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Abstract

In this study, the use of the characteristics method integrated with the Hermite cubic interpolation or the cubic-spline interpo-
lation on the space line or the time line, i.e., the HCSL scheme, the CSSL scheme, the HCTL scheme, and the CSTL scheme, respec-
tively, for solving the advection–diffusion equation is examined. The advection and diffusion of a Gaussian concentration
distribution in a uniform flow with constant diffusion coefficient is used to conduct this investigation. The effects of parameters, such
as Peclet number, Courant number, and the reachback number, on these four schemes used herein for solving the advection–diffu-
sion equation are investigated. The simulated results show that the CSSL scheme is comparable to the HCSL scheme, and the two
schemes seem insensitive to Courant number as compared with the HCTL scheme and the CSTL scheme. With large Peclet number,
for small Courant number the HCTL scheme is more accurate than the HCSL scheme and the CSSL scheme. However, for large
Courant number the HCTL scheme has worse computed results in comparison with the HCSL scheme and the CSSL scheme. With
small Peclet number, the HCTL scheme, the HCSL scheme, and the CSSL scheme have close simulated results. Despite Peclet num-
ber, for small Courant number the CSTL scheme is comparable to the HCTL scheme, but for large Courant number the former
scheme provides unacceptable simulated results in which very large numerical diffusion is induced due to the effect of the natural
endpoint constraint. For large Peclet number the HCSL scheme and the CSSL scheme integrated with the reachback technique
can improve simulated results, but for small Peclet number the HCSL scheme and the CSSL scheme seem not to be influenced
by increasing the reachback number.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling the advection and diffusion of contaminants
in natural water bodies, such as rivers, lakes, oceans, and
groundwater, has become very important in recent years
due to the increasing awareness of the effects of pollu-
tants on human health and aquatic life. Among various
numerical schemes used for solving the advection–diffu-
sion equation, the split-operator approach in which
the advection and diffusion processes are separately
computed using different numerical schemes has been
0045-7930/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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pursued by many numerical modelers. In the split-
operator approach, the diffusion process can be accu-
rately computed by several numerical schemes, such as
the Crank–Nicholson central difference scheme, the
Crank–Nicholson Galerkin finite element scheme, and
some others. Hence, the accuracy of solving the advec-
tion–diffusion equation will mainly be related to the sim-
ulated results of the advection process.

It is well known that the method of characteristics
has many advantages for the theoretical and physical
interpretation of the advection process. The method of
characteristics can be classified into two categories.
One is the characteristics-grid scheme, and the other is
the fixed-grid scheme. The former has the potential to
give accurate solution, but its grid system is awkward
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Notation

The following symbols are used in this paper:

A, B, C, D, E, F, G, H, a1–a4 and b1–b4 coefficients
for interpolation

Cr Courant number
m reachback number
Pe Peclet number
R second derivative with respect to time
S second derivative with respect to space
U flow velocity component
e diffusion coefficient
U concentration

Ux first derivative of U with respect to space
Ut first derivative of U with respect to time
r standard deviation
Dx computational grid interval
Dt time increment

Subscript

i x-directional computational point index

Superscript
n time step index
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for practical applications. The latter then has been a
popular scheme due to the convenience of numerical
simulation. With the fixed-grid scheme, the characteris-
tic trajectory usually does not pass through the grid
points. An interpolation technique can be applied to ob-
tain corresponding values at the foot of the trajectory in
terms of the neighboring grid points. Thus, the form of
interpolation technique will largely affect the accuracy of
the fixed-grid scheme.

The characteristics method integrated with the Her-
mite cubic interpolation, which is called HC method in
this study, was first proposed to solve the advection
equation by Holly and Preissmann [1]. The HC method
is based on the construction of cubic interpolating poly-
nomials in terms of the dependent variable and its first
derivative for two adjacent points on the spatial axis.
In order to increase the availability of the HC method,
some extensions of the HC method have been presented
[2–4]. The technique of the characteristic trajectory out-
ward [2] or backward [3] on the spatial axis was applied
to the original HC method. The former relaxes the con-
straint of Courant number less than unity in the original
HC method. The Courant number can be expressed as
Cr = UDt/Dx in which U is flow velocity. Dx and Dt are
the grid size and the time step, respectively. In addition,
the latter allows the characteristic trajectory to project
back beyond the present time level to increase the com-
putational accuracy. Furthermore, a concept of extend-
ing the characteristic trajectory backward on the
temporal axis has also been employed to the HC method
by Yang and Hsu [4], in which the space-line interpola-
tion used in the original HC method is replaced by the
time-line interpolation. In this paper, applying the HC
method to the space line and the time line are respectively
termed the �HCSL scheme� and the �HCTL scheme�.
Yang and Hsu [4] showed that the HCTL scheme is more
accurate than the HCSL scheme when Courant number
is less than unity. However, for Courant number larger
than unity the HCSL scheme has better simulated results
as compared with the HCTL scheme.
As mentioned above, the first derivatives of the
dependent variable with respect to space or time are
needed for the application of the HC method. Thus, in
order to obviate the need to solve the spatial or temporal
derivatives of the auxiliary equation, an alternative cu-
bic-spline interpolation function was employed to solve
the advection–diffusion equation by Schohl and Holly
[5], Karpik and Crokett [6], and Stefanovic and Stefan
[7]. The application of the cubic-spline interpolation,
originally developed on the space line, was extended to
the time line by Ahmad and Kothyari [8]. In this study,
the characteristics method integrated with cubic-spline
interpolation on the space line and the time line are de-
noted as the �CSSL scheme� and the �CSTL scheme�,
respectively.

