled �chaotic� oscillators be N=2 jn. If n is an odd
number, then the wavelet method for controlling the coupling chaotic oscillators work even better
in the sense that the critical coupling strength � can be made even smaller. �ii� For n being a
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multiple of 4 and j�N, the assertions in Theorem 3.3 were first proved in Ref. 6 by a different
method.

Theorem 3.4: Let n and j be the block and wavelet dimensions of C�� ,0�, respectively.
Assume n and j are any positive integers. Let �2��� be the second eigencurve of C�� ,0�. Then for
any n, there exists a �̃ such that �2���=�0,n whenever ���̃.

Remark 3.3: For n�N and j=1, the explicit formulas for the eigenvalues of C�� ,0� were
obtained in. Ref. 4 Such results are possible due to the fact that the dimension of the matrices in
Eq. �2.4� is 2�2.
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