The HCSL scheme, the HCTL scheme, the CSSL
scheme, and the CSTL scheme had been presented for
many years, but had never been compared in details.
The goal of this study is to examine the use of these four
schemes for solving the advection–diffusion equation. In
the following sections, the numerical frameworks of
these four schemes investigated herein are first briefly
reviewed. Modeling the advection and diffusion of a
Gaussian concentration distribution is then used to
investigate the computational performances of the
HCSL scheme, the HCTL scheme, the CSSL scheme,
and the CSTL scheme. It must be noticed that since
the characteristics method integrated with cubic interpo-
lation on both space and time lines may not be applica-
ble to the problems with high gradient, especially the
problems with infinite slope such as a step function
[7,11], a Gaussian concentration distribution with con-
siderable width is used for the examination.
2. Numerical framework of characteristics method with

cubic interpolation for advection–diffusion equation

The one-dimensional advection–diffusion equation
for a conservative material can be expressed as
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oU
ot
þ U

oU
ox
¼ e

o2U
ox2

ð1Þ

where the scalar function U(x, t) represents concentra-
tion at position x and time t with uniform flow velocity
U and constant diffusion coefficient e.

Eq. (1) can be rewritten in terms of total derivative,
i.e., d/dt, as

dU
dt
¼ e

o
2U

ox2
ð2Þ

along the characteristic curve

dx
dt
¼ U ð3Þ

Integrating (2) and (3) along the characteristic curve
from l to p shown in Figs. 1 and 2 yields

Unþ1
i ¼ Ul þ e

Z tp

tl

o2U
ox2

dt ð4Þ

and

xp � xl ¼ Uðtp � tlÞ ð5Þ
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Fig. 1. The schematic diagram of space-line interpolation: (a) classical
case, (b) reachout case, and (c) reachback case.

X

t

p

l

1
i =1 i =2 i i = NXi = NX-1 i + 1

Cr>1

Cr<1

l

i - 1

NT (n+1) 

NT-1 (n) 

NT-2 (n-1) 

3

2

Fig. 2. The schematic diagram of time-line interpolation (solid line:
Cr > 1, dash line: Cr < 1).
By applying the characteristics method, the advection–
diffusion equation shown in (1) is replaced by (4) and
(5). The foot of the characteristic trajectory, i.e., xl, falls
on the space line shown in Fig. 1. Since xl usually does
not coincide with the grid points, the interpolation tech-
nique should be used to approximate Ul. Depending on
the foot of the characteristic trajectory, three cases can
occur in the space-line interpolation, i.e., the classical
case, the reachout case, and the reachback case. The
classical case shown in Fig. 1(a), originally proposed
by Holly and Preissmann [1], appears when Courant
number is less than unity and the characteristic curve
intersects on the space line within a grid size at the cur-
rent time level. If Courant number is larger than unity,
the characteristic trajectory can fall on the spatial axis
outside of a grid size at the present time level as shown
in Fig. 1(b). This is the so-called reachout case [2]. The
reachback case, shown in Fig. 1(c), occurs when the
characteristic curve projects on the space line beyond
the present time level. In addition, the characteristic tra-
jectory can also be allowed to intersect on the time line
instead of the space line [4,8] shown in Fig. 2 to approx-
imate Ul.

In the following, the uses of the characteristics meth-
od with the Hermite cubic interpolation or the cubic-
spline interpolation on the space line or the time line,
i.e., the HCSL scheme, the HCTL scheme, the CSSL
scheme, and the CSTL scheme, for solving the advec-
tion–diffusion equation shown in (4) and (5) are briefly
reviewed.
2.1. The HCSL scheme

The major idea of the Hermite cubic interpolation is
to construct a cubic polynomial function between two
grid points with the dependent variable and its first
derivative. When the characteristic trajectory intersects
on the space line shown in Fig. 1, Ul can be approxi-
mated by using the Hermite cubic interpolation as
follows:

Ul ¼ a1U
nþ1�m
i�n̂�1 þ a2U

nþ1�m
i�n̂ þ a3U

nþ1�m
xi�n̂�1 þ a4U

nþ1�m
xi�n̂ ð6Þ

with

n̂ ¼ INT
mUDt

Dx
ð7Þ

where m is reachback number shown in Fig. 1. INT de-
notes the integral portion of mUDt/Dx. The superscript
and subscript of U represent the time level and the grid
node, respectively. Ux is the first derivative of U with re-
spect to space. The coefficients a1–a4 in (6) are displayed
in Appendix I. Eq. (6) can represent the original, reach-
out, and reachback cases. With m = 1, n̂ ¼ 0 and n̂ P 1
are respectively the original case and the reachout case.
m > 1 represents the reachback case.
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Applying the trapezoidal-rule approximation for
calculation of integration and the second-order central
difference scheme for discretization of the diffusion pro-
cess, the time integration term shown on the right-hand
side of (4) becomesZ tp

tl

o2U
ox2

dt ¼ mDt
2

Unþ1
i�1 � 2Unþ1

i þ Unþ1
iþ1

Dx2

�

þ
Unþ1�m

i�n̂�1 � 2Unþ1�m
i�n̂ þ Unþ1�m

i�n̂þ1

Dx2

�
ð8Þ

An additional equation for solving Ux appearing in (6)
can be obtained by taking the spatial derivative of (1)
as follows:

oUx

ot
þ U

oUx

ox
¼ e

o2Ux

ox2
ð9Þ

One can clearly see from (1) and (9) that Ux and U have
the same form of governing equation, i.e., the advec-
tion–diffusion equation. Thus, Ux can be solved by fol-
lowing the concept similar to that used for solving U
as shown in (4) and (5). Using the Hermite cubic inter-
polation, the first derivative of U with respect to space
at the foot of characteristic trajectory, i.e., Uxl, can be
represented as

Uxl ¼ b1U
nþ1�m
i�n̂�1 þ b2U

nþ1�m
i�n̂ þ b3U

nþ1�m
xi�n̂�1

þ b4U
nþ1�m
xi�n̂ ð10Þ

where the coefficients b1–b4 are shown in Appendix I. In
addition, the diffusion portion of Ux, similar to U, can be
computed by use of (8) with replacing U by Ux.

2.2. The HCTL scheme

Like the HCSL scheme as mentioned above, applying
the Hermite cubic interpolation to the time line for solv-
ing the advection–diffusion equation requires an auxil-
iary equation of Ut that can be obtained by taking the
temporal derivative of (1) as follows:

oUt

ot
þ U

oUt

ox
¼ e

o2Ut

ox2
ð11Þ

Ul and Utl, i.e., U and Ut at foot of characteristic trajec-
tory on the time line, shown in Fig. 2 can be approxi-
mated by use of the Hermite cubic interpolation as
follows:

Ul ¼ a1U
n�m̂
i�1 þ a2U

nþ1�m̂
i�1 þ a3U

n�m̂
ti�1 þ a4U

nþ1�m̂
ti�1 ð12Þ

and

Utl ¼ b1U
n�m̂
i�1 þ b2U

nþ1�m̂
i�1 þ b3U

n�m̂
ti�1 þ b4U

nþ1�m̂
ti�1 ð13Þ

with

m̂ ¼ INT
Dx

UDt
ð14Þ

where the forms of the coefficients a1–a4 and b1–b4

shown in (12) and (13) are exactly the same as those
shown in (6) and (10). The details of the minor differ-
ences are given in Appendix I.

In the HCTL scheme, the time integration term of the
diffusion process shown on the right-hand side of (4),
similar to the concept used for the HCSL scheme, can
be evaluated asZ tp

tl

o
2U

ox2
dt ¼ m̂Dt

2

Unþ1
i�1 � 2Unþ1

i þ Unþ1
iþ1

Dx2

�

þ Unþ1�m̂
i�2 � 2Unþ1�m̂

i�1 þ Unþ1�m̂
i

Dx2

�
ð15Þ

In addition, the diffusion process of Ut can also be
solved by use of (15) with Ut instead of U.

2.3. The CSSL scheme

The cubic-spline interpolation is to construct a piece-
wise cubic polynomial function of dependent variable
between two nodes (grid points) with the satisfaction
of the fact that the interpolating function must pass
through each node and be continuous in its first and sec-
ond derivatives at interior nodes. In the cubic-spline
interpolation, the nodal slopes can be computed by the
condition that a piecewise cubic interpolation should
be twice continuously differentiable so that the interpo-
lation function has a continuous curvature. Therefore,
the major difference between the cubic-spline interpola-
tion and the Hermite cubic interpolation is that the for-
mer need not deal with additional equations for spatial
or temporal derivatives, whereas the latter need do that.

One can employ the characteristics method integrated
with the cubic-spline interpolation for solving the advec-
tion–diffusion equation shown in (4) and (5). When the
characteristic trajectory falls on the space line shown
in Fig. 1, the diffusion process, like the HCSL scheme,
can be computed by the use of (8). In addition, Ul can
be approximated by the cubic-spline interpolation as
follows:

Ul ¼ Anþ1�m
i�n̂�1 ½ð1� xÞDx�3 þ Bnþ1�m

i�n̂�1 ½ð1� xÞDx�2

þ Cnþ1�m
i�n̂�1 ½ð1� xÞDx� þ Dnþ1�m

i�n̂�1 ð16Þ
with

x ¼ mUDt
Dx

� n̂ ð17Þ

where n̂ is given by (7). The coefficients shown in (16),
i.e., Anþ1�m

i�n̂�1 , Bnþ1�m
i�n̂�1 , Cnþ1�m

i�n̂�1 , and Dnþ1�m
i�n̂�1 , can be written as

Anþ1�m
i�n̂�1 ¼

Snþ1�m
i�n̂ � Snþ1�m

i�n̂�1

6Dx
ð18Þ

Bnþ1�m
i�n̂�1 ¼

Snþ1�m
i�n̂�1

2
ð19Þ

Cnþ1�m
i�n̂�1 ¼

Unþ1�m
i�n̂ � Unþ1�m

i�n̂�1

Dx
� 2DxSnþ1�m

i�n̂�1 þ DxSnþ1�m
i�n̂

6
ð20Þ

Dnþ1�m
i�n̂�1 ¼ Unþ1�m

i�n̂�1 ð21Þ
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where Snþ1�m
j denotes the second derivative with respect

to space at grid point j and time level n + 1 � m, and it
can be obtained by applying the continuity of the first
derivative with respect to space [9,10] as follows:

Snþ1�m
j�1 þ 2Snþ1�m

j þ Snþ1�m
jþ1

¼ 6

Dx2
Unþ1�m

jþ1 � 2Unþ1�m
j þUnþ1�m

j�1

� �
; j¼ 2; . . . ;NX � 1

ð22Þ

where 1 and NX respectively represent the two end-
points, i.e., the left and right boundaries, shown in
Fig. 1. The system of (22) is underdetermined due to
only NX � 2 equations for finding NX unknowns.
Two additional endpoint constraints for Snþ1�m

1 and
Snþ1�m

NX are required to close this system. The natural
constraint is frequently used with neglect of the second
derivatives at endpoints, i.e., Snþ1�m

1 ¼ Snþ1�m
NX ¼ 0 [5–7].

2.4. The CSTL scheme

If the characteristic trajectory intersects on the time
line shown in Fig. 2, Ul, similar to the CSSL scheme,
could be also evaluated by use of the cubic-spline inter-
polation on the time line as follows:

Ul ¼ En�m̂
i�1 ½ð1� fÞDt�3 þ F n�m̂

i�1 ½ð1� fÞDt�2

þ Gn�m̂
i�1 ½ð1� fÞDt� þ Hn�m̂

i�1 ð23Þ

with

f ¼ Dx
UDt

� m̂ ð24Þ

where m̂ is shown in (14). The coefficients En�m̂
i�1 , F n�m̂

i�1 ,
Gn�m̂

i�1 , and Hn�m̂
i�1 in (23), similar to those from the CSSL

scheme, are displayed in Appendix II. Like the CSSL
scheme, the natural endpoint constraint, shown in (40)
and (41) appearing in Appendix II, is also applied to
the use of the cubic-spline interpolation on the time line
[8]. In addition (15) used for the HCTL scheme, can also
be applied to calculate the diffusion process for the
CSTL scheme.
3. Demonstration and evaluation

Modeling the advection and diffusion of a Gaussian
concentration distribution in a uniform flow with con-
stant diffusion coefficient is used herein to investigate
the computational performances of the HCSL scheme,
the HCTL scheme, the CSSL scheme, and the CSTL
scheme. With the initial condition as follows:

UðxÞ ¼ exp
�ðx� x0Þ2

2r2

" #
ð25Þ
the well-known exact solution of (1) is

Uðx; tÞ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2et
p exp

�ðx� x0 � UtÞ2

2ðr2 þ 2etÞ

" #
ð26Þ

where r is the standard deviation of Gaussian distribu-
tion. x0 is the peak position of Gaussian distribution
in the initial time.

A grid size of 100 m and a time step of 100 s are used
to conduct this simulation. The peak position of Gauss-
ian distribution is at x0 = 1400 m. In this simulation, the
domain is long enough so that the boundary effect can
be ignored, i.e., neglect of U, Ux, and Ut at the bound-
aries. The effects of parameters, such as Courant num-
ber (Cr), the reachback number (m), and Peclet
number (Pe = UDx/e), on these four schemes used here-
in for solving the advection–diffusion equation are
examined. For a reachback number larger than unity,
the HCSL scheme and the CSSL scheme need to set
up the additional initial conditions. For example, with
the reachback number of 3, the two additional initial
conditions at first and second time steps, except the ini-
tial condition at the beginning time shown in (25), are
required to conduct the simulation. In this study, the ex-
act solution shown in (26) is applied to obtain the addi-
tional initial conditions. In addition, for the HCTL
scheme and the CSTL scheme with Courant number less
than unity the exact solution is also used to obtain the
additional initial conditions. In the following, the pure
advection of a Gaussian distribution concentration is
first used to examine the computational performances
of the HCSL scheme, the CSSL scheme, the HCTL
scheme, and the CSTL scheme. The comparisons of sim-
ulated results by the advection and diffusion of a Gauss-
ian distribution concentration from these four schemes
are then conducted.

3.1. Calculation of pure advection

3.1.1. Effect of Courant number

The computed results in terms of the maximum and
minimum values as well as the rms (root mean square)
errors from the HCSL scheme, the CSSL scheme, the
HCTL scheme, and the CSTL scheme with different flow
velocities of 0.3 m/s, 0.7 m/s, and 1.4 m/s, and different
standard deviations of 100 m, 150 m, and 250 m for
100 time steps calculation are shown in Table 1. Fig. 3
shows the exact solution and the simulated results from
various numerical schemes with standard deviation of
150 m and different flow velocities. In this case, Peclet
number is infinite due to only consideration of advection
process without the diffusion process. Three different
Courant numbers of 0.3, 0.7, and 1.4 which are respec-
tively less than, close to, and larger than unity are used
in this simulation. It can be observed from Table 1 that
these four schemes have better simulated results with



Table 1
Computational performances of various schemes in pure advection test

Schemes Concentrations

Max. Min. rms error

r = 100 m Cr = 0.3 HCSL 0.7920 �0.0323 0.0194
CSSL 0.7592 �0.0682 0.0238
HCTL 0.9983 0 0.0001
CSTL 0.9971 0 0.0001

Cr = 0.7 HCSL 0.7921 �0.0322 0.0192
CSSL 0.7593 �0.0683 0.0237
HCTL 0.9236 �0.0048 0.0067
CSTL 0.8931 �0.1878 0.0334

Cr = 1.4 HCSL 0.7832 �0.0312 0.0202
CSSL 0.7395 �0.0548 0.0253
HCTL 0.6109 �0.0468 0.0376
CSTL 0.2410 �0.0148 0.0835

r = 150 m Cr = 0.3 HCSL 0.9193 �0.0083 0.0087
CSSL 0.9066 �0.0183 0.0106
HCTL 0.9996 0 0.0001
CSTL 0.9997 0 0.0001

Cr = 0.7 HCSL 0.9194 �0.0084 0.0086
CSSL 0.9065 �0.0183 0.0107
HCTL 0.9789 �0.0002 0.0021
CSTL 1.0258 �0.0891 0.0208

Cr = 1.4 HCSL 0.9139 �0.0089 0.0092
CSSL 0.8923 �0.0102 0.0120
HCTL 0.7865 �0.0337 0.0244
CSTL 0.3505 �0.0152 0.0772

r = 250 m Cr = 0.3 HCSL 0.9847 0 0.0020
CSSL 0.9845 0 0.0020
HCTL 1.0000 0 0.0001
CSTL 1.0000 0 0.0001

Cr = 0.7 HCSL 0.9846 0 0.0020
CSSL 0.9845 0 0.0021
HCTL 0.9968 0 0.0004
CSTL 1.0485 �0.0033 0.0094

Cr = 1.4 HCSL 0.9832 0 0.0021
CSSL 0.9804 0 0.0025
HCTL 0.9382 0 0.0084
CSTL 0.5328 0 0.0703
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Fig. 3. The simulated results of pure advection test for different
schemes with r = 150 m. (a) Cr = 0.3; (b) Cr = 0.7; (c) Cr = 1.4.
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large standard deviation of Gaussian distribution. In
addition, for different standard deviations, the same
conclusions from the simulated results of these four
schemes seem to be reached.

From Fig. 3 and Table 1, the HCSL scheme and the
CSSL scheme have comparable simulated results in
which some degree of numerical diffusion and oscillation
occurs. For small Courant number the computed results
from the HCTL scheme are very close to the exact solu-
tion. Thus, the HCTL scheme is more accurate than the
HCSL scheme and the CSSL scheme. However, when
Courant number is large the HCTL scheme gives large
numerical diffusion and oscillation than the HCSL
scheme and the CSSL scheme. In addition, with small
Courant number, the simulated results from the CSTL
scheme are close to those from the HCTL scheme. How-
ever, for large Courant number the CSTL scheme has
unacceptable simulated results in which very large
numerical diffusion is induced. As mentioned above, it
can be concluded that the HCSL scheme and the CSSL
scheme seem insensitive to Courant number as com-
pared with the HCTL scheme and the CSTL scheme.
In other words, the computed results from the HCTL
scheme and the CSTL scheme are strongly related to
Courant number, especially the latter.

With small Courant number, the HCTL scheme and
the CSTL scheme are better than the HCSL scheme and
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Fig. 4. The simulated results of pure advection test by the CSSL
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the CSSL scheme. However, it must be noticed that the
characteristic trajectory of the HCTL scheme and the
CSTL scheme will project back far away from the cur-
rent time level to intercept the time line while Courant
number is too small, for example Courant number less
than 0.1. This may be inconvenient to the additional ini-
tial condition preparation and program coding. Thus,
for too small Courant number, it seems suitable to apply
the HCSL scheme and the CSSL scheme rather than the
HCTL scheme and the CSTL scheme.

3.1.2. Note on endpoint constraint effect
As shown in Table 1 and Fig. 3, with large Courant

number, the CSTL scheme provides unconvincing simu-
lated results that have very large numerical diffusion in
comparison with the other three schemes. This may be
due to the use of natural endpoint constraint for the
cubic-spline interpolation on the time line. The natural
cubic-spline interpolation neglects the second derivative
at endpoint shown in (40) and (41), which makes the end
cubics approach linearity at their extremities. With small
Courant number, the foot of characteristic trajectory
will be far from the endpoints, i.e., grid points at time
level n + 1, shown in Fig. 2, so that the effect of endpoint
constraint could be ignored. However, when Courant
number is large the natural endpoint constraint will sig-
nificantly influence the computed results due to the foot
of characteristic trajectory close to the endpoints. It
must be noticed that Tsai et al. [10] examined the effect
of natural endpoint constraint on the cubic-spline inter-
polation applied to the space line. They pointed out that
in spite of little numerical diffusion convincing simulated
results are obtained. Thus, one may conclude that for
the cubic-spline interpolation, the effect of natural end-
point constraint on the time line is more significant than
that on the space line.

3.1.3. Effect of reachback number

The simulated results from the HCSL scheme and the
CSSL scheme with standard deviation of 150 m, differ-
ent flow velocities of 0.3 m/s and 1.4 m/s, and different
reachback numbers are shown in Figs. 4, 5 and Tables
2, 3, respectively. One can find from Figs. 4, 5 and
Tables 2, 3 that the HCSL scheme and the CSSL
scheme are comparable, and their simulated results are
improved with the reachback technique. The best com-
puted results are obtained when the reachback number
is 3. With the reachback number larger than 3, the
accuracy of the simulated results seems not to be in-
creased. One must notice that the characteristics method
with the reachback technique can indeed improve the



Table 4
Simulated results of various schemes in advection and diffusion test
with e = 0.5 m2/s

Schemes Concentrations

Max. Min. rms error

r = 100 m
Cmax = 0.7071

Cr = 0.3
Pe = 60

HCSL 0.6440 �0.0093 0.0071
CSSL 0.6397 �0.0115 0.0074
HCTL 0.7312 0 0.0023
CSTL 0.7310 0 0.0023

Cr = 0.7
Pe = 140

HCSL 0.6637 �0.1155 0.0067
CSSL 0.6385 �0.0250 0.0097
HCTL 0.7092 0 0.0026
CSTL 0.7413 �0.0741 0.0150

Cr = 1.3
Pe = 260

HCSL 0.6227 �0.0111 0.0091
CSSL 0.6397 �0.0115 0.0073
HCTL 0.5904 �0.0184 0.0128
CSTL 0.2850 �0.0225 0.0698

r = 150 m
Cmax = 0.8320

Cr = 0.3
Pe = 60

HCSL 0.7955 �0.0022 0.0046
CSSL 0.7962 �0.0034 0.0041
HCTL 0.8419 0 0.0012
CSTL 0.8421 0 0.0011

Cr = 0.7
Pe = 140

HCSL 0.8111 �0.0067 0.0048
CSSL 0.7973 �0.0032 0.0061
HCTL 0.8334 0 0.0017
CSTL 0.8877 �0.0327 0.0126

Cr = 1.3
Pe = 260

HCSL 0.7775 �0.0031 0.0065
CSSL 0.7962 �0.0034 0.0042
HCTL 0.7550 �0.0123 0.0093
CSTL 0.4095 �0.0181 0.0559

r = 250 m
Cmax = 0.9285

Cr = 0.3
Pe = 60

HCSL 0.9175 0 0.0017
CSSL 0.9203 0 0.0012
HCTL 0.9306 0 0.0003
CSTL 0.9308 0 0.0004

Cr = 0.7
Pe = 140

HCSL 0.9259 0 0.0022
CSSL 0.9217 0 0.0021
HCTL 0.9289 0 0.0007
CSTL 0.9738 �0.0006 0.0077

Cr = 1.4
Pe = 260

HCSL 0.9080 0 0.0029
CSSL 0.9202 0 0.0011
HCTL 0.9036 �0.0015 0.0037
CSTL 0.6029 �0.0027 0.0508

Note: Cmax represents the maximum value of concentration obtained
from exact solution.

Table 2
Simulated results of pure advection test by the CSSL scheme with
r = 150 m and different reachback numbers

Schemes Concentrations

Max. Min. rms error

Cr = 0.3 m = 1 0.9193 �0.0083 0.0221
m = 2 0.9492 �0.0025 0.0135
m = 3 0.9825 �0.0003 0.0045
m = 4 0.9785 �0.0005 0.0056

Cr = 1.4 m = 1 0.9139 �0.0089 0.0235
m = 2 0.9603 �0.0016 0.0105
m = 3 0.9724 �0.0084 0.0072
m = 4 0.9717 �0.0073 0.0073

Table 3
Simulated results of pure advection test by the HCSL scheme with
r = 150 m and different reachback numbers

Schemes Concentrations

Max. Min. rms error

Cr = 0.3 m = 1 0.9066 �0.0183 0.0270
m = 2 0.9380 �0.0076 0.0191
m = 3 0.9882 �0.0001 0.0049
m = 4 0.9870 �0.0002 0.0051

Cr = 1.4 m = 1 0.8923 �0.0202 0.0305
m = 2 0.9590 �0.0014 0.0126
m = 3 0.9708 �0.0008 0.0090
m = 4 0.9680 �0.0013 0.0103
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accuracy of the simulated results, but it may be not easy
to set up the additional initial conditions and to decide
the best reachback number, especially for the simulation
of complicated flow patterns, such as in open channel
flow computation [11].

3.2. Calculation of advection and diffusion

3.2.1. Effects of Courant and Peclet numbers

The advection and diffusion of a Gaussian concentra-
tion distribution is further used to examine the compu-
tational performances of the HCSL scheme, the CSSL
scheme, the HCTL scheme, and the CSTL scheme. Like
the calculation of pure advection, three representative
Courant numbers of 0.3, 0.7, and 1.3 are used in this
simulation. In order to examine the influence of different
Peclet numbers, each flow velocity is used with different
diffusion coefficients of 0.5 m2/s and 10 m2/s. Thus, for
the case of Courant number of 1.3, the two different Pec-
let numbers are 260 and 13. Peclet numbers are 140 and
7 or 60 and 3 when Courant numbers are 0.7 and 0.3,
respectively. Three different standard deviations of
100 m, 150 m, and 250 m are employed to examine the
effects of different gradient concentrations on various
schemes. The computed results in terms of the maximum
and minimum values as well as the rms errors from these
four schemes for 100 time steps calculation are shown in
Tables 4 and 5. Fig. 6 shows the exact solution and the
computed results using various numerical schemes with
standard deviation of 150 m and different flow velocities,
and two different diffusion coefficients.

It can be found from Fig. 6 and Tables 4, 5 that the
HCSL scheme and the CSSL scheme have comparable
computed results. With small diffusion coefficient, i.e.,
large Peclet number, the HCTL scheme and the CSTL
scheme are better than the HCSL scheme and the CSSL
scheme while Courant number is small. However, for
large Courant number the simulated results from the



Table 5
Simulated results of various schemes in advection and diffusion test
with e = 10 m2/s

Schemes Concentrations

Max. Min. rms error

r = 100 m
Cmax = 0.2182

Cr = 0.3
Pe = 3

HCSL 0.2188 0 0.0009
CSSL 0.2191 0 0.0010
HCTL 0.2196 0 0.0004
CSTL 0.2196 0 0.0004

Cr = 0.7
Pe = 7

HCSL 0.2193 0 0.0023
CSSL 0.2189 0 0.0022
HCTL 0.2197 0 0.0010
CSTL 0.2240 0 0.0011

Cr = 1.3
Pe = 13

HCSL 0.2180 0 0.0010
CSSL 0.2191 0 0.0009
HCTL 0.2206 0 0.0031
CSTL 0.1812 0 0.0080

r = 150 m
Cmax = 0.3180

Cr = 0.3
Pe = 3

HCSL 0.3188 0 0.0013
CSSL 0.3191 0 0.0013
HCTL 0.3198 0 0.0005
CSTL 0.3199 0 0.0005

Cr = 0.7
Pe = 7

HCSL 0.3193 0 0.0031
CSSL 0.3188 0 0.0030
HCTL 0.3198 0 0.0013
CSTL 0.3259 0 0.0016

Cr = 1.3
Pe = 13

HCSL 0.3177 0 0.0013
CSSL 0.3191 0 0.0013
HCTL 0.3210 0 0.0043
CSTL 0.2664 0 0.0112

r = 250 m
Cmax = 0.4879

Cr = 0.3
Pe = 3

HCSL 0.4888 0 0.0016
CSSL 0.4893 0 0.0016
HCTL 0.4900 0 0.0007
CSTL 0.4900 0 0.0006

Cr = 0.7
Pe = 7

HCSL 0.4900 0 0.0038
CSSL 0.4893 0 0.0038
HCTL 0.4901 0 0.0016
CSTL 0.4979 0 0.0021

Cr = 1.3
Pe = 13

HCSL 0.4875 0 0.0016
CSSL 0.4894 0 0.0016
HCTL 0.4906 0 0.0053
CSTL 0.4185 0 0.0154

Note: Cmax represents the maximum value of concentration obtained
from exact solution.
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HCTL scheme and the CSTL scheme are worse than
those of the HCSL scheme and the CSSL scheme, espe-
cially the CSTL scheme inducing very large numerical
diffusion. The conclusions of various schemes for solv-
ing the advection–diffusion equation with small diffusion
coefficient, as mentioned above, seem similar to those
from the calculation of pure advection equation.

In contrast, with large diffusion coefficient, i.e., small
Peclet number, no matter what the Courant number is,
the HCSL scheme, the CSSL scheme, and the HCTL
scheme have close computed results that approach the
exact solution. The outcome mentioned above can also
be applied to the CSTL scheme with small Courant
number. However, when Courant number is large the
CSTL scheme provides poor computed results in which
very large numerical diffusion is induced. One can again
see that the CSTL scheme is significantly sensitive to
Courant number due to the natural endpoint constraint.

The simulated results from the HCSL scheme and the
CSSL scheme with standard deviation of 150 m, flow
velocity of 1.3 m/s, two different diffusion coefficients
of 0.5 m2/s and 10 m2/s, and different reachback num-
bers for 100 time steps calculation are shown in Fig. 7.
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From Fig. 7, one can see that with the reachback tech-
nique the accuracy of the HCSL scheme and the CSSL
scheme increases when Peclet number is large. However,
for small Peclet number the HCSL scheme and the
CSSL scheme integrated with the reachback technique
seems not to improve the simulated results.
4. Conclusions

The advection and diffusion of a Gaussian concentra-
tion distribution in a uniform flow with constant diffu-
sion coefficient is used to investigate the computational
performances of the HCSL scheme, the CSSL scheme,
the HCTL scheme, and the CSTL scheme. From the
simulated results of these four schemes examined herein,
one may conclude the following:

1. The CSSL scheme is comparable to the HCSL
scheme, and both provide convincing computed
results in spite of some degree of numerical diffusion
and oscillation.

2. The HCSL scheme and the CSSL scheme seem insen-
sitive to Courant number, but the HCTL scheme and
the CSTL scheme strongly depend on Courant num-
ber, especially the latter.
3. With large Peclet number, for small Courant number
the HCTL scheme has better computed results than
the HCSL scheme and the CSSL scheme. However,
for large Courant number the simulated results from
the HCTL scheme are worse than those of the HCSL
scheme and the CSSL scheme. With small Peclet
number these three schemes produce close simulated
results regardless of Courant number.

4. For small Courant number, the CSTL scheme is com-
parable to the HCTL scheme, but for large Courant
number the CSTL scheme provides poor simulated
results suffering from very large numerical diffusion,
as compared with the HCTL scheme. This may be
because that the natural endpoint constraint is used
for the cubic-spline interpolation on the time line.

5. Since they obviate the need to deal with the addi-
tional equations for spatial or temporal derivatives,
the CSSL scheme and the CSTL scheme are easier
to implement and more efficient than the HCSL
scheme and the HCTL scheme.

6. For large Peclet number, the simulated results from
the HCSL scheme and the CSSL scheme are
improved with the reachback technique. However,
for small Peclet number the HCSL scheme and the
CSSL scheme are not sensitive to the reachback
number.
Appendix I. Coefficients of the Hermite cubic

interpolation

a1 ¼ h2ð3� 2hÞ ð27Þ
a2 ¼ 1� a1 ð28Þ

a3 ¼ h2ð1� hÞDx ð29Þ

a4 ¼ �hð1� hÞ2Dx ð30Þ
b1 ¼ 6hðh� 1Þ=Dx ð31Þ
b2 ¼ �b1 ð32Þ
b3 ¼ hð3h� 2Þ ð33Þ
b4 ¼ ðh� 1Þð3h� 1Þ ð34Þ

In the space-line interpolation, h equals ðmUDt=DxÞ � n̂,
and n̂ is shown in (7). In the time-line interpolation, h is
ðDx=UDtÞ � m̂ in which m̂ is given by (14), and Dx

shown in (29)–(31) needs to be replaced by Dt.
Appendix II. Coefficients of the cubic-spline

interpolation on the time line

En�m̂
i�1 ¼

Rnþ1�m̂
i�1 � Rn�m̂

i�1

6Dt
ð35Þ

F n�m̂
i�1 ¼

Rn�m̂
i�1

2
ð36Þ
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Gn�m̂
i�1 ¼

Unþ1�m̂
i�1 � Un�m̂

i�1

Dt
� 2DtRn�m̂

i�1 þ DtRnþ1�m̂
i�1

6
ð37Þ

H n�m̂
i�1 ¼ Un�m̂

i�1 ð38Þ

where Rn�m̂
i�1 , second derivative for U with respect to

time at grid point i � 1 and time level n� m̂, could be
expressed as following relation

Rk�1
i�1 þ 2Rk

i�1 þ Rkþ1
i�1 ¼

6

Dt2
Uk�1

i�1 � 2Uk
i�1 þ Ukþ1

i�1

� �
;

k ¼ 2; 3; . . . ; n ð39Þ

According to the natural cubic-spline interpolation, two
additional constraints for second derivative with respect
to time at initial time level and time level n + 1, i.e., R1

i�1

and Rnþ1
i�1 , could be represented as

R1
i�1 ¼ 0 ð40Þ

and

Rnþ1
i�1 ¼ 0 ð41Þ
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